Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2022 | vol. 48 | No 1

Download PDF Download RIS Download Bibtex


Photocatalysis is an efficient and ecological method of water and wastewater disinfection. During the process, various microorganisms are deactivated, including Gram-positive and Gram-negative bacteria, for example Escherichia coli, Staphylococcus aureus, Streptococcus pneumonia, and so on, fungi like Aspergillus niger, Fusarium graminearum, algea ( Tetraselmis suecica, Amphidinium carterae, and so on) and viruses. Titanium dioxide (TiO2) is the most commonly used material due to its price and high oxidation efficiency; it is easy to modify using both physical and chemical methods, what allows for its wide use in industrial scale. Intensive research on novel photocatalysts (e.g. ZnO and carbon based photocatalysis like graphene, carbon nanotube, carbon nitride and others) has been carried out. The future development of nano-disinfection containing metal/metal oxides and carbon based nanoparticles should focus on:
 improving disinfection efficiency through different manufacturing strategies,
 proper clarification and understanding of the role and mechanism of interaction of the nano-material with the microorganisms,
 progress in scaling up the production of commercial nano-photocatalysts,
 determination of the extent of environmental release of nano-photocatalysts and their toxicity.

Go to article


  1. Akasaka, T. & Watari, F. (2009). Capture of bacteria by flexible carbon nanotubes, Acta Biomater., 5, pp. 607–612. DOI:10.1016/j.actbio.2008.08.014
  2. Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336, pp. 117–124. DOI:10.1016/j.jcis.2009.03.018
  3. Akhavan, O. & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys.Chem. C, 113, pp. 20214–20220. DOI:10.1021/jp906325q
  4. Akhavan, O., Abdolahad, M., Abdi, Y. & Mohajerzadeh, S. (2009). Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation, Carbon, 47, pp. 3280–3287. DOI:10.1016/j.carbon.2009.07.046
  5. Anis, S.F., Hashaikeh, R. & Hilal, N. (2019). Functional materials in desalination: A review, Desalination, 468, 114077. DOI:10.1016/j.desal.2019.114077
  6. Amin, M.T., Alazba, A.A. & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Advances in Materials Science and Engineering, Article ID 825910, 24 pages. DOI:10.1155/2014/825910
  7. Anjum, M., Miandad, R., Waqas, M., Gehany, F. & Barakat, M.A. (2019). Remediation of wastewater using various nanomaterials, Arabian Journal of Chemistry, 12, pp. 4897-4919. DOI:10.1016/j.arabjc.2016.10.004
  8. Bagchi, D., Bagchi, M., Hassoun, E. & Stohs, S. (1993). Detection of paraquat-induced in vivo lipid peroxidation by gas chromatography/mass spectrometry and high-pressure liquid chromatography, J. Anal. Toxicol., 17, pp. 411–414. DOI:10.1093/jat/17.7.411
  9. Bai, W., Krishna, V., Wang, J., Moudgil, B. & Koopman, B. (2012). Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene, Appl. Catal. B., Environ., 125, pp. 128–135. DOI:10.1016/j.apcatb.2012.05.026
  10. Belapurkar, A.D., Sherkhane, P. & Kale, S.P. (2006). Disinfection of drinking water using photocatalytic technique, Curr. Sci., 91, pp. 73-76.
  11. Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M. & Rodriguez, J.J. (2019). Semiconductor Photocatalysis for Water Purification, In: Editor(s): Sabu Thomas, Daniel Pasquini, Shao-Yuan Leu, Deepu A. Gopakumar, Micro and Nano Technologies, Nanoscale Materials in Water Purification, Chapter 22, Elsevier, (pp. 581-651). DOI:10.1016/C2017-0-00435-4
  12. Bhadra, P., Mitra, M.K., Das, G.C., Dey, R. & Mukherjee, S. (2011). Interaction of chitosan capped ZnO nanorods with Escherichia coli, Mater. Sci. Engineer. C, 31(5), pp. 929-937. DOI:10.1016/j.msec.2011.02.015
  13. Bing, W., Chen, Z., Sun, H., Shi, P., Gao, N., Ren, J. & Qu, X. (2015). Visible-light-driven enhanced antibacterial and bio film elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res., 8, pp. 1648–1658. DOI:10.1007/s12274-014-0654-1
  14. Blanco-Galvez, J., Fernández-Ibáñnez, S. & Malato-Rodriguez, J. (2007). Solar photocatalytic detoxification and disinfection of water: recent overviews, J. Sol. Energy Eng., 129, pp. 4-15. DOI:10.1115/1.2390948
  15. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micro-pollutants from water environment–state of the art, Archives of Environmental Protection, 37(2), pp. 15–29.
  16. Bodzek, M. & Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Pt 1: Theoretical backgrounds, Ecol. Chem. Eng. S, 19, pp. 489-512. DOI:10.2478/v10216-011-0036-5
  17. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45(4), pp. 4–19. DOI:10.24425/aep.2019.130237
  18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45(1), pp. 3-18. DOI:10.24425/aep.2019.126419
  19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021) Nano-photocatalysis in water and wastewater treatment. Desalination and Water Treat., in press.
  20. Bogdan, J., Szczawiński, J., Zarzyńska, J. & Pławińska-Czarnak, J. (2014). Mechanizmy inaktywacji bakterii na powierzcniach fotokatalitycznych, (Mechanisms of bacterial inactivation on photocatalytic surfaces), Med. Weter., 70(11), pp. 657-662. (in Polish)
  21. Bora, T. & Dutta, J. (2014). Applications of Nanotechnology in Wastewater Treatment—A Review, Journal of Nanoscience and Nanotechnology, 14, pp. 613–626. DOI:10.1166/jnn.2014.8898
  22. Brady-Estévez, A.S., Nguyen, T.H., Gutierrez, L. & Elimelech, M. (2010). Impact of solution chemistry on viral removal by a single walled carbon nanotube filter, Water Res., 44, pp. 3773–3780. DOI:10.1016/j.watres.2010.04.023
  23. Byrne, C., Subramanianc, G. & Suresh, C.P. (2018). Recent advances in photocatalysis for environmental applications, Journal of Environmental Chemical Engineering, 6, pp. 3531-3555. DOI:10.1016/j.jece.2017.07.080
  24. Cao, B., Cao, S., Dong, P., Gao, J. & Wang, J. (2013). High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation, Mater. Lett., 93, pp. 349–352. DOI:10.1016/j.matlet.2012.11.136
  25. Chen, Y. & Liu, K. (2017). Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 697, pp. 161–173. DOI:10.1016/j.jallcom.2016.12.153
  26. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, pp. 2997-3027. DOI:10.1016/j.watres.2010.02.039
  27. Collivignarelli, M.C., Abbà, A., Benigna, I. Sorlini, S. & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants, Sustainability, 10, 86. DOI:10.3390/su1001008
  28. Dalrymple, O.K., Stefanakos, E., Trotz, M.A. & Goswami, D.Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98, pp. 27–38. DOI:10.1016/j.apcatb.2010.05.001
  29. Danwittayakul, S., Songngam, S. & Sukkasi, S. (2020). Enhanced solar water disinfection using ZnO supported photocatalysts, Environmental Technology, 41(3), pp. 349-356. DOI:10.1080/09593330.2018.1498921
  30. Das, S., Sinha, S., Suar, M., Yun, S.I., Mishra, A., Suraj, K. & Tripathy, K. (2015). Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites, Journal of Photochemistry and Photobiology B, Biology, 142, pp. 68-76. DOI:10.1016/j.jphotobiol.2014.10.021
  31. Davididou, K., Hale, E., Lane, N., Chatzisymeon, E., Pichavant, A. & Hochepied, J.F. (2017). Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn (IV), Catal. Today, 287, pp. 3–9. DOI:10.1016/j.cattod.2017.01.038
  32. Desai, V.S. & Kowshik, M. (2009). Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique, Res. J. Microbiol., 4, pp. 97-103. DOI:10.3923/jm.2009.97.103
  33. Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O. & Lu, M.C. (2018). Zinc oxide nanoparticles for water disinfection, Sustainable Environment Research, 28, pp. 47-56. DOI:10.1016/j.serj.2017.10.001
  34. Doong, R.A. & Liao, C.Y. (2017). Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179, pp. 403–411. DOI:10.1016/j.seppur.2017.02.028
  35. El Saeed, A.M., El- Fattah, M.A. & Azzam, A.M. (2015). Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating, Dyes Pigments, 121, pp. 282-289. DOI:10.1016/j.dyepig.2015.05.037
  36. Elkady, M.F., Shokry, H.H., Hafez, E.E. & Fouad, A. (2015). Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria, Bioinorg, Chem, Appl., 2015, pp. 1-20. DOI:10.1155/2015/536854
  37. Elmi, F., Alinezhad, H., Moulana, Z., Salehian, F., Tavakkoli, S.M. & Asgharpour, F. (2014). The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water Sci. Technol., 70, pp. 763-770. DOI:10.2166/wst.2014.232
  38. Eskandari, M., Haghighi, N., Ahmadi, V., Haghighi, F. & Mohammadi, S.R. (2011). Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass, Physica B, 406(1), pp. 112-114, DOI:10.1016/j.physb.2010.10.035
  39. Etacheri, V., Michlits, G., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2013). A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5, pp. 1663–1672. DOI:10.1021/am302676a
  40. Etacheri, V., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2010). Highly visible light active TiO2-xNx heterojunction photocatalysts, Chem. Mater., 22, pp. 3843–3853. DOI:10.1021/cm903260f
  41. Fagan, R., McCormack, D.E., Dionysiou, D.D. & Pillai, S.C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process, 42, pp. 2–14. DOI:10.1016/j.mssp.2015.07.052
  42. Feng, L. & Astruc, D. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coordination Chemistry Reviews, 408, 213180. DOI:10.1016/j.ccr.2020.213180
  43. Fernández-Ibáñez, P., Polo-López, M., Malato, S., Wadhwa, S., Hamilton, J., Dunlop, P., D’sa, R., Magee, E., O’shea, K. & Dionysiou D. (2015). Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261, pp. 36–44. DOI:10.1016/j.cej.2014.06.089
  44. Fisher, L., Ostovapour, S., Kelly, P., Whitehead, K., Cooke, K., Storgårds, E. & Verran, J. (2014). Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity, Biofouling, 30, pp. 911–919. DOI:10.1080/08927014.2014.939959
  45. Friedmann, D., Mendive, C. & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B, 99, pp. 398-406. DOI:10.1016/j.apcatb.2010.05.014
  46. Ganguly, P., Byrnea, C., Subramanianc, G. & Suresh, C.P. (2018). Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances, Applied Catalysis B: Environmental, 225, pp. 51-75. DOI:10.1016/j.apcatb.2017.11.018
  47. Gao, P., Ng, K. & Sun, D.D. (2013a). Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light, Journal of Hazardous Materials, 262, pp. 826-835. DOI:10.1016/j.jhazmat.2013.09.055
  48. Gao, P., Liu, J., Sun, D.D. & Ng, W. (2013b). Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation, Journal of Hazardous Materials, 250, pp. 412-420. DOI:10.1016/j.jhazmat.2013.02.003
  49. Gao, Y., Hu, M. & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, Journal of Membrane Science, 455, pp. 349-356. DOI:10.1016/j.memsci.2014.01.011
  50. Garvey, M., Panaitescu, E., Menon, L., Byrne, C., Dervin, S., Hinder, S.J. & Pillai, S.C. (2016). Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens, J. Catal., 344, pp. 631–639. DOI:10.1016/j.jcat.2016.11.004
  51. Hao, R., Wang, G., Tang, H., Sun, L., Xu, C. & Han, D. (2016). Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal. B: Environ., 187, pp. 47–58. DOI:10.1016/j.apcatb.2016.01.026
  52. He, L., Liu, Y, Mustapha, A. & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, pp. 207-215. DOI:10.1016/j.micres.2010.03.003
  53. He, W., Kim, H.K., Wamer, W.G., Melka, D., Callahan. J.H. & Yin, J.J. (2013). Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc., 136, pp. 750–757. DOI:10.1021/ja410800y
  54. Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S. & Guillard C. (2014). Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst, Journal of Photochemistry and Photobiology A: Chemistry, 276, pp.31-40. DOI:10.1016/j.jphotochem.2013.11.011
  55. Hu, C., Guo, J., Qu, J. & Hu, X. (2007). Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir, 23, pp. 4982–4987. DOI:10.1021/la063626x
  56. Huang, J., Ho, W. & Wang, X. (2014). Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination, Chem. Commun., 50, pp. 4338–4340. DOI:10.1039/C3CC48374F
  57. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol., 32, pp. 2650–2653. DOI:10.4236/ijcm.2013.49067
  58. Jin, S.E., Jin, J.E., Hwang, W. & Hong, S.W. (2019). Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection, International Journal of Nanomedicine, 14, pp. 1737—1751. DOI:10.2147/IJN.S192277
  59. Jones, N., Ray, B., Ranjit, K.T. & Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol Lett., 279, pp. 71-76. DOI:10.1111/j.1574-6968.2007.01012.x
  60. Kang, S., Huang, W., Zhang, L., He, M., Xu, S., Sun, D. & Jiang, X. (2018). Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection, Appl. Mater. Interfaces, 10, pp. 13796–13804. DOI:10.1021/acsami.8b00007
  61. Kang, S., Mauter, M.S. & Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 43, pp. 2648–2653. DOI:10.1021/es8031506
  62. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem, Photobiol. A: Chem., 106, pp. 51–56. DOI:10.1016/S1010-6030(97)00038-5
  63. Koli, V.B., Delekar, S.D. & Pawar, S.H. (2016a). Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites, J Mater Sci., Mater Med., 27, 177. DOI:10.1007/s10856-016-5788-0
  64. Koli, V.B., Dhodamani, A.G., Raut, A.V., Thorat, N.D., Pawar, S.H. & Delekar, S.D. (2016b). Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs, J. Photochem. Photobiol. A., Chem., 328, pp. 50–58. DOI:10.1016/j.jphotochem.2016.05.016
  65. Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz,V.W., Sonntag, H.G. & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, pp. 71-77. DOI:10.1016/S0045-6535(03)00362-X
  66. Lan, Y., Hu, C., Hu, X. & Qu, J. (2007). Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B, Environ., 73, pp. 354–360. DOI:10.1016/j.apcatb.2007.01.004
  67. Li, G., Nie, X., Chen, J., Jiangae, Q., An, T., Wong, P.K., Zhang, H., Zhao, H. & Yamashita, H. (2015). Enhanced visible-light driven photocatalytic inactivation of E. coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach, Water Res., 86, pp. 17–24. DOI:10.1016/j.watres.2015.05.053
  68. Li, J., Yin,Y., Liu,E., Maa,Y., Wan, J., Fan, J., & Hu, X. (2017). In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation, J. Hazard. Mater., 321, pp. 183–192. DOI:10.1016/j.jhazmat.2016.09.008
  69. Li, Y., Zhang, C., Shuai, D., Naraginti, S., Wang, D. & Zhang, W. (2016). Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism, Water Res., 106, pp. 249–258. DOI:10.1016/j.watres.2016.10.009
  70. Liu, B., Xue, Y., Zhang, J., Han, B., Zhang, J., Suo, X., Mu, L. & Shi, H. (2017). Visible-light driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight, Environ. Sci. Nano, 4(1), pp. 255–264. DOI:10.1039/C6EN00415F
  71. Liu, J., Liu, L., Bai, H., Wang, Y. & Sun, D.D. (2011). Gram-scale production of graphene oxide–TiO2 nanorod composites: towards high-activity photocatalytic materials, Appl. Catal. B, Environ., 106, pp. 76–82. DOI:10.1016/j.apcatb.2011.05.007
  72. Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang,Y. & Chen, Y. (2009). Sharper and faster ‘Nano Darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, pp. 3891–3902. DOI:10.1021/nn901252r
  73. Liu, Y., Wang, X., Yang, F. & Yang, X. (2008). Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater., 114, pp. 431–439. DOI:10.1016/j.micromeso.2008.01.032
  74. Ma, S., Zhan, S., Jia, Y., Shi, Q. & Zho,Q. (2016). Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light, Appl. Catal. B Environ., 186, pp. 77–87. DOI:10.1016/j.apcatb.2015.12.051
  75. Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. & Jacoby, W.A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 65, pp. 4094-4098. DOI:10.1128/AEM.65.9.4094-4098.1999
  76. Matsunaga, T., Tamoda, R., Nakajima, T. & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, pp. 211-214. DOI:10.1111/j.1574-6968.1985.tb00864.x
  77. Menaka, R. & Subiya, R. (2016). Synthesis of zinc oxide nano powder and its characterization using XRD, SEM and antibacterial activity against, Int. J. Sci. Res., 5, pp. 269-71.
  78. Michalski, R., Dworniczek, E., Caplovicova, M., Monfort, O., Lianos, P., Caplovic, L. & Plesch, G. (2016). Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite, Appl. Surf. Sci., 371, pp. 538–546. DOI:10.1016/j.apsusc.2016.03.003
  79. Molinari, R., Argurio, P., Bellardita, M. & Palmisano, L. (2017). Photocatalytic processes in membrane reactors, In: Drioli, E., Giorno, L. & Fontananova, E. (Eds.), Comprehensive Membrane Science and Engineering, second edition, 3, (pp. 101–138). Oxford: Elsevier, 2017.
  80. Murugesan, P., Moses, J.A. & Anandharamakrishnan, C. (2019). Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, J. Mater. Sci., 54, pp. 12206–12235. DOI:10.1007/s10853-019-03695-2
  81. Narayanan, P.M., Wilson, W.S., Abraham, A.T. & Sevanan, M. (2012). Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens, Bionanosci., 2, pp. 329-335. DOI:10.1007/s12668-012-0061-6
  82. Nasir, A.M., Awang, N., Hubadillah, S.K., Jaafar, J., Othman, M.H.D. Norhayati. W. Salleh, W. & Ismail, A.F. (2021). A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater, Journal of Water Process Engineering, 42, 102111. DOI:10.1016/j.jwpe.2021.102111
  83. Navale, G.R., Thripuranthaka, M., Late, D.J. & Shinde, S.S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi, JSM Nanotechnol. Nanomed., 3, 1033.
  84. Ng, T.W., Zhang, L., Liu, J., Huang, G., Wang, W. & Wong, P.K. (2016). Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr, Water Res., 90, pp. 111–118. DOI:10.1016/j.watres.2015.12.022
  85. Ouyang, K., Dai, K., Chen, H., Huang, Q., Gao, C. & Cai, P. (2017). Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation, Ecotoxicol. Environ. Saf., 136, pp. 40–45. DOI:10.1016/j.ecoenv.2016.10.030
  86. Ouyang, K., Dai, K., Walker, S.L., Huang, Q., Yin, X. & Cai, P. (2016). Efficient photocatalytic disinfection of Escherichia coli O157: H7 using C70-TiO2 hybrid under visible light irradiation, Sci. Rep., 6, 25702. DOI:10.1038/srep25702
  87. Padmavathy, N. & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles e an antimicrobial study, Sci. Technol. Adv. Mater., 9, 035004. DOI:10.1088/1468-6996/9/3/035004
  88. Page, K., Palgrave, R.G., Parkin, I.P., Wilson, M., Savin, S.L.P. & Chadwick, A.V. (2007). Titania and silver-titania composite films on glass - Potent antimicrobial coatings, Journal of Materials Chemistry, 17, pp. 95-104. DOI:10.1039/b611740f
  89. Pasquini, L.M., Hashmi, S.M., Sommer, T.J., Elimelech, M. & Zimmerman, J.B. (2012). Impact of surface functionalization on bacterial cytotoxicity of single walled carbon nanotubes, Environ. Sci. Technol., 46, pp. 6297–6305. DOI:10.1021/es300514s
  90. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A. & O'shea, K. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, pp. 331–349. DOI:10.1016/j.apcatb.2012.05.036
  91. Petronella, F., Truppi, C., Ingrosso, A., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A. & Comparelli, R. (2016). Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281, pp. 85-100. DOI:10.1016/j.cattod.2016.05.048
  92. Podporska-Carroll, J., Panaitescu, E., Quilty, B., Wang, L., Menon, L. & Pillai, S.C. (2015). Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal. B: Environ., 176, pp. 70–75. DOI:10.1016/j.apcatb.2015.03.029
  93. Qin, J., Huo, J., Zhang, P., Zeng, J., Wang, T. & Zeng, H. (2015). Improving photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation, Nanoscale, 8, pp. 2249–2259, DOI:10.1039/C5NR06346A
  94. Qu, X., Alvarez, P.J. & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment, Water Res., 47, pp. 3931–3946. DOI:10.1016/j.watres.2012.09.058
  95. Raizada, P., Sudhaik, A. & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review, Materials Science for Energy Technologies, 2(3), pp. 509-525. DOI:10.1016/j.mset.2019.04.007
  96. Rana, S., Srivastava, R., Sorensson, M. & Misra, R. (2005). Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system, Mater. Sci. Eng. B, 119, pp. 144–151. DOI:10.1016/j.mseb.2005.02.043
  97. Rawat, J., Rana, S., Srivastava, R. & Misra, R.D.K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C, 27, pp. 540–545. DOI:10.1016/j.msec.2006.05.021
  98. Reddy, M.P., Venugopal, A. & Subrahmanyam, M. (2007). Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst, Water Res., 41, pp. 379–386. DOI:10.1016/j.watres.2006.09.018
  99. Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter T. & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91, pp. 94-103. DOI:10.1016/j.envint.2016.02.012
  100. Rengifo-Herrera, J., Kiwi, J. & Pulgarin, C.N. (2009). S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol. A, Chem., 205, pp. 109–115. DOI:10.1016/j.jphotochem.2009.04.015
  101. Rengifo-Herrera, J.A. & Pulgarin, C. (2010). Photocatalytic activity of N, S co-doped and N doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation, Sol. Energy, 84, pp. 37–43. DOI:10.1016/j.solener.2009.09.008
  102. Richter, C., Panaitescu, E., Willey, R.J. & Menon, L. (2007). Titania nanotubes prepared by anodization in fluorine-free acids, J.Mater. Res., 22, pp. 1624-1631. DOI:10.1557/JMR.2007.0203
  103. Rincón, A.G. & Pulgarin, C. (2003). Photocatalytic inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Appl. Catal. B, 44, pp. 263-284. DOI:10.1016/S0926-3373(03)00076-6
  104. Rtimi, S., Baghriche, O., Pulgarin, C., Lavanchy, J.C. & Kiwi, J. (2013). Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol., 232, pp. 804–813. DOI:10.1016/j.surfcoat.2013.06.102
  105. Rtimi, S., Pulgarin, C., Sanjines, R., Nadtochenko, V., Lavanchy, J.C. & Kiwi, J. (2015). Preparation and mechanism of Cu-decorated TiO2–ZrO2 films showing accelerated bacterial inactivation, ACS Appl. Mater. Interfaces, 71, pp. 12832–12839. DOI:10.1098/rsfs.2014.0046
  106. Saito, T., Iwase, T., Horie, J. & Morioka, T. (1992). Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B, 14, pp. 369–379. DOI:10.1016/1011-1344(92)85115-B
  107. Seery, M.K., George, R., Floris, P. & Pillai, S.C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A, 189, pp. 258-263. DOI:10.1016/j.jphotochem.2007.02.010
  108. Sengupta, J. & Hussain C.M. (2021). Carbon nanomaterials to combat virus: A perspective in view of COVID-19, Carbon Trends 2, 100019. DOI:10.1016/j.cartre.2020.10 0 019
  109. Stan, M.S., Nica, I.C., Dinischiotu, A., Varzaru, E., Iordache, O.G, Dumitrescu, I., Popa, M., Chifiriuc, M.C., Pircalabioru, G.G. & Lazar, V. (2016). Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-Doped titanium dioxide nanoparticles, Materials, 9, 78. DOI:10.3390/ma9090789
  110. Sun, L., Du, T., Hu, C., Chen, J., Lu, J., Lu, Z. & Han, H. (2017). Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light, ACS Sustain Chem. Eng., 5, pp. 8693–8701. DOI:10.1021/acssuschemeng.7b01431
  111. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. & Bae, Y.C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, J. Photochem. Photobiol. A, 163, pp. 37-44. DOI:10.1016/S1010-6030(03)00428-3
  112. Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Mahrous, H. & Salem, M.F. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens, J Food Saf., 31, pp. 211-218. DOI:10.1111/j.1745-4565.2010.00287.x
  113. Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D. & Wang, G. (2018). Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water, Chem., 5, pp. 1–17. DOI:10.1016/j.chempr.2018.12.009
  114. Thurston, J.H., Hunter, N.M. & Cornell, K.A. (2016). Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films, RSC Adv., 6, pp. 42240–42248. DOI:10.1039/C6RA05613J
  115. Thurston, J.H., Hunter, N.M., Wayment, L.J. & Cornell, K.A. (2017). Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity, J. Colloid. Interface Sci., 505, pp. 910–918. DOI:10.1016/j.jcis.2017.06.089
  116. Wang, S., Yang, S., Quispe, E., Yang, H., Sanfiorenzo, C., Rogers, S.W., Wang, K., Yang, Y. & Hoffmann, M.R. (2021). Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO₂ Nanotube Arrays, ACS ES&T Engineering, 1 (3). pp. 612-622. DOI:10.1021/acsestengg.1c00011
  117. Wang, W., Li, G., An, T., Chan, D.K.L., Yu, J.C. & Wong, P.K. (2018). Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment, Appl. Catal. B Environ., 238, pp. 126–135. DOI:10.1016/j.apcatb.2018.07.004
  118. Wang, W., Yu, J.C., Xia, D., Wong, P.K. & Li, Y. (2013). Graphene and g-C3N4 nanosheets cow rapped elemental a-sulfur as a novel metalfree heterojunction photocatalyst for bacterial inactivation under visible-light, Environ. Sci. Technol., 47, pp. 8724–8732. DOI:10.1021/es4013504
  119. Wang, Y., Wu, Y., Yang, H., Xue, X. & Liu, Z. (2016a). Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity, Vacuum, 131, pp. 58–64. DOI:10.1016/j.vacuum.2016.06.003
  120. Wang, Z., Dong, K., Liu, Z., Zhang, Y., Chen, Z., Sun, H., Ren, J. & Qu, X. (2016b). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection, Biomaterials, 113, pp. 145–157. DOI:10.1016/j.biomaterials.2016.10.041
  121. Wong, M.S., Chu, W.C., Sun, D.S., Huang, H.S., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S., Hsu, S.F., Wang, S.L. & Chang, H.H. (2006). Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol., 72, pp. 6111-6116. DOI:10.1128/AEM.02580-05
  122. Wu, D., An, T., Li, G., Wang, W., Cai, Y., Yip, H.Y., Zhao, H. & Wong, P.K. (2015). Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite, Appl. Surf. Sci., 358, pp. 137-145. DOI:10.1016/j.apsusc.2015.08.033
  123. Xia, D., Wang, W., Yin, R., Jiang, Z., An, T., Li, G., Zhao, H. & Wong, P.K. (2017). Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species, Appl. Catal. B Environ., 214, pp. 23–33. DOI:10.1016/j.apcatb.2017.05.035
  124. Xu, J., Gao, Q., Bai, X., Wang, Z. & Zhu, Y. (2019). Enhanced visible-light induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles, Catal. Today, 332, pp. 227–235. DOI:10.1016/j.cattod.2018.07.024
  125. Xu, J., Li, Y., Zhou, X., Li, Y., Gao, Z.D., Song, Y.Y. & Schmuki, P. (2016). Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform, Chem. Eur. J., 22, pp. 3947–3951. DOI:10.1002/chem.201505173
  126. Xue, J., Ma, S., Zhou, Y., Zhang, Z. & He, M. (2015). Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Appl. Mater. Interfaces, 7, pp. 9630–9637. DOI:10.1021/acsami.5b01212
  127. Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide, Int. J. Inorg. Mater., 3, pp. 643-646. DOI:10.1016/S1466-6049(01)00197-0
  128. Zambrano-Zaragoza, M.L., González-Reza, R. & Mendoza-Muñoz, N. (2018). Nanosystems in edible coatings: A novel strategy for food preservation, International Journal of Molecular Sciences, 19, 705. DOI:10.3390/ijms19030705
  129. Zeng, X., Wang, Z., Meng, N., McCarthy, D.T., Deletic, A., Pan, J.H. & Zhang, X. (2017). Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal. B, Environ., 202, pp. 33–41. DOI:10.1016/j.apcatb.2016.09.014
  130. Zhang, L.L., Chen, B., Xie, L.L. & Li, Z.F. (2011). Study on the antimicrobial properties of ZnO suspension against Gram-positive and Gram-negative bacteria strains, Adv. Mater. Res., 393-5, pp. 1488-1491. DOI:10.4028/
  131. Zhao, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Zhao, H. & Wang, H. (2014). Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation, Appl. Catal. B Environ., 152–153, pp. 46–50. DOI:10.1016/j.apcatb.2014.01.023
Go to article

Authors and Affiliations

Michał Bodzek

  1. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex


In this paper, we consider the development of reliable tools to assess the water quality and state of aquatic ecosystems in dynamic conditions a crucial need to address. One of such tools could be devised by monitoring the taxonomic structure of reservoirs’ microbiomes. Microbial taxa’s ecological and metabolic characteristics suggest their essential roles in maintaining the water ecosystem’s environmental equilibrium. The study aimed to explainthe role of diversity and seasonal variability of the microbial communities in the ecosystem stability on the example of Goczałkowice Reservoir (Poland). The structure of the reservoir microbiome was studied using bioinformatics and modeling techniques. Water was sampled periodically in July & November 2010, and April 2011 at four representative sites. The abundance and relative fraction of the limnetic taxonomic units were determined in respectto the physicochemical indices. Significant seasonal variations in the number of operational taxonomic units (OTU)were observed within the reservoir basin’s main body but not at the main tributary’s mouth. The highest valuesof the correlation coefficients between OTU and physicochemical variables were obtained for Burkholderiales,Pseudoanabenales, Rickettsiales, Roseiflexales, Methylophilales, Actinomycetales, and Cryptophyta. Thesemicroorganisms are proposed as indicators of environmental conditions and water quality. Metataxonomic analyses of the fresh water microbiome in the reservoir, showed that microorganisms constitute conservative communities that undergo seasonal and local changes regarding the relative participation of the identified taxa. Therefore, we propose that monitoring those variations could provide a reliable measure of the state of aquatic ecosystems.
Go to article


  1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-faceted environmental analysis to improve the quality of anthropogenic water reservoirs (Paprocany reservoir case study). Sensors (Switzerland), 20(9). DOI:10.3390/s20092626
  2. Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133–140.
  3. Anderson-Glenna, M. J., Bakkestuen, V. & Clipson, N. J. W. (2008). Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiology Ecology, 64(3), 407–418. DOI:10.1111/j.1574-6941.2008.00480.x
  4. Aneja, K. (2008). A textbook of basic and applied microbiology. New Age International.
  5. Arora-Williams, K., Olesen, S. W., Scandella, B. P., Delwiche, K., Spencer, S. J., Myers, E. M., Abraham, S., Sooklal, A. & Preheim, S. P. (2018). Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake 06 Biological Sciences 0605 Microbiology 06 Biological Sciences 0602 Ecology 06 Biological Sciences 0604 Genetics. Microbiome, 6(1), 1–16. DOI:10.1186/s40168-018-0556-7
  6. Babczyńska, A., Tarnawska, M., Łaszczyca, P., Migula, P., Łozowski, B., Woźnica, A. & Augustyniak, M. (2021). Stress proteins concentration in caged Cyprinus carpioas a tool to monitor ecological stability in a model dam reservoir. Archives of Environmental Protection, 47(1), 101-116. DOI:10.24425/aep.2021.136452
  7. Beier, S., Witzel, K.-P. K.-P. & Marxsen, J. (2008). Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Applied and Environmental Microbiology, 74(1), 188–199. DOI:10.1128/AEM.00327-07
  8. Bibby, K., Viau, E. & Peccia, J. (2010). Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Research, 44(14), 4252–4260. DOI:10.1016/j.watres.2010.05.039
  9. Chao, A., Chiu, C.-H. & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3599–3609. DOI:10.1098/rstb.2010.0272
  10. Chorus, I. & Bartram, J. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management.
  11. Cottrell, M. T. & Kirchman, D. L. (2000). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66(4), 1692–1697.
  12. DeLong, E. F. (2005). Microbial community genomics in the ocean. Nature Reviews. Microbiology, 3(6), 459–469. DOI:10.1038/nrmicro1158
  13. DeLong, E. F. & Béjà, O. (2010). The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biology, 8(4), 1–5. DOI:10.1371/journal.pbio.1000359
  14. DeLong, E. F., Taylor, L. T., Marsh, T. L. & Preston, C. M. (1999). Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology, 65(12), 5554–5563.
  15. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. DOI:10.1128/AEM.03006-05
  16. Eiler, A. & Bertilsson, S. (2004). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology, 6(12), 1228–1243. DOI:10.1111/j.1462-2920.2004.00657.x
  17. Falkowski, P. G., Fenchel, T. & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039. DOI:10.1126/science.1153213
  18. Fredricks, D. N. (2006). Introduction to the Rickettsiales and other intracellular prokaryotes. In The Prokaryotes (pp. 457–466). Springer.
  19. Fuhrman, J. a, Schwalbach, M. S. & Stingl, U. (2008). Proteorhodopsins: an array of physiological roles? Nature Reviews. Microbiology, 6(6), 488–494. DOI:10.1038/nrmicro1893
  20. Ghai, R., Hernandez, C. M., Picazo, A., Mizuno, C. M., Ininbergs, K., Díez, B., Valas, R., DuPont, C. L., McMahon, K. D., Camacho, A. & Rodriguez-Valera, F. (2012). Metagenomes of Mediterranean Coastal Lagoons. Scientific Reports, 2, 1–13. DOI:10.1038/srep00490
  21. Ghai, R., Rodŕíguez-Valera, F., McMahon, K. D., Toyama, D., Rinke, R., de Oliveira, T. C. S., Garcia, J. W., de Miranda, F. P. & Henrique-Silva, F. (2011). Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE, 6(8). DOI:10.1371/journal.pone.0023785
  22. Glockner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065. DOI:10.1128/AEM.66.11.5053-5065.2000
  23. Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M. & Flis, A. (2014). Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanological and Hydrobiological Studies, 43(4). DOI:10.2478/s13545-014-0160-9
  24. Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methe, B., DeSantis, T. Z., Petrosino, J. F., Knight, R. & Birren, B. W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3), 494–504. DOI:10.1101/gr.112730.110
  25. Hahn, M. W., Kasalicky, V., Jezbera, J., Brandt, U., Jezberova, J. & Simek, K. (2010). Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(6), 1358–1365. DOI:10.1099/ijs.0.013292-0
  26. Hahn, M. W., Kasalicky, V., Jezbera, J., Brandt, U. & Simek, K. (2010). Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(12), 2946–2950. DOI:10.1099/ijs.0.022384-0
  27. Hodges, B. & Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM v2. 2 Science Manual. Water, 62. DOI:10.1016/j.ecss.2007.05.033
  28. Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B. J., Ladds, M. & Gobler, C. J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and Oceanography, 64(3), 1347–1370. DOI:10.1002/lno.11120
  29. Kasalicki, V., Jezbera, J., Simek, K., Hahn, M. W., Kasalicky, V., Jezbera, J., Simek, K. & Hahn, M. W. (2010). Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology, 60(12), 2710–2714. DOI:10.1099/ijs.0.018952-0
  30. Kostecki, M. (2021). A new antrhropogenic lake Kuźnica Warężyńska: thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection, 47(2), 115-127. DOI:10.24425/aep.2021.137283
  31. Logares, R., Brate, J., Heinrich, F., Shalchian-Tabrizi, K., Bertilsson, S., Brte, J., Heinrich, F., Shalchian-Tabrizi, K. & Bertilsson, S. (2010). Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Molecular Biology and Evolution, 27(2), 347–357. DOI:10.1093/molbev/msp239
  32. Malmstrom, R. R., Kiene, R. P., Vila, M. & Kirchman, D. L. (2005). Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnology and Oceanography, 50(6), 1924–1931. DOI:10.4319/lo.2005.50.6.1924
  33. Matysik, M., Absalon, D., Habel, M. & Maerker, M. (2020). Surface water quality analysis using CORINE data: An application to assess reservoirs in Poland. Remote Sensing, 12(6), 16–20. DOI:10.3390/rs12060979
  34. Mendez-Garcia, C., Pelaez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V. & Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6(475). DOI:10.3389/fmicb.2015.00475
  35. Miller, S. R., Strong, A. L., Jones, K. L. & Ungerer, M. C. (2009). Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13), 4565–4572. DOI:10.1128/AEM.02792-08
  36. Percent, S. F., Frischer, M. E., Vescio, P. A., Duffy, E. B., Milano, V., McLellan, M., Stevens, B. M., Boylen, C. W. & Nierzwicki-Bauer, S. A. (2008). Bacterial community structure of acid-impacted lakes: What controls diversity? Applied and Environmental Microbiology, 74(6), 1856–1868. DOI:10.1128/AEM.01719-07
  37. Pernthalerlr, J., Sattlerl, B., Simek, K., Schwarzenbacherl, A., Psennerl, R., Pernthaler, J., Sattler, B., Šimek, K., Schwarzenbacher, A. & Psenner, R. (1996). Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology, 10(3), 255–263. DOI:10.3354/ame010255
  38. Salcher, M. M., Pernthaler, J. & Posch, T. (2011). Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12). The ISME Journal, 5(8), 1242–1252. DOI:10.1038/ismej.2011.8
  39. Sekar, R., Pernthaler, A., Pernthaler, J., Posch, T., Amann, R. & Warnecke, F. (2003). An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 69(5), 2928–2935. DOI10.1128/AEM.69.5.2928
  40. Smith, V. H., Joye, S. B. & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(1, part 2), 351–355. DOI:10.4319/lo.2006.51.1_part_2.0351
  41. Stanimirova, I., Woznica, A., Plociniczak, T., Kwasniewski, M. & Karczewski, J. (2016). A modified weighted mixture model for the interpretation of spatial and temporal changes in the microbial communities in drinking water reservoirs using compositional phospholipid fatty acid data. Talanta, 160, 148–156. DOI:10.1016/j.talanta.2016.07.006
  42. Thatoi, H., Behera, B. C., Mishra, R. R. & Dutta, S. K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Annals of Microbiology, 63(1), 1–19. DOI:10.1007/s13213-012-0442-7
  43. USEPA. (2006). Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC Medium. USEPA.
  44. Vaishnava, S., Yamamoto, M., Severson, K. M., Ruhn, K. a, Yu, X., Koren, O., Ley, R., Wakeland, E. K. & Hooper, L. V. (2011). The Antibacterial Lectin RegIII. Science, 334(October), 255–258.
  45. Vila-Costa, M., Simo, R., Harada, H., Gasol, J. M., Slezak, D., Kiene, R. P., Simó, R., Harada, H., Gasol, J. M., Slezak, D. & Kiene, R. P. (2006). Dimethylsulfoniopropionate uptake by marine phytoplankton. Science (New York, N.Y.), 314(5799), 652–654. DOI:10.1126/science.1131043
  46. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. DOI:10.1128/AEM.00062-07
  47. Warnecke, F., Amann, R. & Pernthaler, J. (2004). Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology, 6(3), 242–253. DOI:10.1111/j.1462-2920.2004.00561.x
  48. Woznica, A., Nowak, A., Ziemski, P., Kwasniewski, M. & Bernas, T. (2013). Stimulatory Effect of Xenobiotics on Oxidative Electron Transport of Chemolithotrophic Nitrifying Bacteria Used as Biosensing Element. PLoS ONE, 8(1). DOI:10.1371/journal.pone.0053484
  49. Zeng, Y., Kasalický, V., Šimek, K., Koblízek, M., Kasalicky, V., Simek, K. & Koblizek, M. (2012). Genome sequences of two freshwater betaproteobacterial isolates, limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. Journal of Bacteriology, 194(22), 6302–6303. DOI:10.1128/JB.01481-12
  50. Zwart, G., Crump, B. C., Kamst-van Agterveld, M. P., Hagen, F. & Han, S. K. (2002). Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 28(2), 141–155. DOI:10.3354/ame028141
Go to article

Authors and Affiliations

Andrzej Woźnica
Mirosław Kwaśniewski
Karolina Chwiałkowska
Bartosz Łozowski
Damian Absalon
Marcin Libera
Michał Krzyżowski
Agnieszka Babczyńska

  1. University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
  2. Medical University of Bialystok, Faculty of Medicine, Bialystok, Poland
  3. University of Silesia in Katowice, Faculty of Science and Technology, Katowice, Poland
Download PDF Download RIS Download Bibtex


Climate change, manifested by long term periods of drought to heavy rainfall, may remarkably modify river flow regimes. We hypothesize that flow prevailing in a given year determines water chemistry of the Carpathian Raba River above and below Dobczyce Reservoir (southern Poland), used for drinking purposes. Based on the mean annual river flow for years 1991‒2017, hydrologically dry (HD), hydrologically average (HA)and hydrologically wet (HW) years were distinguished. We found significant differences in the values of most studied physicochemical parameters of river water above and below the reservoir between studied hydrological years (for a period of April‒November). In HD years, the water above the dam had significantly higher temperature and values of conductivity (point pollution source, groundwater inflow), while lower ones of nutrients NO3- and P-tot (diffuse pollution) compared to those in HA and/or HW years. The best GLM models for mean monthly flows above and below the dam include 3‒5 factors among which conductivity and NO3- concentration were always present. The reservoir in different ways influences the water chemistry below the dam in HD, HA and HWyears. The impact of flow on the water quality in hydrologically varied years is discussed. The obtained results are important for appropriate management in catchment basins of mountain rivers and the protection of dam reservoirs against the eutrophication processes in changing climate and flow regime.
Go to article


  1. APHA. (1992). Standard methods for the examination of water and wastewater (18th ed), American Public Health Association, Washington 1992
  2. Berkamp, G., McCartney, M., Dugan, P., McNeely, J. & Acreman, M. (2000). Dams, ecosystem functions and environmental restoration thematic review II.1 prepared as an input to the World Commission on Dams, Cape Town 2000 (http: www.dams org (28.05.2021)).
  3. Blahušiaková, A., Matoušková, M., Jenicek, M., Ledvinka, O., Kliment, Z., Podolinská, J. & Snopková, Z. (2020). Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe, Hydrol Sci J, 65, pp. 1–14. DOI: 10.1080/02626667.2020.1784900
  4. Bouraoui, F. & Grizzetti, B. (2011). Long term change of nutrient concentrations of rivers discharging in European seas, Sci Total Environ, 409, pp. 4899–4916. DOI:10.3390/w12030779.
  5. Bouraï, L., Logez, M., Laplace-Treyture, Ch. & Argillier, Ch. (2020). How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in lakes?, Water, 12, 3, pp. 779. DOI: 10.3390/w12030779
  6. Bowes, M.J., Jarvie, H.P., Halliday, S.J., Skeffington, R.A., Wade, A.J., Lowenthal, M., Gozzard, E., Newman, J.R. & Palmer-Felgate, E.J. (2015). Characterising phosphorus and nitrate inputs to a rural river using high frequency concentration-flow relationships, Sci Total Environ, 511, pp. 608–620. DOI: 10.1016/j.scitotenv.2014.12.086
  7. Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference. Understanding AIC and BIC in model selection, Sociol Method Res, 33, pp. 261–304. DOI: 10.1177/0049124104268644
  8. EEA. (2005). Source apportionment of nitrogen and phosphorus inputsinto the aquatic environment. EEA Report No. 7⁄2005. European Environment Agency, Copenhagen 2005.
  9. Faithful, J.W. & Griffiths, D.J. (2000). Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to a summer storm event, Lakes Reserv Res Manag, 5, pp. 231–247.
  10. Freckleton, R.P. (2011). Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error, Behav Ecol Sociobiol, 65, pp. 91–101. DOI: 10.1007/s00265-010-1045-6
  11. Genkai-Kato, M. & Carpenter, S.R. (2005). Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes, Ecology, 86, 1, pp. 210–219, DOI: 10.1890/03-0545.
  12. Geraldes, A.M. & Boavida, M.-J. (2005). Seasonal water level fluctuations: Implications for reservoir limnology and management, Lakes Reserv Res Manag, 10, pp. 59–69, DOI: 10.1111/j.1440-1770.2005.00257.x.
  13. Hlásny, T., Trombik, J., Dobor, L., Barcza Z. & Barka I. (2016). Future climate of the Carpathians: climate change hot-spots and implications for ecosystems, Reg Environ Change 16, pp. 1495–1506. DOI: 10.1007/s10113-015-0890-2
  14. Kasza, H. (2009). [Dam reservoirs. Importance – eutrophication – protection], Wydawnictwa Akademii Techniczno-Humanistycznej, Bielsko-Biała 2009. (in Polish)
  15. Kędra, M. & Wiejaczka, Ł. (2018). Climatic and dam-induced impacts on river water temperature: Assessment and management implications, Sci Total Environ, 626, pp. 1474–1483. DOI: 10.1016/j.scitotenv.2017.10.044
  16. Kijowska-Strugała, M., Wiejaczka, Ł. & Kozłowski, R. (2016). Influence of reservoirs on the concentration of nutrients in the water of mountain rivers, Ecol Chem Eng S, 23, 3, pp. 413–424, DOI: 10.1515/eces-2016-0029.
  17. Mazurkiewicz-Boroń, G. 2002. Factors of eutrophication processes in sub-mountain dam reservoirs, Supplementa ad Acta Hydrobiol, 2, pp. 1–68. (in Polish with English summary).
  18. Maavara, T., Parsons, C.T., Ridenour, C., Stojanovic, S., Dürr, H.H., Powley, H.R. & Van, C.P. (2015). Global phosphorus retention by river damming, P Natl Acad Sci USA, 112, pp. 15603–15608. DOI: 10.1073/pnas.1511797112
  19. Mazierski, J. & Kostecki, M. 2021. Impact of the heated water discharge on the water quality in a shallow lowland dam reservoir. Arch Environ Prot, 47, 2, pp. 29-46, 10.24425/aep.2021.137276
  20. Nilsson, C. & Renöfält, B.M. (2008). Linking flow regime and water quality in rivers: A challenge to adaptive catchment management, Ecol Soc, 13, 2, 18. (
  21. Pawełek, J. & Spytek, M. (2006). Biogenic loads carried by the Raba River into the Dobczyce Reservoir in 2002–2005, Infrastruktura i Ekologia Terenów Wiejskich, 3, pp. 107–116. (in Polish with English summary)
  22. Punzet, J. (1969). Hydrological characteristics of the river Raba, Acta Hydrobiol, 11, pp. 423–477. (in Polish with English summary)
  23. Schneider, C., Laizé, C.L.R., Acreman, M. & Flörke, M. (2013). How will climate change modify river flow regimes in Europe?, Hydrol Earth Sys Sci, 17, 1, pp. 325–339. DOI:10.5194/hess-17-325-2013
  24. Soja, R. & Wiejaczka, Ł. (2014). The impact of a reservoir on the physicochemical properties of water in a mountain river, Water Environ J, 28, pp. 473–482. DOI:10.1111/wej.12059
  25. Szalińska, E. & Dominik, J. (2006). Water quality changes in the Upper Dunajec Watershed, Southern Poland, Pol J Environ Stud, 15, pp. 327–224.
  26. StatSoft 2014. STATISTICA (data analysis software system), v. 12. Accessed 7 Jan 2016.
  27. Szalińska, E., Zemełka, G., Kryłów M., Orlińska-Woźniak P., Jakusik E. & Wilk, P. (2021).
  28. Climate change impacts on contaminant loads delivered with sediment yields from different land use types in a Carpathian basin. Sci Total Environ, 755, pp. 142898. DOI: 10.1016/j.scitotenv.2020.142898
  29. Szarek-Gwiazda, E., Mazurkiewicz-Boroń, G., Gwiazda, R. & Urban, J. (2018). Chemical variability of water and sediment over time and along a mountain river subjected to natural and human impact, Knowl Manag Aquat Ecosyst, 419, 5. DOI: 10.1051/kmae/2017056
  30. Szarek-Gwiazda, E., Mazurkiewicz-Boroń, G. & Wilk-Woźniak, E. (2009). Changes of physicochemical parameters and phytoplankton in water of a submountain dam reservoir – effect of late summer stormflow, Arch Environ Prot, 35, 4, pp. 79–91.
  31. Szarek-Gwiazda, E. (2013). Factors influencing the concentrations of heavy metals in the Raba River and selected Carpathian dam reservoirs, Studia Naturae, 60, pp. 1–146. (in Polish with English summary)
  32. Wang, F., Maberly, S.C., Wang, B. & Liang, X. (2018). Effects of dams on riverine biogeochemical cycling and ecology, Inland Waters, 8, 2, pp. 130-140. DOI: 10.1016/j.chemgeo.2018.04.006
  33. Wetzel, R.G. (2001). Limnology, lake and reservoir ecosystem (3rd Edition), Academic Press, Elsevier Science, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, 2001.
  34. Wiatkowski, M. & Wiatkowska, B. (2019). Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis, Arch Environ Prot, 45, 1, pp. 26–41, DOI:10.24425/aep.2019.126339.
  35. Wilk-Woźniak, E. (2009). [Population changes in the communities of planktonic algae and their life strategies under the conditions of artificially altered aquatic ecosystems]. Studia Nature, 55, pp. 1-132. (in Polish with English summary)
  36. Wilk-Woźniak, E., Krztoń, W. & Górnik, M. (2021). Synergistic impact of socio-economic and climatic changes on the ecosystem of a deep dam reservoir: case study of the Dobczyce dam reservoir based on a 30-year monitoring study, Sci Total Environ, 756 (144055). DOI:10.1016/j.scitotenv.2020.144055
  37. Woyciechowska, J. & Dojlido, J. (1982). Changes in the quality surface waters under the influence of the hydrotechnical constructions, Gosp Wod, 5, pp. 47–50 (in Polish).
  38. Yamamoto, Y. & Nakahara, H. (2005). The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length, Limnology 6, 1, pp. 1–6 DOI:10.1007/s10201-004-0138-1.
  39. Winton, R.S., Calamita, E. & Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification, Biogeosciences, 16, pp. 1657–1671. DOI: 10.5194/bg-16-1657-2019
  40. Withers, P.J.A. & Haygarth, P.M. (2007). Agriculture, phosphorus and eutrophication: a European perspective. Soil Use Manage, 23(Suppl. 1), pp. 1–4. DOI: 10.1111/j.1475-2743.2007.00116.x
  41. Wypych, A., Ustrnul, Z. & Schmatz, D.R. (2018). Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J Mt Sci, 15, pp. 237–253. DOI: 10.1007/s11629-017-4374-3
Go to article

Authors and Affiliations

Ewa Szarek-Gwiazda
Robert Gwiazda

  1. Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
Download PDF Download RIS Download Bibtex


The purpose of this research was to determine the groundwater intrinsic vulnerability to pollution of shallow groundwater in Wielkopolska Province, Poland and to assess the risk of pollution by nitrates. Wielkopolska is known as an area where the problem of water pollution by nitrates has existed for a long time due to intensive agriculture. DRASTIC method and its optimized version as well as four other risk evaluation methods were selected to assess the risk pollution with nitrates. The results of either method did not correlate with nitrate concentrations recorded inthe total of 1679 groundwater monitoring points. Therefore a new method of groundwater pollution risk assessment (NV-L) was proposed. The new method is based on optimized results of the DRASTIC system and the L parameter which considers not only land use types, but also the amount of nitrogen loading leached from soil as a result of fertilizer consumption, and from wet deposition. The final results of NV-L method showed that the largest part of the study area is covered by a very low class of pollution risk (30.6%). The high and very high classes occupy 11.6% of the area, mostly in the areas designated until 2012 as the Nitrate Vulnerable Zones. Validation of the results of all methods showed that the other methods than NV-L cannot be used as a basis for reliable assessment of the risk of groundwater pollution by nitrates, as they do not take into account the nitrogen load leached from the soil profile.
Go to article


  1. Air quality monitoring,, access on 04.2021
  2. Al-Adamat, R., Foster, I. & Baban, S.M.J. (2003). Groundwater vulnerability mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC, Applied Geography, 23, 4, pp. 303-324.
  3. Alam, F., Umar, R., Ahmed, S. & Dar, F. A. (2014). A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arabian Journal of Geosciences. DOI:10.1007/s12517-012-0796-y
  4. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J. & Hackett, G. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA-600/2-87-035, EPA, Washington, DC.
  5. Babiker, I.S., Mohammed, M.A.A., Hiyama, T. & Kato, K. (2005). A GIS – based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights. Gifu Prefecture central Japan. Science of the Total Environment, 345, pp. 127-140.
  6. Bojarczuk, A., Jelonkiewicz, E., Jelonkiewicz, Ł. & Lenart-Boroń, A. (2019). Changes in the quality of shallow groundwater in agriculturally used catchment in the Wiśnickie Foothills (Southern Poland), Archives of Environmental Protection, 45, 1, pp. 19–25. DOI:10.24425/aep.2019.126420
  7. Central Hydrogeological Data Bank, Groundwater Bodies characteristics, Major Groundwater Reservoirs,, access on 03.2021
  8. Corine Land Cover, 2018,, access on 04.2021
  9. Dąbrowski, S., Przybyłek, J. & Górski, J. (2007). Warta lowland subregion, [in] Paczyński, B.  Sadurski, A., (Eds), Regional hydrogeology of Poland, Państwowy Instytut Geologiczny, Warsaw. (in Polish)
  10. Dąbrowski, S., Rynarzewski, W., Straburzyńska–Janiszewska, R., Janiszewska, B. & Pawlak, A. (2009). Identification of groundwater level changes due to anthropopression in the Warta water region, Biuletyn Państwowego Instytutu Geologicznego, 436, pp. 77-86. (in Polish)
  11. Digital Elevation Model, resolution 100100 m,, access on 03.2021
  12. Dragon, K. & Górski, J. (2015). Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environ Earth Sci. 73: pp. 2153–2167. DOI:10.1007/s12665-014-3567-0
  13. Dragon, K. (2013). Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ Earth Sci. 68: pp. 2099–2109. DOI:10.1007/s12665-012-1895-5
  14. Duda, R., Witczak, S. & Żurek, A. (2011). Groundwater Vulnerability Map of Poland in scale 1:500 000. Ministry of the Environment. Cracow.
  15. Fiszer, J. & Derkowska-Sitarz, M. (2010). Forecast of development of depression cone and water inflows to Brown Coal Mine Konin including designed open pits Tomisławice and Ościsłowo, Biuletyn Państwowego Instytutu Geologicznego, 442: pp. 37-41. (in Polish)
  16. Galon, R. (1961). Morphology of the Noteć - Warta (or Toruń - Eberswalde) ice marginal streamway. Geographical Studies, Polish Academy of Sciences. Institute of Geography; no. 29, IGiPZ PAN; Wydaw. Geologiczne, Warsaw.
  17. Hydrogeological Map of Poland in the scale 1:50 000, Uppermost Aquifer, Vulnerability and Quality; Hydrogeological Map of Poland in the scale of 1:50 000, Uppermost Aquifer, Hydrodynamics and Occurrence, Geological Map of Poland in the scale 1:50 000,, access on 04.2021
  18. Jamorska, I. (2015). Conditions for the occurrence of groundwater in southern Kujawy Region, Przegląd Geologiczny, 63, 10/1: pp. 756-761. (in Polish)
  19. Krogulec, E. (2004). Vulnerability Assessment of Groundwater Pollution in the River Valley on the Basis of Hydrodynamic Evidences. Wydawnictwo UW, Warszawa, Poland. (in Polish)
  20. Krogulec, E. (2011). Intrinsic and specific vulnerability of groundwater in a river valley. Biuletyn Państwowego Instytutu Geologicznego 445, 337–344. (in Polish)
  21. Ławniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A. & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ Monit. Assess., 188, 172. DOI:10.1007/s10661-016-5167-9
  22. Local database, NUTS 5,, access on 04.2021
  23. Map of soil types on a scale of 1:500 000 (updated 2005-2010),, access on 05.2021
  24. Margat, J. (1968). Groundwater Vulnerability Maps, Conception-Estimation-Mapping; EEC Institut Europeen de l’ Eau: Paris, 1968.
  25. Martínez-Bastida, J.J., Arauzo, M. & Valladolid, M. (2010) Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeology Journal, 18, pp. 681–698.
  26. Monitoring Data Base – MONBADA,, access on 04.2021
  27. Napolitano, P. & Fabbri, A.G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS, Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference), IAHS Publ. no. 235, pp. 559–566.
  28. NUTS 5 = LAU: Local Administrative Units,, access on 05.2021
  29. Perrin, J., Pochon, A., Jeannin P.Y. & Zwahlen, F. (2004). Vulnerability assessment in karstic areas: validation by field experiments. Environmental Geology, 46:237–245. DOI:10.1007/s00254-004-0986-3
  30. Regulation of the Council of Ministers of February 14, 2020 on the adoption of the "Action Program to reduce water pollution with nitrates from agricultural sources and to prevent further pollution". Journal of Laws 2020. 243,, access on 07.2021. (in Polish)
  31. Regulation of the Director of Regional Water Management Authority in Poznań of July 12, 2012 on the determination of waters in the Warta water region, within the boundaries of the Wielkopolska Province, sensitive to pollution with nitrogen compounds from agricultural sources and particularly vulnerable areas, from which the outflow of nitrogen from agricultural sources to these waters should be limited. Journal of Laws of the Wielkopolska Province 2012.3143;; access on 05.2021. (in Polish)
  32. Regulation of the Minister of the Environment of December 23, 2002 on the criteria for determining waters sensitive to pollution with nitrogen compounds with agricultural sources (2002). Journal of Laws 2002. 241. 2093,, access on 04.2021. (in Polish)
  33. Report on the implementation of Directive 91/676/EEC in the years 2016 – 2020 (2021). Ministry of Maritime Economy and Inland Navigation,, access on 07.2021. (in Polish)
  34. Saha, D. & Alam, F. (2014). Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intensive agriculture area of the Gangetic plains, India. Environmental Monitoring and Assessment. DOI: 10.1007/s10661-014-4041-x
  35. Sarkar, M. & Pal, S.C. (2021). Application of DRASTIC and Modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. J. of the Indian Society of Remote Sensing, 49(5), pp. 1201–1219. DOI: 10.1007/s12524-020-01176-7
  36. Secunda, S., Collin, M. L. & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management. DOI: 10.1006/jema.1998.0221
  37. Shirazi, S.M., Imran, H.M. & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: a review, Journal of Risk Research, 15:8, 991-1011, DOI:10.1080/13669877.2012.686053
  38. Stewart, B.A., Viets, F.G. Jr. & Hutchinson, G.L. (1968). Agriculture’s effect on nitrate pollution of groundwater. J. Soil Water Conserv. 23, pp. 13–15.
  39. Szczepański, J. & Straburzyńska – Janiszewska, R. (2011). Forecast of the extent of the depression for the coal open pit Mąkoszyn – Grochowiska KWB „Konin” S.A., Biuletyn Państwowego Instytutu Geologicznego 445: 671-684. (in Polish)
  40. Voudouris, K., Mandrali, P. & Kazakis, N. (2018). Preventing groundwater pollution using vulnerability and risk mapping: the case of the Florina Basin, NW Greece. Geosciences 8(4), 129. DOI:10.3390/geosciences8040129
  41. Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management 277, 11133.0.
  42. Vrba, J. & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists (International Contributions to Hydrogeology 16). Verlag Heinz Heise, Hannover.
  43. Wiatkowski, M., Wiatkowska, B., Gruss, Ł., Rosik-Dulewska, C., Tomczyk, P., Chłopek, D. (2021) Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources, Archives of Environmental Protection, 47, 1, pp. 80–100, DOI 10.24425/aep.2021.136451
  44. Wrzesiński, D. & Perz, A. (2016). Features of the river runoff regime in the Warta catchment area. Bad. Fizjograf., R. 7, Ser. A – Geogr. Fiz. (A67), PTPN, Poznań, pp. 289–304. (in Polish)
  45. Yang, J., Tang, Z., Jiao, T. & Muhammad, A.M. (2017). Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, China. Environ Earth Sci., 76, 426 (2017). DOI:10.1007/s12665-017-6759-6 .
Go to article

Authors and Affiliations

Sebastian Zabłocki
Sadżide Murat-Błażejewska
Joanna Alicja Trzeciak
Ryszard Błażejewski

  1. University of Warsaw, Poland
  2. Poznan University of Life Sciences, Poland
Download PDF Download RIS Download Bibtex


Due to its location, Puck Bay is an area particularly vulnerable to pollution of anthropogenic origin. The aim of the study was to assess the water quality of small watercourses entering the inner part of Puck Bay. The paper presents the results of chemical and microbiological analyses of 10 rivers and canals at their estuaries located on the western shore of the internal Puck Bay. The following environmental parameters were analyzed: conductivity, pH, dissolved oxygen concentration (in situ measurements), COD (cuvette tests), concentrations of ions (ion chromatography). Microbiological analysis included assessment of sanitary condition based on the number of fecal coliforms by a cultivation method. The determination of basic microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity were determined using epifluorescence microscopy method. Based on the obtained results, it was found that small watercourses may carry a notable load of anthropogenic pollution and thus affect the environment of Puck Bay. The results clearly indicate the need for quality monitoring in the rivers and canals in the Coastal Landscape Park, flowing into Puck Bay. The research showed that also smaller watercourses may have an impact on the coastal waters’ state, and thus on the Baltic Sea water quality.
Go to article


  1. Achermann, S., Mansfeldt, C. B., Müller, M., Johnson, D. R. & Fenner, K. (2020). Relating Metatranscriptomic Profiles to the Micropollutant Biotransformation Potential of Complex Microbial Communities. Environmental Science and Technology. DOI:10.1021/acs.est.9b05421
  2. Andrulewicz, E. & Janta, A. (1997). Zatoka Pucka Wewnętrzna. In A. Janta (Ed.), Nadmorski Park Krajobrazowy, pp. 123–137. Wydawnictwo Nadmorskiego Parku Krajobrazowego. (in Polish)
  3. Arheimer, B., Dahné, J. & Donnelly, C. (2012). Climate change impact on riverine nutrient load and land-based remedial measures of the baltic sea action plan. Ambio, 41(6), pp. 600–612. DOI:10.1007/s13280-012-0323-0
  4. Artioli, Y., Friedrich, J., Gilbert, A. J., McQuatters-Gollop, A., Mee, L. D., Vermaat, J. E., Wulff, F., Humborg, C., Palmeri, L. & Pollehne, F. (2008). Nutrient budgets for European seas: A measure of the effectiveness of nutrient reduction policies. Marine Pollution Bulletin, 56(9), pp. 1609–1617. DOI:10.1016/j.marpolbul.2008.05.027
  5. Baath, E. (1994). Thymidine and Leucine Incorporation in Soil Bacteria with Different Cell Size. Marine Ecology, 27, pp. 267–278.
  6. Bączkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R. T., Płóciennik, B. & Polkowska, Ż. (2021). Microbial and chemical quality assessment of the small rivers entering the South Baltic . Part I : Case study on the watercourses in the Baltic Sea catchment area. Archives of Environmental Protection, 47(4), pp. 55–73. DOI:10.24425/aep.2021.139502
  7. Bartram, J. & Rees, G. (2002). Monitoring Bathing Waters – A Practical Guide to the Design
  8. and Implementation of Assessments and Monitoring Programmes. In Urban Water.
  9. E & FN Spon is an imprint of the Taylor & Francis Group. DOI:10.1016/S1462-0758(02)00006-7
  10. Bernard, L., Courties, C., Servais, P., Troussellier, M., Petit, M.A., Lebaron, P. Relationships among Bacterial Cell Size , Productivity, and Flow Cytometry. Microb. Ecol. 2000, 40, pp. 148–158.
  11. Błędzki, L. A. & Kruk-Dowgiallo, L. (1983). Wieloletnie zmiany struktury bentosu Zatoki Puckiej. Człowiek i Środowisko, 7(1–2), pp. 79–93. (in Polish)
  12. Bricker, S. B., Longstaff, B., Dennison, W., Jones, A., Boicourt, K., Wicks, C. & Woerner, J. (2008). Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae, 8(1), pp. 21–32. DOI:10.1016/j.hal.2008.08.028
  13. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V., … Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
  14. Castaldelli, G., Soana, E., Racchetti, E., Vincenzi, F., Fano, E. A. & Bartoli, M. (2015). Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agriculture, Ecosystems and Environment, 212, pp. 253–262. DOI:10.1016/j.agee.2015.07.009
  15. Cochrane, S.K.J., Connor, D.W., Nilsson, P., Mitchell, I., Reker, J., Franco, J., Valavanis, V., Moncheva, S., Ekebom, J. & Nygaard, K. (2010) Marine Strategy Framework Directive. Guidance on the Interpretation and Application of Descriptor 1: Biological Diversity. Report by Task Group 1 on Biological diversity for the European Commission’s Joint Research Centre, Ispra,, Luxembourg, 2010;
  16. Cole, J. J., Pace, M. L., Caraco, N. F. & Steinhart, G. S. (1993). Bacterial biomass and cell size distributions More and larger cells in anoxic waters in lakes. Aquatic Microbial Ecology, 38(8), pp. 1627–1632.
  17. Cottrell, M. T. & Kirchman, D. L. (2004). Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology, 34, pp. 139–149.
  18. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, Documents in European Community Environmental Law No L 206 / 7 (1992). DOI:10.1017/cbo9780511610851.039
  19. Council of Ministers 1988: Zarządzenia Ministra Ochrony Środowiska i Zasobów Naturalnych z dnia 17 listopada 1988 r. (MP nr 32, poz. 292) i z dnia 10 maja 1989 r. (MP Nr 17, poz. 119), (1988). (in Polish)
  20. Council of Ministers 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  21. Council of Ministers 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  22. Council of Ministers 2016a: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  23. Council of Ministers 2016b: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  24. Council of Ministers 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
  25. Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), pp. 926–929. DOI:10.1126/science.1156401
  26. Duan, S., He, Y., Kaushal, S. S., Bianchi, T. S., Ward, N. D. & Guo, L. (2017). Impact of wetland decline on decreasing dissolved organic carbon concentrations along the Mississippi River continuum. Frontiers in Marine Science, 3 (JAN). DOI:10.3389/FMARS.2016.00280
  27. Ducrotoy, J. P. & Elliott, M. (2008). The science and management of the North Sea and the Baltic Sea: Natural history, present threats and future challenges. Marine Pollution Bulletin, 57(1–5), pp. 8–21. DOI:10.1016/j.marpolbul.2008.04.030
  28. Dzierzbicka-Głowacka, L., Janecki, M., Dybowski, D., Szymczycha, B., Obarska-Pempkowiak, H., Wojciechowska, E., Zima, P., Pietrzak, S., Pazikowska-Sapota, G., Jaworska-Szulc, B., Nowicki, A., Kłostowska, Ż., Szymkiewicz, A., Galer-Tatarowicz, K., Wichorowski, M., Białoskórski, M. & Puszkarczuk, T. (2019). A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on baltic sea coastal waters. Polish Journal of Environmental Studies, 28(4), pp. 2531–2539. DOI:10.15244/pjoes/92524
  29. Elofsson, K. (2003). Cost-effective reductions of stochastic agricultural loads to the Baltic Sea. Ecological Economics, 47(1), pp. 13–31. DOI:10.1016/j.ecolecon.2002.10.001
  30. European Court of Auditors. (2016). Combating eutrophication in the Baltic Sea: further and more effective action needed. Special report number 3 (Issue 03). DOI:10.2865/9931
  31. Gasoll, J. M., Giorgio, P. A. & Massana, R. (1995). Active Versus Inactive Bacteria: Size-Dependence in a Coastal Marine Plankton Community. Marine Ecology Progress Series, 128, pp. 91–97.
  32. Gillor, O., Hadas, O., Post, A. F. & Belkin, S. (2010). Phosphorus and nitrogen in a monomictic freshwater lake: Employing cyanobacterial bioreporters to gain new insights into nutrient bioavailability. Freshwater Biology, 55(6), pp. 1182–1190. DOI:10.1111/j.1365-2427.2009.02342.x
  33. Giovannoni, S. J. (2017). SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annual Review of Marine Science, 9(1), pp. 231–255. DOI:10.1146/annurev-marine-010814-015934
  34. Górniak, A. (2017). Spatial and temporal patterns of total organic carbon along the Vistula River course (Central Europe). Applied Geochemistry, 87(September), pp. 93–101. DOI:10.1016/j.apgeochem.2017.10.006
  35. Gren, I. M. (2017). Cost-effective nutrient reductions to the Baltic Sea. Managing a Sea: The Ecological Economics of the Baltic, Hjort 1992, pp. 43–56. DOI:10.4324/9781315071367-4
  36. Hachich, E. M., Di Bari, M., Christ, A. P. G., Lamparelli, C. C., Ramos, S. S. & Sato, M. I. Z. (2012). Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian Journal of Microbiology, 43(2), pp. 675–681. DOI:10.1590/S1517-83822012000200032
  37. HELCOM. (2009). Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. DOI:10.1002/iroh.19910760302
  38. HELCOM, 2015. Updated Fifth Baltic Sea pollution load compilation (PLC-5.5). Baltic Sea
  39. Environment Proceedings No. 145
  40. HELCOM. (2018). State of the Baltic Sea- Second HELCOM holistic assessment, 2011-2016. In Baltic Sea Environment Proceedings (Vol. 155). DOI:10.1016/j.gaitpost.2008.05.016
  41. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34(3), pp. 807–816. DOI:10.1016/S0043-1354(99)00225-0
  42. Hobot, A., Banaszak, K., Stolarska, M., Sowińska, K., Serafin, R. Stachura, A. (2012). Warunki korzystania z wód zlewni rzeki Redy (SCWP: DW1802, DW1803) – Etap 1 – Dynamiczny bilans ilościowy zasobów wodnych. Available online, accessed on 5 January 2022: (in Polish)
  43. Hong, Z., Zhao, Q., Chang, J., Peng, L., Wang, S., Hong, Y., Liu, G. & Ding, S. (2020). Evaluation of water quality and heavy metals in wetlands along the yellow river in Henan province. Sustainability (Switzerland), 12(4), pp. 1–19. DOI:10.3390/su12041300
  44. Hooker, K. V., Coxon, C. E., Hackett, R., Kirwan, L. E., O’Keeffe, E. & Richards, K. G. (2008). Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland. Journal of Environmental Quality, 37(1), pp. 138–145. DOI:10.2134/jeq2006.0547
  45. IMGW Data, 2009-2015: Available online, accessed on 20 October 2020: (in Polish)
  46. IMGW Data, 2016: Available online, accessed on 20 October 2020: (in Polish)
  47. Kalenik, M. (2014). Skuteczność oczyszczania ścieków w gruncie piaszczystym z warstwą naturalnego klinoptylolitu. Ochrona Środowiska, 36, pp. 43–48 (in Polish).
  48. Kalinowska D., Wielgat P., Kolerski T. & Zima P. (2020). Model of Nutrient and Pesticide Outflow with Surface Water to Puck Bay (Southern Baltic Sea). Water 12(3), 809. DOI: 10.3390/w12030809
  49. Klekot, L. (1980a). Ilościowe badania łąk podwodnych zatoki puckiej. Oceanologia, 12, pp. 125–139 (in Polish).
  50. Klekot, L. (1980b). Zatoka pucka osobliwością hydrologiczną Bałtyku. Oceanologia, 12, pp. 109–123 (in Polish).
  51. Korth, F.,Fry, B., Liskow, I. & Voss, M. (2013). Nitrogen Turnover during the Spring Outflows of the Nitrate-Rich Curonian and Szczecin Lagoons Using Dual Nitrate Isotopes. Marine Chemistry 154: pp. 1–11. DOI:10.1016/j.marchem.2013.04.012
  52. Korzeniewski, K. (1993). Zatoka Pucka. Fundacja Rozwoju Uniwersytetu Gdańskiego.
  53. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
  54. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of Biogenic Substances in Water- Courses of Coastal Landscape Park. Journal of Elementology 21 (538): pp. 413–23. DOI:10.5601/jelem.2015.20.1.800
  55. Kruk-Dowgiałło L, S. A. (2008). Gulf of Gdańsk and Puck Bay. [In:] Schiewer U (Ed) Ecology of Baltic coastal waters. Ecological studies. Vol. 197, pp. 139-165. DOI:10,1007/978-3-540-73524-3_7
  56. Kumar, A. S., Reddy, A. M., Srinivas, L. & Reddy, P. M. (2014). Assessment of Surface Water Quality in Hyderabad Lakes by Using Multivariate Statistical Techniques, Hyderabad-India. Environment and Pollution, 4(2), pp. 14–23. DOI:10.5539/ep.v4n2p14
  57. Kyllmar, K., Forsberg, L. S., Andersson, S. & Mårtensson, K. (2014). Small agricultural monitoring catchments in Sweden representing environmental impact. Agriculture, Ecosystems and Environment, 198, pp. 25–35. DOI:10.1016/j.agee.2014.05.016
  58. La Ferla, R., Azzaro, M., Budillon, G., Caroppo, C., Decembrini, F. & Maimone, G. (2010). Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Advances in Oceanography and Limnology, 1(2), pp. 235–257. DOI:10.1080/19475721.2010.541500
  59. La Ferla, R., Maimone, G., Caruso, G., Azzaro, F., Azzaro, M., Decembrini, F., Cosenza, A., Leonardi, M. & Paranhos, R. (2014). Are prokaryotic cell shape and size suitable to ecosystem characterization? Hydrobiologia, 726, pp. 65–80. DOI:10.1007/s10750-013-1752-x
  60. Ling, T. Y., Soo, C. L., Liew, J. J., Nyanti, L., Sim, S. F. & Grinang, J. (2017). Application of Multivariate Statistical Analysis in Evaluation of Surface River Water Quality of a Tropical River. Journal of Chemistry, 2017. DOI:10.1155/2017/5737452
  61. Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1–2), pp. 143–150. DOI:10.1016/j.marpolbul.2012.09.031
  62. Luo, J., Ledgard, S. F. & Lindsey, S. B. (2008). A test of a winter farm management option for mitigating nitrous oxide emissions from a dairy farm. Soil Use and Management, 24(2), pp. 121–130. DOI:10.1111/j.1475-2743.2007.00140.x
  63. Łysiak-Pastuszak, E., Drgas, N. & Pia̧tkowska, Z. (2004). Eutrophication in the Polish coastal zone: The past, present status and future scenarios. Marine Pollution Bulletin, 49(3), pp. 186–195. DOI:10.1016/j.marpolbul.2004.02.007
  64. Massoud, M. A. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184(7), pp. 4151–4160. DOI:10.1007/s10661-011-2251-z
  65. Matej-Lukowicz, K., Wojciechowska, E., Nawrot, N. & Dzierzbicka-Głowacka, L. A. (2020). Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland. PeerJ, 8, e8381. DOI:10.7717/peerj.8381
  66. Meier, H. E. M., Hordoir, R., Andersson, H. C., Dieterich, C., Eilola, K., Gustafsson, B. G., Höglund, A. & Schimanke, S. (2012). Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961-2099. Climate Dynamics, 39(9–10), pp. 2421–2441. DOI:10.1007/s00382-012-1339-7
  67. Michałek, M., Barańska, A., Kuczyński, T., Brzeska-Roszczyk, P., Mioskowska, M., & Tarała, A. (2021). Marine Ecosystem Protection Survey - protection plan for the Coastal Landscape Park. Wydawnictwa Wewnętrzne Instytutu Morskiego Nr WW 7367. Available online, accessed on 5 January 2022: (in Polish)
  68. Michałek, M. & Kruk-Dowgiałło, L., (2015). Management Program for Zatoka Pucka Region. Areas: Zatoka Pucka and Hel Peninsula (PLH 220032) and Zatoka Pucka (PLB220005). Wydawnictwa Wewnętrzne Instytutu Morskiego w Gdańsku WW 6855A (in Polish)
  69. Nazeer, S., Ali, Z. & Malik, R. N. (2016). Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling. Archives of Environmental Contamination and Toxicology, 71(1), pp. 97–112. DOI:10.1007/s00244-016-0272-x
  70. Newton, R. J. & McLellan, S. L. (2015). A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Frontiers in Microbiology, 6(SEP), pp. 1–13. DOI:10.3389/fmicb.2015.01028
  71. Ngang, B. U. & Agbazue, V. E. (2016). A Seasonal Assessment of Groundwater Pollution due to Biochemical Oxygen Demand, Chemical Oxygen Demand and Elevated Temperatures in Enugu Northern Senatorial District, South East Nigeria. IOSR Journal of Applied Chemistry (IOSR-JAC, 9(7), pp. 66–73. DOI:10.9790/5736-0907016673
  72. Noble, R.T., Moore, D.F., Leecaster, M.K., McGee, C.D. & Weisberg, S.B. (2003). Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator response for ocean recreational water quality testing. Water Res. 37, pp. 1637–1643.
  73. Norland S. (1993). The relationship between biomass and volume of bacteria. [In] Cole J.J. (Ed.) Handbook of methods in aquatic microbial ecology, pp. 303–308. Lewis Publishers.
  74. Novotny, V. (2003). Water quality: diffuse pollution and watershed management. John Wiley & Sons. Inc., Hoboken, New Jersey.
  75. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2), pp. 422–430.
  76. Ordinance of the Governor, 1999: Zarządzenia Nr 173/99 Wojewody Pomorskiego z dnia 30 listopada 1999r.50131_AS_5_.JPG(Dz.U. W.P. nr 131, poz. 1129), (1999) (in Polish).
  77. Pastuszak, M., Kowalkowski, T., Kopiński, J., Doroszewski, A., Jurga, B. & Buszewski, B. (2018). Long-term changes in nitrogen and phosphorus emission into the Vistula and Oder catchments (Poland)—modeling (MONERIS) studies. Environmental Science and Pollution Research, 25(29), PP. 29734–29751. DOI:10.1007/s11356-018-2945-7
  78. Pernthaler, J. (2017). Competition and niche separation of pelagic bacteria in freshwater habitats. Environmental Microbiology, 19(6), pp. 2133–2150. DOI:10.1111/1462-2920.13742
  79. Piniewski, M., Kardel, I., Giełczewski, M., Marcinkowski, P. & Okruszko, T. (2014). Climate change and agricultural development: Adapting polish agriculture to reduce future
  80. nutrient loads in a coastal watershed. Ambio, 43(5), pp. 644–660. DOI:10.1007/s13280-013-0461-z
  81. Pliński, M. & Florczyk, I. (1984). Analizys of the composition and vertical distribution
  82. of the macroalgae in western part of the Gulf of Gdańsk in 1979 and 1980. Oceanologia,
  83. 19, pp. 101–115.
  84. Posch, T., Franzoi, J., Prader, M. & Salcher, M. M. (2009). New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology, 54, pp. 113–126. DOI:10.3354/ame01269
  85. Rinke, K., Kuehn, B., Bocaniov, S., Wendt-Potthoff, K., Büttner, O., Tittel, J., Schultze, M., Herzsprung, P., Rönicke, H., Rink, K., Rinke, K., Dietze, M., Matthes, M., Paul, L. & Friese, K. (2013). Reservoirs as sentinels of catchments: The Rappbode Reservoir Observatory (Harz Mountains, Germany). Environmental Earth Sciences, 69(2), pp. 523–536. DOI:10.1007/s12665-013-2464-2
  86. Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J. & Sullivan, K. J. (2008). Net anthropogenic phosphorus inputs: Spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry, 88(3), pp. 285–304. DOI:10.1007/s10533-008-9212-9
  87. Sagova-Mareckova, M., Boenigk, J., Bouchez, A., Cermakova, K., Chonova, T., Cordier, T., Eisendle, U., Elersek, T., Fazi, S., Fleituch, T., Frühe, L., Gajdosova, M., Graupner, N., Haegerbaeumer, A., Kelly, A. M., Kopecky, J., Leese, F., Nõges, P., Orlic, S., Panksep,K., Pawlowski, j., Petrusek, A., Piggott, J.J., Rusch, J.C., Salis, R., Schenk, J., Simek, K., Stovicek, A., Strand, D.A., Vasquez, M,I., Vrålstad, T., Zlatkovic, S., Zupancic, M, & Stoeck, T. (2021). Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. Water Research, 191 (December 2020), 116767. DOI:10.1016/j.watres.2020.116767
  88. Saniewska, D., Gębka, K., Bełdowska, M., Siedlewicz, G., Bełdowski, J. & Wilman, B. (2019). Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Marine Pollution Bulletin, 142 (April), pp. 361–376. DOI:10.1016/j.marpolbul.2019.03.059
  89. Serajuddin, Chowdhury, A. I. & Ferdous, T. (2018). Correlation Among Some Global Parameters Describing Organic Pollutants in River Water: a Case Study. International Journal of Research -GRANTHAALAYAH, 6(7), pp. 278–289. DOI:10.29121/granthaalayah.v6.i7.2018.1308
  90. Shrestha, S. & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), pp. 464–475. DOI:10.1016/j.envsoft.2006.02.001
  91. Šimek, K., Vrba, J. & Hartman, P. (1994). Size-Selective Feeding by Cyclidium sp. on Bacterioplankton and Various Sizes of Cultured Bacteria. FEMS Microbiology Ecology, 14(2), pp. 157–167.
  92. Šimek, K., Nedoma, J., Znachor, P., Kasalický, V., Jezbera, J., Horňák, K. & Sed’a, J. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnology and Oceanography, 59(5), pp. 1477–1492. DOI:10.4319/lo.2014.59.5.1477
  93. Świątecki, A. (1997). Application of bacteriological indicators in the assessment of surface waters. WSP Olsztyn. (in Polish)
  94. Tanentzap, A. J., Fitch, A., Orland, C., Emilson, E. J. S., Yakimovich, K. M., Osterholz, H. & Dittmar, T. (2019). Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 116(49), pp. 24689–24695. DOI:10.1073/pnas.1904896116
  95. Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H., Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N. & Wulff, F. (2007). Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio, 36(2–3), pp. 186–194. DOI:10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2
  96. Węsławski, J. M., Kryla-Straszewska, L., Piwowarczyk, J., Urbański, J., Warzocha, J., Kotwicki, L., Włodarska-kowalczuk, M. & Wiktor, J. (2013). Habitat modelling limitations – Puck Bay, Baltic Sea – a case study. Oceanologia, 55(1), pp. 167–183. DOI:10.5697/oc.55-1.167
  97. Węsławski, J. M., Warzocha, J., Bradtke, K., Kryla, L., Tatarek, A., Kotwicki, L. & Piwowarczyk, J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia, 51(3), pp. 415–435.
  98. Wielgat, P., Kalinowska, D., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Wojciechowska, E., Nawrot, N., Matej-Lukowicz, K. & Dzierzbicka-Glowacka, L. A. (2021). Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ, 9, pp. 1–26. DOI:10.7717/peerj.10938
  99. Wojciechowska, E., Nawrot, N., Matej-Łukowicz, K., Gajewska, M. & Obarska-Pempkowiak, H. (2019a). Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Science and Technology: Water Supply, 19(3), pp. 986–994. DOI:10.2166/ws.2018.190
  100. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019b). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252 (May). DOI:10.1016/j.jenvman.2019.109637
  101. Wojtusiak, R. J. (1950). In the sea. Państwowe Zakłady Wydawnictw Szkolnych. (in Polish)
  102. Wołowicz, M., Kotwicki, S. & Geringer d’Odenberg, M. (1993). Many years of changes in the biocenosis of the Bay of Puck in the area of the mouth of the sewage treatment plant in Swarzewo. [In] Korzeniewski, K. (Ed.), Puck Bay (pp. 510–519). Fundacja Rozwoju Uniwersytetu Gdańskiego (in Polish).
  103. Wulff, F., Humborg, C., Andersen, H. E., Blicher-Mathiesen, G., Czajkowski, M., Elofsson, K., Fonnesbech-Wulff, A., Hasler, B., Hong, B., Jansons, V., Mörth, C. M., Smart, J. C. R., Smedberg, E., Stålnacke, P., Swaney, D. P., Thodsen, H., Was, A. & Zylicz, T. (2014). Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment. Ambio, 43(1), pp. 11–25. DOI:10.1007/s13280-013-0484-5
  104. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238–255. DOI:10.1016/j.marpolbul.2018.11.060
  105. Zalewska, T., Woroń, J., Danowska, B. & Suplińska, M. (2015). Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia, 57(1), pp. 32–43. DOI:10.1016/j.oceano.2014.06.003
  106. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K. & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems and Environment, 88(2), pp. 137–146. DOI:10.1016/S0167-8809(01)00249-3
Go to article

Authors and Affiliations

Emilia Bączkowska
Agnieszka Kalinowska
Oskar Ronda
2 3
Katarzyna Jankowska
Rafał Bray
Bartosz Płóciennik
Żaneta Polkowska
2 3

  1. Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering,Gdansk University of Technology, Gdansk, Poland
  2. Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
  3. EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  4. Coastal Landscape Park, Wladyslawowo, Poland
Download PDF Download RIS Download Bibtex


As part of the work, experiments were carried out on a laboratory scale to assess the effectiveness of the use of composite capsules based on halloysite and sodium alginate for the adsorption of copper from rainwater. The halloysite was subjected to acid activation prior to the encapsulation process. The characteristics of the capsules obtained were determined by means of SEM surface imaging, nitrogen adsorption by the BET method and pH PZC measurement by the suspension method. Adsorption was studied using various operational parameters such as adsorbent dose, contact time, pH and concentration of copper ions in the rainwater. A high percentage of copper ions removal was demonstrated, i.e. 72% for halloysite (H), and 83% for activated halloysite (HA) for a dose of 2.0 g/L. Adsorption of Cu (II) was consistent with pseudo-second order kinetics. The adsorbents showed a high adsorption capacity at the level of 11.03 mg/g, determined by the Langmuir isotherm model. This model fit well with the experimental data.
Go to article


  1. Belhouchat, N. Zaghouane-Boudiaf, N. Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Applied Clay Science, 135, pp. 9- 15. DOI:10.1016/j.clay.2016.08.031
  2. Cavallaro, G. Gianguzza, A. Lazzara, G. Milioto, S. Piazzese, D. (2013). Alginate gel beads filled with halloysite nanotubes, Applied Clay Science, 72, pp. 132-137. DOI:10.1016/j.clay.2012.12.001
  3. Derafa, G. Zaghouane-Boudiaf, H. Ibbora, C.V. (2018). Preparation and characterization of new low cost adsorbent beads based on activated bentonite encapsulated with calcium alginate for removal of 2,4-dichlorophenol from aqueous medium, International Journal of Biological Macromolecules, 115, pp. 257-265. DOI:10.1016/j.ijbiomac.2018.04.064
  4. Du, J. Zhang, B. Li, J. Lai, B. (2020), Decontamination of heavy metal complexes by advanced oxidation processes: A review, Chinese Chemical Letters, 31, 10, pp. 2575-2582. DOI: 10.1016/j.cclet.2020.07.050
  5. Gao, X. Guo, Ch. Hao, J. Zhao, Z. Long, H. Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives, International Journal of Biological Macromolecules, 164, pp. 4423-4434. DOI:10.1016/j.ijbiomac.2020.09.046
  6. He, Y. Chen, Y. Zhang, K. Ye, W. Wu, D. (2019), Removal of chromium and strontium from aqueous solutions by adsorption on laterite, Archives of Environmental Protection, 45, 3 pp.11-20. DOI:10.24425/aep.2019.128636
  7. Kamińska G. Bohdziewicz,J. (2016), Potential of various materials for adsorption of micropollutants from wastewater, Environ. Prot. Eng. 42, pp. 161-178. DOI:10.5277/epe160413
  8. Li, X. Liu, N. Tang, L. Zhang, J. (2020). Specific elevated adsorption and stability of cations in the interlayer compared with at the external surface of clay minerals, Applied Clay Science, 198, 105814. DOI: 10.1016/j.clay.2020.105814
  9. Liao, Z. Zhao, Z. Zhu, J. Chen, H. Meng, D. (2021). Complexing characteristics between Cu(Ⅱ) ions and dissolved organic matter in combined sewer overflows: Implications for the removal of heavy metals by enhanced coagulation, Chemosphere, 265, 129023. DOI:10.1016/j.chemosphere.2020.129023
  10. Oussalah, A. Boukerroui,A. Aichour, A. Djellouli, B. (2019). Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: Adsorption and reusability studies, International Journal of Biological Macromolecules, 124, pp.854-862. DOI:10.1016/j.ijbiomac.2018.11.197
  11. Mariana, M. Khalil, A. Mistar, E.M. Yahya, E.B. Alfatah, T. Danish, M. Amayreh, M. (2021). Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, Journal of Water Process Engineering, 43, 102221. DOI: 10.1016/j.jwpe.2021.102221
  12. Masindi, V. Muedi K.L. (2018) Environmental Contamination by Heavy, Heavy Metals, 10, pp. 115-132. DOI: 10.5772/intechopen.76082
  13. Mellouk, S. Belhakem, A. Marouf-Khelifa, K. Schott, J. Khelifa,A. (2011). Cu(II) adsorption by halloysites intercalated with sodium acetate, Journal of Colloid and Interface Science, 360, 2, pp. 716-724. DOI: 10.1016/j.jcis.2011.05.001
  14. Murat-Błażejewska, S. Błażejewski, R. (2020). Converting sewage holding tanks to rainwater harvesting tanks in Poland, Archives of Environmental Protection, 46, 4, pp. 121-131. DOI: 10.24425/aep.2020.135770
  15. Pan,L. Wang Z. Zhao, X. He, H. (2019). Efficient removal of lead and copper ions from water by enhanced strength-toughness alginate composite fibers, International Journal of Biological Macromolecules, 134, pp. 223 – 229. DOI:10.1016/j.ijbiomac.2019.05.022
  16. Patel, H.K Kalaria, R.K. Jokhakar, P.H. Patel, Ch.P. Patel, B.Y. (2022) Chapter 17 - Removal of emerging contaminants in water treatment by an application of nanofiltration and reverse osmosis, Editor(s): Maulin Shah, Susana Rodriguez-Couto, Jayanta Biswas, Development in Wastewater Treatment Research and Processes, pp. 385-400. DOI:10.1016/B978-0-323-85583-9.00005-3
  17. Pawar R.R. Ingole, L.P.G. Lee, S. (2020). Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, International Journal of Biological Macromolecules, 164, pp. 3145-3154. DOI:10.1016/j.ijbiomac.2020.08.130
  18. Peydayesh, M. Mohammadi, T. Nikouzad, S.K. (2020). A positively charged composite loose nanofiltration membrane for water purification from heavy metals, Journal of Membrane Science, 611, 118205. DOI: 10.1016/j.memsci.2020.118205
  19. Regulation of the Minister of Health on 7 December 2017, On the Quality of Water Intended for Human Consumption (In Polish). Dz.U. 2017 poz. 2294
  20. Richards, S. Rao, L. Connelly, S. Raj A. Raveendran, L. Shirin, S. Jamwal, P. Helliwell, R. (2021). Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment, Journal of Environmental Management, 286, 112223. DOI: 10.1016/j.jenvman.2021.112223
  21. Sulyman, M. Kucinska-Lipka, J. Sienkiewicz, M. Gierak, A. (2021) Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies, Arabian Journal of Chemistry, 14 (5), 103115. DOI:10.1016/j.arabjc.2021.103115
  22. Sutirman, Z.A. Sanagi, M.M. Wan Aini, W.I. (2021). Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review, International Journal of Biological Macromolecules, 174, pp. 216-228. DOI:10.1016/j.ijbiomac.2021.01.150
  23. Szczepanik, B. Słomkiewicz, P. Garnuszek, M. Czech, K. Banaś, D. Kubala-Kukuś, A. Stabrawa, I. (2015). The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies, Journal of Molecular Structure, 1084, pp. 16-22. DOI:10.1016/j.molstruc.2014.12.008
  24. Szczepanik, B. Rogala, P. Słomkiewicz, P.M. Banaś, D. Kubala-Kukuś, A. Stabrawa, I. (2017) Synthesis, characterization and photocatalytic activity of TiO2-halloysite and Fe2O3-halloysite nanocomposites for photodegradation of chloroanilines in water, Applied Clay Science, 149, pp. 118-126. DOI:10.1016/j.glina.2017.08.016
  25. Vasanth Kumar, K. Sivanesan S. (2007), Sorption isotherm for safranin onto rice husk: Comparison of linear and non-linear methods, Dyes and Pigments, 72, pp. 130-133. DOI:10.1016/j.dyepig.2005.07.020 .
  26. Zhao H. Ouyang,X. Yang, L. (2021) Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads, Journal of Molecular Liquids, 324, 2021, 115122. DOI:10.1016/j.molliq.2020.115122.
  27. Zaghouane-Boudiaf, H. Boutahala, M. Sahnoun, S. Tiar, Ch. Gomri, F. (2014). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2,4,5-trichlorophenol, Applied Clay Science, 90, pp.81-87. DOI:10.1016/j.clay.2013.12.030
Go to article

Authors and Affiliations

Anna Marszałek

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex


The Directive on National Emission Ceilings specifies the reduction of ammonia (NH 3) emissions among other air pollutants, which is most significant for the agricultural sector. The ammonia emission limit set for Hungary was a 10% reduction by 2020, while the target of 32% should be reached by 2030 compared to the 2005 reference year. The paper presents the results of a survey on pig production technology in Hungary from 97 domestic farms. The study aims to know the level of implementation of reduction techniques in livestock production and manure management and highlights the need for further improvements in this production sector. The research found that the application of ammonia reduction techniques was not considered widespread, either in livestock buildings or in manure storage (treatment) and during field application. For almost all (more than 90%) pig production groups, the housing systems were the reference without additional emission reduction. For manure storage, farms have insulated storage under the current regulation, however, significantly more emission reduction technologies were in the variant without cover or crust. Slurry spreading was mainly used with manure application techniques, but more emission-friendly injection and band spreading were also emerging. Besides the expected immediate incorporation, a high proportion of manure was applied between 12 and 24 hours or even after 24 hours. In the studied elements of manure management, significant improvements are needed in applying techniques to reduce ammonia emissions. Effective results can be achieved even by shortening the time between manure application and incorporation with efficient work organization.
Go to article


  1. Benedek, Zs., Baranyai, N. & Dublecz, K. (2016). Pig research, Georgikon Report Ministry of Agriculture and Rural Development (FVM), University of Pannonia – Georgikon Faculty. (in Hungarian)
  2. Bittman, S., Dedina, M., Howard, C.M., Oenema, O. & Sutton, M.A. (eds). (2014). Options for Ammonia Mitigation – Guidance from the UNECE Task Force on Reactive Nitrogen, Centre for Ecology and Hydrology, Edinburgh, UK, 2014.
  3. Decree No. 59/2008. (IV. 29.) of the Ministry of Agriculture laying down Rules for Action Program against Agricultural Nitrate Pollution, Data Reporting and Record Keeping.
  4. EC (2016). Directive (EU) 2016/2284 of the European Parliament and of the council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC, Official Journal of the European Union, L334/1.
  5. Eőry, V., Kujáni, K. & Laskai-Varga, B., (Ministry of Agriculture). (2020). National Air Pollution Control Programme (NAPCP) – Agriculture Sub-Program. ( air/reduction/NAPCP.htm (accessed on 10.3.2021))
  6. Fenyvesi, L., Mátyás, L. & Pazsiczki, I. (2003). Pig Husbandry Technologies, Hungarian Institute of Agricultural Engineering, Gödöllő, ISBN: 963-611-395-5, 2003.
  7. Foged, H., Flotats, X., Bonmatí, A., Palatsi, J., Magrí, A. & Schelde, K. (2011). Inventory of Manure Processing Activities in Europe, Technical Report No. I to the European Commission, Directorate- -General Environment concerning Manure Processing Activities in Europe – Project reference: ENV.B.1/ETU/2010/0007
  8. Hegedűsné Baranyai, N., Dublecz, K. & Benedek, Zs. (2016). Results of surveys of husbandry technologies and feeding practices related to the determination of nitrogen and ammonia emissions in the Hungarian pig sector, Presentations at the pig sector consultation held on 15 November 2016 at the Hungarian Ministry of Agriculture, (in Hungarian).
  9. ( (accessed on 22 March 2021)).
  10. Hungarian Central Statistical Office. (2018). Age and sex distribution of pig population, ( evkozi/e_oma003.html (accessed on 5.3.2021)).
  11. Hungarian Meteorological Service. (2020). National Inventory Report for 1985–2018. ( (accessed on:19.04.2021)).
  12. Ifip (2010). Bâtiments d’Élevage Porcin et Environnement. Analyse de l’enquête de novembre 2008 réalisée par le SCEES. 272p
  13. Insausti, M., Timmis, R., Kinnersley, R. & Rufino, M.C. (2020). Advances in sensing ammonia from agricultural sources, Science of The Total Environment, 706, 135124. DOI: 10.1016/j. scitotenv.2019.135124
  14. Jarosz, Z., Faber, A. (2020). Possibilities of reducing ammonia emissions from agriculture – Scenario for 2030, Annals PAAAE 2020. 22, pp. 41–48.
  15. Janni, K. & Cortus, E. (2020). Common Animal Production Systems and Manure Storage Methods. (In Animal Manure: Production, Characteristics, Environmental Concerns, and Management). DOI: 10.2134/asaspecpub67.c3
  16. Koltay, I.A., Benedek, Zs., Hegedűsné Baranyai, N., Such, N.A., Farkas, L., Nagy, J., Szűcs, K., Pál, L., Wágner, L. & Dublecz, K. (2018). Effect of feeding reduced protein diets on ammonia emissions from pigs In: Szabó, Csaba (eds) Spring Wind 2018. pp. 54–72. (in Hungarian)
  17. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., Paulino do Carmo, I.E. & Czekala, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp. 99–108. DOI: 10.24425/aep.2019.128646
  18. Loyon, L. (2018). Overview of Animal Manure Management for Beef, Pig, and Poultry Farms in France, Frontiers in Sustainable Food Systems, 2:36. DOI: 10.3389/fsufs.2018.00036
  19. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019). Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017, Archives of Environmental Protection, 45, 1, pp. 114–121. DOI: 10.24425/aep.2019.130247
  20. Ministry of Agriculture. (2020) BAT Pig Guideline, Guideline for Determining the Best Available Techniques in the Process of Authorisation of Intensive Rearing of Pigs), Hermann Ottó Intézet, ( utmutato_az_intenziv_sertestenyeszteshez_2020.pdf (accessed on 8.08.2021)) (in Hungarian)
  21. Newell Price, J.P., Harris, D., Taylor, M., Williams, J.R., Anthony, S.G., Duethmann, D., Gooday, R.D., Lord, E.I., Chambers, B.J., Chadwick, D.R. & Misselbrook, T.H. (2011). An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from Agriculture’. Prepared as part of Defra Project WQ0106.
  22. Péterfalvi, N., Magyar, M., Vojtela, T. & Keller, B. (2017). Investigation of ammonia emissions and reduction possibilities in pig farming NARIC Young Researchers Days II. professional conference, Szeged, pp. 21–28. (in Hungarian)
  23. Piwowar, A. (2020). Farming Practices for Reducing Ammonia Emissions in Polish Agriculture. Atmosphere, 11 (12), 1353. DOI: 10.3390/atmos11121353
  24. Sajeev, E.P.M., Winiwarter, W. & Amon, B. (2018). Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions, Journal of Environmental Quality, 47(1), pp. 30– 41. DOI: 10.2134/jeq2017.05.0199
  25. Santonja, G.G., Goergitzikis, K., Scalet, B.M., Montobbio, P., Roudier, S. & Sancho, L.D. (2017). Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. EUR 28674 EN. DOI: 10.2760/020485
  26. Soha, T., Papp, L., Csontos, Cs. & Munkacsy, B. (2021). The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area, Renewable and Sustainable Energy Reviews, 141, 110822. DOI: 10.1016/j. rser.2021.110822
  27. Sommer, S.G. & Hutchings, N.J. (2001). Ammonia emission from field applied manure and its reduction. European Journal of Agronomy, 15(1), pp. 1–15. DOI: 10.1016/S1161-0301(01)00112-5
  28. Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. & Grizzetti, B. (2011). The European nitrogen assessment: Sources, effects and policy perspectives. Cambridge Univ. Press, Cambridge, UK.
  29. Velthof, G.L., Van Bruggen, C., Groenestein, C.M., DE HaanB.J., Hoogeveen, M.W. & Huijsmans, J.F.M. (2012). A model for inventory of ammonia emissions from agriculture in the Netherlands, Atmospheric Environment 46: 248–255. DOI: 10.1016/j.atmosenv.2011.09.075
  30. World Health Organization (WHO). (2013). Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and Central Asia, World Health Organization, (http://www.euro. matter-final-Eng.pdf (accessed on 10.3.2021)
Go to article

Authors and Affiliations

Tibor Vojtela
Marianna Magyar
Sándor Koós
Nóra Péterfalvi
László Fenyvesi
Béla Pirkó

  1. Hungarian University of Agriculture and Life Sciences, University Laboratory Center, Hungary
  2. Hungarian University of Agriculture and Life Sciences, Institute of Technology, Hungary
  3. Centre for Agricultural Research, Institute of Soil Sciences, Hungary
Download PDF Download RIS Download Bibtex


To test the potential harmfulness of soils fertilized with sludge-based products to plant organisms, a biotest method using the physiological/biochemical reaction of the organisms to assess their toxicity was chosen. This paper presents the results of a preliminary ecotoxicological study of different products: a sludge-based fertilizer, a plant growth promoter, and a reclamation blend. The study was conducted using Sinapis alba L., a plant used in agriculture for intercropping and recommended for toxicological testing. Toxicity tests were performed in a gradient of concentrations of the indicated products (2.5%, 5%, and 10%). For comparison purposes, a trial containing a commercial fertilizer was used alongside the control soil (without additives). The fertilizer and the crop support agent were of low toxicity, but data analysis indicated toxicity of the so-called reclamation blend, which contained heavy metals among other things. The test products showed an increase in toxicity with the increasing dose used. This research represents an important step in assessing the usefulness of products created from sewage sludge and may help overcome the „psychological barrier” that prevents potential investors from investing capital that would allow production to spread.
Go to article


  1. Borgulat, J. (2020). Zróżnicowanie zawartości metali ciężkich i wielopierścieniowych węglowodorów aromatycznych (WWA) w igłach Picea abies oraz Abies alba w Beskidzie Śląskim i Żywieckim. [Unpublished doctoral dissertation]. University of Silesia
  2. Borgulat, J., Mętrak, M., Staszewski, T., Wiłkomirski, B., Suska-Malawska, M. (2018). Heavy Metals Accumulation in Soil and Plants of Polish Peat Bogs. Polish Journal of Environmental Studies, 27(2). DOI: 10.15244/pjoes/75823
  3. Breda, C.C., Bortolanza, M., Renan, S., Tavantic, F.R., Viana, D., Freddia, O., Piedade, A.R., Mahle, D.,Traballi, R.C., Guerrinig, I. (2020). Successive sewage sludge fertilization: Recycling for sustainable agriculture. Waste Management, 109, pp. 38-50. DOI:10.1016/j.wasman.2020.04.045
  4. Ciesielczuk, T., Rosik-Dulewska, C., Poluszyńska, J., Miłek, D., Szewczyk, A., & Sławińska, I. (2018). Acute toxicity of experimental fertilizers made of spent coffee grounds. Waste Biomass Valori, 9(11), pp. 2157-2164. DOI:10.1007/s12649-017-9980-3
  5. Food and Agriculture Organization of United Nations: Worlds Fertilizer trends and Outlook to 2022. FAO 2019.
  6. Grobelak, A., Stępień, W., & Kacprzak, M. (2016). Sewage sludge as a component of fertilizers and soil substitutes. Inż. Ekol. (in Polish). DOI: 10.12912/23920629/63289
  7. GUS, 2019. Ochrona Środowiska. (, 10.11.2020)
  8. Harasimowicz-Hermann, G., Hermann J. (2006). The function of catch crops in the protection of mineral resources and soil organic matter. Zesz. Probl. Post. Nauk Rol., I(512), pp. 147–155. (in Polish)
  9. Hase, T., Kawamura, K. (2012). Germination test on Komatsuna (Brassica rapa var. peruviridis) seed using water extract from compost for evaluating compost maturity: evaluating criteria for germination and effects of cultivars on germination rate. J. Mater. Cycles Waste Manage., 14(4), pp. 334–340. DOI:10.1007/s10163-012-0073-x
  10. Jakubus, M. (2012). Evaluation of compost by selected chemical and biological methods. Fresen. Environ. Bull., 21(11a), pp. 3464–3472.
  11. Journal of Laws. 2016 item 1395. Regulation of the Minister of the Environment of 1 September 2016 on the manner of conducting the assessment of pollution of the earth surface.
  12. Kaszycki, P., Głodniok, M., Petryszak, P (2021), Towards a bio-based circular economy in organic waste management and wastewater treatment – the Polish perspective. N Biotechnol, 61, pp. 80–89. DOI:10.1016/j.nbt.2020.11.005
  13. Ko, H., Kim, K., Kim, H., Kim, Ch., & Umeda, M. (2008). Evaluation of compost parameters and heavy metals contents in composts made from Animals mature. Waste. Manage., 28, pp. 813–820. DOI: 10.1016/j.wasman.2007.05.010
  14. Krzyżak, J., Pogrzeba, M., Rusinowski, S., Clifton-Brown, J., McCALMONT, J. P., Kiesel, A., & Mos, M. (2017). Heavy metal uptake by novel Miscanthus seed-based hybrids cultivated in heavy metal contaminated soil. CEER, 26(3), pp. 121–132. DOI: 10.1515/ceer-2017-0040
  15. Miaomiao, H., Wenhong, L., Xinqiang, L., Donglei, W., & Guangming, T. (2009). Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Manage., 29, pp. 590–597. DOI:10.1016/j.wasman.2008.07.005
  16. Obidoska, G., Hadam, A. (2008). Phytotoxicity of composts produced from various urban wastes. Ann. Warsaw Univ. Life Sci. – SGGW, Horticult. Landsc. Architect., 29, pp. 65–70.
  17. OECD/ OCDE 208 ¬¬– Guidelines for the testing of chemicals. Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test.
  18. PN-EN ISO 11269-1:2013-06 Soil quality. Determination of the effect of pollutants on soil flora - Method for measuring root growth inhibition. PN-EN ISO 11269-2:2013-06 Soil quality. Determination of the effect of pollutants on soil flora - Effect of chemical compounds on the emergence and growth of higher plants.
  19. Pogrzeba, M., Rusinowski, S., & Krzyżak, J. (2018). Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization—case studies on autumn harvest. Environ Sci Pollut Res., 25(12), pp. 12096–12106. DOI: 10.1007/s11356-018-1490-8
  20. Preite, V., Sailer, C., Syllwasschy, L., Bray, S., Ahmadi, H., Krämer, U., & Yant, L. (2019). Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B, 374, pp. 20180243. DOI:10.1098/rstb.2018.0243
  21. Ren, Y., Lin, M., Liu, Q., Zhang, Z., Fei X., Xiao R., Lv X. (2021). Contamination assessment, health risk evaluation, and source identification of heavy metals in the soil-rice system of typical agricultural regions on the southeast coast of China. Environmental Science and Pollution Research, 28(10), 12870–12880. DOI:10.1007/s11356-020-11229-6
  22. Rosik-Dulewska, C., Głowala, K., Karwaczyńska, U., & Szydło, E (2006). The mobility of chosen pollutants from ash-sludge mixtures. Polish J. Environ. Stud., 15(6), pp. 895–904.
  23. Rosik-Dulewska, Cz., Karwaczyńska, U., & Głowala, K. (2007). Natural use of municipal sewage sludge and compost from municipal waste - fertilization value and environmental hazards. Zesz. Nauk. Wydz. Bud. i Inż. Środ., 23, pp. 137–153. (in Polish)
  24. Sarkheil, H., & Azimi, Y. (2020). Evaluation of Plant Roots Ability to Remove Lead and Zink Mining Drainage Contamination by Geoelectric Surveys. In NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, 2020(1), pp. 1–4. European Association of Geoscientists & Engineers. DOI:10.3997/2214-4609.202020020
  25. Sawicka, B., Kotiuk, E. (2006). Evaluation of health safety of mustards in the obligatory norms. Acta Sci. Pol., Technol. Alim., 5(2), pp. 165–177.
  26. Skubała, K. (2011). Vascular Flora of Sites Contaminated with Heavy Metals on the Expample of Two Post-Industrial Spoil Heaps Connected with Manufacturing of Zinc and Lead Products in Upper Silesia. Archives of Environmental Protection, 37(1), pp. 57–74.
  27. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K., & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2). DOI: 10.24425/aep.2020.133473
  28. Tran, K. Q., Werle, S., Trinh, T. T., Magdziarz, A., Sobek, S., & Pogrzeba, M. (2020). Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass and Bioenergy, 134, 105469. DOI:10.1016/j.biombioe.2020.105469
  29. Vimala, T., & Poonghuzhali, T. (2015). Estimation of pigments from seaweeds by using acetone and DMSO. IJSR, 4(10), pp. 1850–1854.
  30. Wójcik, M., Gonnelli, C., Selvi, F., Dresler, S., Rostański, A., & Vangronsveld, J. (2017). Metallophytes of serpentine and calamine soils–their unique ecophysiology and potential for phytoremediation. Adv. Bot. Res, 83, pp. 1–42. DOI:10.1016/bs.abr.2016.12.002
  31. Zawadzki, P., Głodniok, M. (2021), Environmental Safety Assessment of Fertilizer Products, Pol. J. Environ. Stud. 30(1):11–22. DOI:10.15244/pjoes/120519
  32. Zeynep, G. D. (2019). Role of EDDS and ZnO-nanoparticles in wheat exposed to TiO2Ag-nanoparticles. Archives of Environmental Protection, 45(4), pp. 78–83. DOI: 10.24425/aep.2019.130244
  33. Zhang, Z., Wu, X., Wu, Q., Huang, X., Zhang, J., Fang, H. (2020). Speciation and accumulation pattern of heavy metals from soil to rice at different growth stages in farmland of southwestern China. Environmental Science and Pollution Research, 27(28), 35675–35691. DOI:10.1007/s11356-020-09711-2
Go to article

Authors and Affiliations

Anna Borgulat
Aleksandra Zagórska
Marcin Głodniok

  1. Central Mining Institute, Department of Water Protection, Katowice, Poland
Download PDF Download RIS Download Bibtex


The most worldwide method of liquidating underground hard coal mines is by spontaneous flooding as the result of the discontinuation of the rock mass drainage. Due to the hydrological reconstruction of the previously disturbed water system by mining operations, the movements of the rock mass with the opposite direction than subsidence appear. These movements are called rock mass uplift. This paper aims to present possible hazards related to land surface objects and the environment, which can appear during the flooding of the underground mine. The issue of proper forecasting of this phenomenon has so far been marginal in world literature. To date, only a few analytical methods have been used to predict the possible effects of surface deformation. Nowadays, the most common analytical method of forecasting surface deformation caused by the liquidation of underground workings by flooding is Sroka’s method. In this paper, the authors have presented analyses of flooding scenarios developed for a Polish mine and their impact on the land surface as well as the environment. The scenarios presented in the manuscript were selected for analysis as the most probable concerning the mine and the future plans of the mining enterprise. The process of flooding coal mines results in several risks for surface objects and underground infrastructure. This is why the uplift caused by the flooding of the mine should be predicted. The resulting uplifting movements can also, apart continuous deformation lead to the creation of much more dangerous phenomena involving discontinuous deformations.
Go to article


  1. Álvarez, R., Ordóñez, A., De Miguel, E. & Loredo, C. (2016). Prediction of the flooding of a mining reservoir in NW Spain. Journal of Environmental Management, 184, 219–228. DOI: 10.1016/j.jenvman.2016.09.072
  2. Baglikow, V. (2011). Damage-relevant effects of mine water recovery – conclusions from the Erkelenz hard coal district. Markscheidewesen, 118, 10–16.
  3. Bekendam, R.F. & Pöttgens, J.J.E. (1995). Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters. 5tfh International Symposium on Land Subsidence, 3–12.
  4. Blachowski, J., Cacoń, S., & Milczarek, W. (2009). Analysis of post-mining ground deformations caused by underground coal extractions in complicated geological conditions. Acta Geodyn. Geomater, 6(3), 351–357.
  5. Caro Cuenca, M., Hooper, A.J. & Hanssen, R.F. (2013). Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radarinterferometry. Journal of Applied Geophysics, 88, 1–11. DOI: 10.1016/j.jappgeo.2012.10.003
  6. Devleeschouwer, X., Declercq, P.Y., Flamion, B., Brixko, J., Timmermans, A. & Vanneste, J. (2008). Uplift revealed by radar interferometry around Liège (Belgium): a relation with rising mining groundwater. Proceedings of Post-Mining 2008, 1–13.
  7. Dudek, M., Rusek, J., Tajduś, K. & Słowik, L. (2021). Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines. Archives of Civil Engineering, 67(3). Dudek, M., & Tajduś, K. (2021). FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomechanics for Energy and the Environment, 100254. DOI: 10.1016/j.gete.2021.100254
  8. Dudek, M., Tajduś, K., Misa, R. & Sroka, A. (2020). Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. International Journal of Rock Mechanics and Mining Sciences, 132, 104377. DOI: 10.1016/j.ijrmms.2020.104377
  9. Fenk, J. (2000). An analytical solution for calculating urface heave when flooding underground mine workings , 107, 4220–4422.
  10. Gudmundsson, A., Simmenes, T.H., Larsen, B. & Philipp, S.L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32(11), 1643–1655. DOI: 10.1016/j.jsg.2009.08.013
  11. Heitfeld, K., Heitfeld, M., Rosner, P. & Sahl, H. (2003). Controlled mine water increase in Aachen and Sudlimburg stone coal district. 5. Aachener Bergschandemkundliches Kolloquium, 71–85. (in German)
  12. Heitfeld, M., Rosner, P. & Mühlenkamp, M. (2016). Gutachten zu den Bodenbewegungen im Rahmen des stufenweisen Grubenwasseranstiegs in den Wasserprovinzen Reden und
  13. Duhamel. Bewertung des Einwirkungspotentials und Monitoring Konzept-Anstieg bis – 320 m NHN.
  14. Heitfeld, M., Rosner, P., Mühlenkamp, M. & Sahl, H. (2004). Bergschäden im Erkelenzer Steinkohlenrevier. 4. Altbergbaukolloquium, 281–295.
  15. Jakubick, A., Jenk, U. & Kahnt, R. (2002). Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany. Environmental Geology, 42(2–3), 222–234. DOI: 10.1007/s00254-001-0492-9
  16. Jewartowski, T., Mizerka, J. & Mróz, C. (2015). Coal-Mine Liquidation as a Strategic Managerial Decision: a Decision-Making Model Based on the Options Approach / Archives of Mining Sciences, 60(3), 697–713. DOI: 10.1515/amsc-2015-0046 (in Polish)
  17. John, A. (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1(1), 35–58. DOI: 10.3390/mining1010004
  18. Knothe, S. (1984). Prognozowanie wpływów eksploatacji górniczej. Wydawnictwo Śląsk (in Polish).
  19. Kołodziejczyk, P., Musioł, S. & Wesołowski, M. (2007). Ability to forecast mining area uplift as a result of mine flooding. 63(9), 6–11.
  20. Kowalska, I. J. (2014). Risk management in the hard coal mining industry: Social and environmental aspects of collieries’ liquidation. Resources Policy, 41, 124–134. DOI: 10.1016/j.resourpol.2014.05.002
  21. Krzemień, A., Suárez Sánchez, A., Riesgo Fernández, P., Zimmermann, K. & González Coto, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044–1056. DOI: 10.1016/j.jclepro.2016.08.149
  22. Liu, D. (2020). A numerical method for analyzing fault slip tendency under fluid injection with XFEM. Acta Geotechnica, 15(2), 325–345. DOI: 10.1007/s11440-019-00814-w
  23. Management of environmental risks during and after mine closure, Contract No. RFCR-CT-2015-00004. (2020).
  24. Milczarek, W. (2011). Analysis of changes in the rock mass surface after mining in a selected area of the former Wałbrzych Basin.Wroclaw University of Science and Technology. (in Polish).
  25. Mróz, T.M. & Grabowska, W. (2021). The use of geothermal energy in co-generated heat and power production in Poland – a case study. Archives of Environmental Protection, 47(3), 82–91. DOI: 10.24425/aep.2021.138466
  26. Pöttgens, J.J.E. (1985). Bodenhebung durch ansteigendes Grubenwasser. 6. Internationaler Kongress Für Markscheidewesen, 928–938.
  27. Preuβe, A., Kateloe, H.J. & Sroka, A. (2013). Subsidence and uplift prediction in German and Polish hard coal mining.Markscheidewesen, 120, 23–34.
  28. Samsonov, S., D’Oreye, N. & Smets, B. (2013). Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142–154. DOI: 10.1016/j.jag.2012.12.008
  29. Sattari, A. & Eaton, D. (2014). Finite element modelling of fault stress triggering due to hydraulic fracturing. GeoConvention 2014: FOCUS Adapt, Refine, Sustain.
  30. Schaefer, W. (2007). Ground movements in the tectonics of the Rhenish lignite mining area, 215–225. (in Polish).
  31. Sroka, A. (2005). Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen. 5. Altbergbau- -Kolloquium, 453–462.
  32. Sroka, A., Preuβe, A., Tajduś, K. & Misa, R. (2016). Gutachterliche Stellungnahme zum Einfluss möglicher Grubenwasserregulierungsmaßnahmen auf die Abwasserinfrastruktur der Emschergenossenschaft Teil 1/1: Markscheiderische Beurteilung.
  33. Sroka, A., Tajduś, K. & Misa, R. (2017). Gutachterliche Stellungnahme zur Auswirkung des Grubenwasseranstiegs im Ostfeld des Bergwerkes Ibbenbüren auf die Tagesoberfläche.
  34. Tajduś, A. & Tokarski, S. (2020). Risks Related to Energy Policy of Poland Until 2040 (EPP 2040). Archives of Mining Sciences, 877–899.
  35. Tajduś, K., Sroka, A., Misa, R. & Dudek, M. (2017). Examples of threats to the ground surface with discontinuous deformations of the surface type appearing over liquidated underground mining excavations, 19(3), 3–10. (in Polish).
  36. Vervoort, A. & Declercq, P.-Y. (2017). Surface movement above old coal longwalls after mine closure. International Journal of Mining Science and Technology, 27(3), 481–490. DOI: 10.1016/j.ijmst.2017.03.007
  37. Vervoort, A. & Declercq, P.-Y. (2018). Upward surface movement above deep coal mines after closure and flooding of underground workings. International Journal of Mining Science and Technology, 28(1), 53–59.
  38. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (No 2), 58–67. DOI: 10.24425/aep.2020.133475
  39. Wesołowski, M. (2012). Computer simulation of the impact of flooding mine workings of the former mine "Gliwice" and "Pstrowski" on land surface, 68(5), 54–59. (in Polish).
  40. Wysocka, M., Skubacz, K., Chmielewska, I., Urban, P. & Bonczyk, M. (2019). Radon migration in the area around the coal mine during closing process. International Journal of Coal Geology, 212, 103253. DOI: 10.1016/j.coal.2019.103253
  41. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), 108–119. DOI: 10.24425/aep.2021.1384
Go to article

Authors and Affiliations

Mateusz Dudek
Krzysztof Tajduś
Janusz Rusek

  1. Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland
  2. Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to:

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, ( (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution and reproduction in any medium provided the article is properly cited, is not used for commercial purposes and no modification or adaptation are made.

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made

The manuscripts should be submitted on-line using the Editorial System available at The journal does not have article processing charges (APCs) nor article submission charges.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges

The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.


All Reviewers in 2022

Alonso Rosa, Alwaeli Mohamed, Arora Amarpreet, Babu A., Barbieri Maurizio, Bień Jurand, Bogacki Jan, Bogumiła Pawluśkiewicz, Boutammine Hichem, Burszta-Adamiak Ewa, Cassidy Daniel, Chowaniec Józef, Czerniawski Robert, da Silva Elaine, Dąbek Lidia, Dannowski Ralf, Delgado-González Cristián Raziel, Dewil Raf, Djemli Samir, Du Rui, Egorin A. M., Fadillah‬ ‪Ganjar‬‬, Gangadharan Praveena, Garg Manoj, Gębicki Jacek, Generowicz Agnieszka, Gnida Anna, Golovatyi Sergey, Grabda Mariusz, Guo Xuetao, Gusiatin Mariusz, Han Lujia, Holnicki Piotr, Houali Karim, Iwanek Małgorzata, Janczukowicz Wojciech, Jan-Roblero J., Jarosz-Krzemińska Elżbieta, Jaspal Dipika, Jorge Dominguez, Kabała Cezary, Kalka Joanna, Karaouzas Ioannis, Khadim Hussein Jabar Khadim, Khan Moonis Ali, Kojić Ivan, Kongolo Kitala Pierre, Kozłowski Kamil, Kucharski Mariusz, Lu Fan, Łukaszewski Zenon, Majumdar Pradeep, Mannheim Viktoria, Markowska-Szczupak Agata, Mehmood Andleeb, Mol Marcos, Mrowiec Bożena, Nałęcz-Jawecki Grzegorz, Ochowiak Marek, Ogbaga Chukwuma, Oleniacz Robert, Pan Ligong, Paruch Adam, Pietras Dariusz, Piotrowska-Seget Zofia, Płaza Grażyna, Pohl Alina, Poikane Sandra, Poluszyńska Joanna, Dudzińska Marzenna, Rawtani Deepak, Rehman Khalil, Rogowska Weronika, Rzeszutek Mateusz, Saenboonruang Kiadtisak, Sebakhy Khaled, Sengupta D.K., Shao Jing, Sočo Eleonora, Sojka Mariusz, Sonesten Lars, Song Wencheng, Song ZhongXian, Spiak Zofia, Srivastav Arun, Steliga Teresa, Surmacz-Górska Joanna, Świątkowski Andrzej Symanowicz Barbara, Szklarek Sebastian, Tabina Amtul, Tang Lin, Torrent Sergi, Trafiałek Joanna, Vijay U., Vojtkova Hana, Wang Qi, Wielgosiński Grzegorz, Wilk Pawel, Wiśniewska Marta, Yin Xianqiang, Zając Grzegorz, Zalewski Maciej, Zegait Rachid, Zerafat Mohammad, Zgórska Aleksandra, Zhang Chunhui, Zhang Wenbo, Zhu Guocheng, Zwierzchowski Ryszard

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.

All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.

Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more