Details

Title

Nanoparticles for water disinfection by photocatalysis: A review

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

vol. 48

Issue

No 1

Affiliation

Bodzek, Michał : Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland

Authors

Keywords

Nanoparticles ; Photocatalysis ; water and wastewater disinfection

Divisions of PAS

Nauki Techniczne

Coverage

3-17

Publisher

Polish Academy of Sciences

Bibliography


  1. Akasaka, T. & Watari, F. (2009). Capture of bacteria by flexible carbon nanotubes, Acta Biomater., 5, pp. 607–612. DOI:10.1016/j.actbio.2008.08.014
  2. Akhavan, O. (2009). Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, J. Colloid Interface Sci., 336, pp. 117–124. DOI:10.1016/j.jcis.2009.03.018
  3. Akhavan, O. & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys.Chem. C, 113, pp. 20214–20220. DOI:10.1021/jp906325q
  4. Akhavan, O., Abdolahad, M., Abdi, Y. & Mohajerzadeh, S. (2009). Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation, Carbon, 47, pp. 3280–3287. DOI:10.1016/j.carbon.2009.07.046
  5. Anis, S.F., Hashaikeh, R. & Hilal, N. (2019). Functional materials in desalination: A review, Desalination, 468, 114077. DOI:10.1016/j.desal.2019.114077
  6. Amin, M.T., Alazba, A.A. & Manzoor, U. (2014). A review of removal of pollutants from water/wastewater using different types of nanomaterials, Advances in Materials Science and Engineering, Article ID 825910, 24 pages. DOI:10.1155/2014/825910
  7. Anjum, M., Miandad, R., Waqas, M., Gehany, F. & Barakat, M.A. (2019). Remediation of wastewater using various nanomaterials, Arabian Journal of Chemistry, 12, pp. 4897-4919. DOI:10.1016/j.arabjc.2016.10.004
  8. Bagchi, D., Bagchi, M., Hassoun, E. & Stohs, S. (1993). Detection of paraquat-induced in vivo lipid peroxidation by gas chromatography/mass spectrometry and high-pressure liquid chromatography, J. Anal. Toxicol., 17, pp. 411–414. DOI:10.1093/jat/17.7.411
  9. Bai, W., Krishna, V., Wang, J., Moudgil, B. & Koopman, B. (2012). Enhancement of nano titanium dioxide photocatalysis in transparent coatings by polyhydroxy fullerene, Appl. Catal. B., Environ., 125, pp. 128–135. DOI:10.1016/j.apcatb.2012.05.026
  10. Belapurkar, A.D., Sherkhane, P. & Kale, S.P. (2006). Disinfection of drinking water using photocatalytic technique, Curr. Sci., 91, pp. 73-76. http://www.jstor.org/stable/24094178
  11. Belver, C., Bedia, J., Gómez-Avilés, A., Peñas-Garzón, M. & Rodriguez, J.J. (2019). Semiconductor Photocatalysis for Water Purification, In: Editor(s): Sabu Thomas, Daniel Pasquini, Shao-Yuan Leu, Deepu A. Gopakumar, Micro and Nano Technologies, Nanoscale Materials in Water Purification, Chapter 22, Elsevier, (pp. 581-651). DOI:10.1016/C2017-0-00435-4
  12. Bhadra, P., Mitra, M.K., Das, G.C., Dey, R. & Mukherjee, S. (2011). Interaction of chitosan capped ZnO nanorods with Escherichia coli, Mater. Sci. Engineer. C, 31(5), pp. 929-937. DOI:10.1016/j.msec.2011.02.015
  13. Bing, W., Chen, Z., Sun, H., Shi, P., Gao, N., Ren, J. & Qu, X. (2015). Visible-light-driven enhanced antibacterial and bio film elimination activity of graphitic carbon nitride by embedded Ag nanoparticles, Nano Res., 8, pp. 1648–1658. DOI:10.1007/s12274-014-0654-1
  14. Blanco-Galvez, J., Fernández-Ibáñnez, S. & Malato-Rodriguez, J. (2007). Solar photocatalytic detoxification and disinfection of water: recent overviews, J. Sol. Energy Eng., 129, pp. 4-15. DOI:10.1115/1.2390948
  15. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micro-pollutants from water environment–state of the art, Archives of Environmental Protection, 37(2), pp. 15–29.
  16. Bodzek, M. & Rajca, M. (2012). Photocatalysis in the treatment and disinfection of water. Pt 1: Theoretical backgrounds, Ecol. Chem. Eng. S, 19, pp. 489-512. DOI:10.2478/v10216-011-0036-5
  17. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45(4), pp. 4–19. DOI:10.24425/aep.2019.130237
  18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45(1), pp. 3-18. DOI:10.24425/aep.2019.126419
  19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021) Nano-photocatalysis in water and wastewater treatment. Desalination and Water Treat., in press.
  20. Bogdan, J., Szczawiński, J., Zarzyńska, J. & Pławińska-Czarnak, J. (2014). Mechanizmy inaktywacji bakterii na powierzcniach fotokatalitycznych, (Mechanisms of bacterial inactivation on photocatalytic surfaces), Med. Weter., 70(11), pp. 657-662. (in Polish)
  21. Bora, T. & Dutta, J. (2014). Applications of Nanotechnology in Wastewater Treatment—A Review, Journal of Nanoscience and Nanotechnology, 14, pp. 613–626. DOI:10.1166/jnn.2014.8898
  22. Brady-Estévez, A.S., Nguyen, T.H., Gutierrez, L. & Elimelech, M. (2010). Impact of solution chemistry on viral removal by a single walled carbon nanotube filter, Water Res., 44, pp. 3773–3780. DOI:10.1016/j.watres.2010.04.023
  23. Byrne, C., Subramanianc, G. & Suresh, C.P. (2018). Recent advances in photocatalysis for environmental applications, Journal of Environmental Chemical Engineering, 6, pp. 3531-3555. DOI:10.1016/j.jece.2017.07.080
  24. Cao, B., Cao, S., Dong, P., Gao, J. & Wang, J. (2013). High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation, Mater. Lett., 93, pp. 349–352. DOI:10.1016/j.matlet.2012.11.136
  25. Chen, Y. & Liu, K. (2017). Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 697, pp. 161–173. DOI:10.1016/j.jallcom.2016.12.153
  26. Chong, M.N., Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review, Water Res., 44, pp. 2997-3027. DOI:10.1016/j.watres.2010.02.039
  27. Collivignarelli, M.C., Abbà, A., Benigna, I. Sorlini, S. & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants, Sustainability, 10, 86. DOI:10.3390/su1001008
  28. Dalrymple, O.K., Stefanakos, E., Trotz, M.A. & Goswami, D.Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98, pp. 27–38. DOI:10.1016/j.apcatb.2010.05.001
  29. Danwittayakul, S., Songngam, S. & Sukkasi, S. (2020). Enhanced solar water disinfection using ZnO supported photocatalysts, Environmental Technology, 41(3), pp. 349-356. DOI:10.1080/09593330.2018.1498921
  30. Das, S., Sinha, S., Suar, M., Yun, S.I., Mishra, A., Suraj, K. & Tripathy, K. (2015). Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites, Journal of Photochemistry and Photobiology B, Biology, 142, pp. 68-76. DOI:10.1016/j.jphotobiol.2014.10.021
  31. Davididou, K., Hale, E., Lane, N., Chatzisymeon, E., Pichavant, A. & Hochepied, J.F. (2017). Photocatalytic treatment of saccharin and bisphenol-A in the presence of TiO2 nanocomposites tuned by Sn (IV), Catal. Today, 287, pp. 3–9. DOI:10.1016/j.cattod.2017.01.038
  32. Desai, V.S. & Kowshik, M. (2009). Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique, Res. J. Microbiol., 4, pp. 97-103. DOI:10.3923/jm.2009.97.103
  33. Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O. & Lu, M.C. (2018). Zinc oxide nanoparticles for water disinfection, Sustainable Environment Research, 28, pp. 47-56. DOI:10.1016/j.serj.2017.10.001
  34. Doong, R.A. & Liao, C.Y. (2017). Enhanced photocatalytic activity of Cu-deposited N-TiO2/titanate nanotubes under UV and visible light irradiations, Sep. Purif. Technol., 179, pp. 403–411. DOI:10.1016/j.seppur.2017.02.028
  35. El Saeed, A.M., El- Fattah, M.A. & Azzam, A.M. (2015). Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating, Dyes Pigments, 121, pp. 282-289. DOI:10.1016/j.dyepig.2015.05.037
  36. Elkady, M.F., Shokry, H.H., Hafez, E.E. & Fouad, A. (2015). Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria, Bioinorg, Chem, Appl., 2015, pp. 1-20. DOI:10.1155/2015/536854
  37. Elmi, F., Alinezhad, H., Moulana, Z., Salehian, F., Tavakkoli, S.M. & Asgharpour, F. (2014). The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater, Water Sci. Technol., 70, pp. 763-770. DOI:10.2166/wst.2014.232
  38. Eskandari, M., Haghighi, N., Ahmadi, V., Haghighi, F. & Mohammadi, S.R. (2011). Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass, Physica B, 406(1), pp. 112-114, DOI:10.1016/j.physb.2010.10.035
  39. Etacheri, V., Michlits, G., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2013). A highly efficient TiO2–xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications, ACS Appl. Mater. Interfaces, 5, pp. 1663–1672. DOI:10.1021/am302676a
  40. Etacheri, V., Seery, M.K., Hinder, S.J. & Pillai, S.C. (2010). Highly visible light active TiO2-xNx heterojunction photocatalysts, Chem. Mater., 22, pp. 3843–3853. DOI:10.1021/cm903260f
  41. Fagan, R., McCormack, D.E., Dionysiou, D.D. & Pillai, S.C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process, 42, pp. 2–14. DOI:10.1016/j.mssp.2015.07.052
  42. Feng, L. & Astruc, D. (2020). Nanocatalysts and other nanomaterials for water remediation from organic pollutants, Coordination Chemistry Reviews, 408, 213180. DOI:10.1016/j.ccr.2020.213180
  43. Fernández-Ibáñez, P., Polo-López, M., Malato, S., Wadhwa, S., Hamilton, J., Dunlop, P., D’sa, R., Magee, E., O’shea, K. & Dionysiou D. (2015). Solar photocatalytic disinfection of water using titanium dioxide graphene composites, Chem. Eng. J., 261, pp. 36–44. DOI:10.1016/j.cej.2014.06.089
  44. Fisher, L., Ostovapour, S., Kelly, P., Whitehead, K., Cooke, K., Storgårds, E. & Verran, J. (2014). Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity, Biofouling, 30, pp. 911–919. DOI:10.1080/08927014.2014.939959
  45. Friedmann, D., Mendive, C. & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B, 99, pp. 398-406. DOI:10.1016/j.apcatb.2010.05.014
  46. Ganguly, P., Byrnea, C., Subramanianc, G. & Suresh, C.P. (2018). Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances, Applied Catalysis B: Environmental, 225, pp. 51-75. DOI:10.1016/j.apcatb.2017.11.018
  47. Gao, P., Ng, K. & Sun, D.D. (2013a). Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light, Journal of Hazardous Materials, 262, pp. 826-835. DOI:10.1016/j.jhazmat.2013.09.055
  48. Gao, P., Liu, J., Sun, D.D. & Ng, W. (2013b). Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation, Journal of Hazardous Materials, 250, pp. 412-420. DOI:10.1016/j.jhazmat.2013.02.003
  49. Gao, Y., Hu, M. & Mi, B. (2014). Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, Journal of Membrane Science, 455, pp. 349-356. DOI:10.1016/j.memsci.2014.01.011
  50. Garvey, M., Panaitescu, E., Menon, L., Byrne, C., Dervin, S., Hinder, S.J. & Pillai, S.C. (2016). Titania nanotube photocatalysts for effectively treating waterborne microbial pathogens, J. Catal., 344, pp. 631–639. DOI:10.1016/j.jcat.2016.11.004
  51. Hao, R., Wang, G., Tang, H., Sun, L., Xu, C. & Han, D. (2016). Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal. B: Environ., 187, pp. 47–58. DOI:10.1016/j.apcatb.2016.01.026
  52. He, L., Liu, Y, Mustapha, A. & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, pp. 207-215. DOI:10.1016/j.micres.2010.03.003
  53. He, W., Kim, H.K., Wamer, W.G., Melka, D., Callahan. J.H. & Yin, J.J. (2013). Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc., 136, pp. 750–757. DOI:10.1021/ja410800y
  54. Helali, S., Polo-López, M.I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S. & Guillard C. (2014). Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst, Journal of Photochemistry and Photobiology A: Chemistry, 276, pp.31-40. DOI:10.1016/j.jphotochem.2013.11.011
  55. Hu, C., Guo, J., Qu, J. & Hu, X. (2007). Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir, 23, pp. 4982–4987. DOI:10.1021/la063626x
  56. Huang, J., Ho, W. & Wang, X. (2014). Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination, Chem. Commun., 50, pp. 4338–4340. DOI:10.1039/C3CC48374F
  57. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol., 32, pp. 2650–2653. DOI:10.4236/ijcm.2013.49067
  58. Jin, S.E., Jin, J.E., Hwang, W. & Hong, S.W. (2019). Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection, International Journal of Nanomedicine, 14, pp. 1737—1751. DOI:10.2147/IJN.S192277
  59. Jones, N., Ray, B., Ranjit, K.T. & Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol Lett., 279, pp. 71-76. DOI:10.1111/j.1574-6968.2007.01012.x
  60. Kang, S., Huang, W., Zhang, L., He, M., Xu, S., Sun, D. & Jiang, X. (2018). Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection, Appl. Mater. Interfaces, 10, pp. 13796–13804. DOI:10.1021/acsami.8b00007
  61. Kang, S., Mauter, M.S. & Elimelech, M. (2009). Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent, Environ. Sci. Technol., 43, pp. 2648–2653. DOI:10.1021/es8031506
  62. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem, Photobiol. A: Chem., 106, pp. 51–56. DOI:10.1016/S1010-6030(97)00038-5
  63. Koli, V.B., Delekar, S.D. & Pawar, S.H. (2016a). Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites, J Mater Sci., Mater Med., 27, 177. DOI:10.1007/s10856-016-5788-0
  64. Koli, V.B., Dhodamani, A.G., Raut, A.V., Thorat, N.D., Pawar, S.H. & Delekar, S.D. (2016b). Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs, J. Photochem. Photobiol. A., Chem., 328, pp. 50–58. DOI:10.1016/j.jphotochem.2016.05.016
  65. Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz,V.W., Sonntag, H.G. & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere, 53, pp. 71-77. DOI:10.1016/S0045-6535(03)00362-X
  66. Lan, Y., Hu, C., Hu, X. & Qu, J. (2007). Efficient destruction of pathogenic bacteria with AgBr/TiO2 under visible light irradiation, Appl. Catal. B, Environ., 73, pp. 354–360. DOI:10.1016/j.apcatb.2007.01.004
  67. Li, G., Nie, X., Chen, J., Jiangae, Q., An, T., Wong, P.K., Zhang, H., Zhao, H. & Yamashita, H. (2015). Enhanced visible-light driven photocatalytic inactivation of E. coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach, Water Res., 86, pp. 17–24. DOI:10.1016/j.watres.2015.05.053
  68. Li, J., Yin,Y., Liu,E., Maa,Y., Wan, J., Fan, J., & Hu, X. (2017). In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation, J. Hazard. Mater., 321, pp. 183–192. DOI:10.1016/j.jhazmat.2016.09.008
  69. Li, Y., Zhang, C., Shuai, D., Naraginti, S., Wang, D. & Zhang, W. (2016). Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism, Water Res., 106, pp. 249–258. DOI:10.1016/j.watres.2016.10.009
  70. Liu, B., Xue, Y., Zhang, J., Han, B., Zhang, J., Suo, X., Mu, L. & Shi, H. (2017). Visible-light driven TiO2/Ag3PO4 heterostructures with enhanced antifungal activity against agricultural pathogenic fungi Fusarium graminearum and mechanism insight, Environ. Sci. Nano, 4(1), pp. 255–264. DOI:10.1039/C6EN00415F
  71. Liu, J., Liu, L., Bai, H., Wang, Y. & Sun, D.D. (2011). Gram-scale production of graphene oxide–TiO2 nanorod composites: towards high-activity photocatalytic materials, Appl. Catal. B, Environ., 106, pp. 76–82. DOI:10.1016/j.apcatb.2011.05.007
  72. Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., Yang,Y. & Chen, Y. (2009). Sharper and faster ‘Nano Darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, pp. 3891–3902. DOI:10.1021/nn901252r
  73. Liu, Y., Wang, X., Yang, F. & Yang, X. (2008). Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films, Micropor. Mesopor. Mater., 114, pp. 431–439. DOI:10.1016/j.micromeso.2008.01.032
  74. Ma, S., Zhan, S., Jia, Y., Shi, Q. & Zho,Q. (2016). Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light, Appl. Catal. B Environ., 186, pp. 77–87. DOI:10.1016/j.apcatb.2015.12.051
  75. Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E.J. & Jacoby, W.A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol., 65, pp. 4094-4098. DOI:10.1128/AEM.65.9.4094-4098.1999
  76. Matsunaga, T., Tamoda, R., Nakajima, T. & Wake, H. (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett., 29, pp. 211-214. DOI:10.1111/j.1574-6968.1985.tb00864.x
  77. Menaka, R. & Subiya, R. (2016). Synthesis of zinc oxide nano powder and its characterization using XRD, SEM and antibacterial activity against, Int. J. Sci. Res., 5, pp. 269-71.
  78. Michalski, R., Dworniczek, E., Caplovicova, M., Monfort, O., Lianos, P., Caplovic, L. & Plesch, G. (2016). Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite, Appl. Surf. Sci., 371, pp. 538–546. DOI:10.1016/j.apsusc.2016.03.003
  79. Molinari, R., Argurio, P., Bellardita, M. & Palmisano, L. (2017). Photocatalytic processes in membrane reactors, In: Drioli, E., Giorno, L. & Fontananova, E. (Eds.), Comprehensive Membrane Science and Engineering, second edition, 3, (pp. 101–138). Oxford: Elsevier, 2017.
  80. Murugesan, P., Moses, J.A. & Anandharamakrishnan, C. (2019). Photocatalytic disinfection efficiency of 2D structure graphitic carbon nitride-based nanocomposites: a review, J. Mater. Sci., 54, pp. 12206–12235. DOI:10.1007/s10853-019-03695-2
  81. Narayanan, P.M., Wilson, W.S., Abraham, A.T. & Sevanan, M. (2012). Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens, Bionanosci., 2, pp. 329-335. DOI:10.1007/s12668-012-0061-6
  82. Nasir, A.M., Awang, N., Hubadillah, S.K., Jaafar, J., Othman, M.H.D. Norhayati. W. Salleh, W. & Ismail, A.F. (2021). A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater, Journal of Water Process Engineering, 42, 102111. DOI:10.1016/j.jwpe.2021.102111
  83. Navale, G.R., Thripuranthaka, M., Late, D.J. & Shinde, S.S. (2015). Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi, JSM Nanotechnol. Nanomed., 3, 1033.
  84. Ng, T.W., Zhang, L., Liu, J., Huang, G., Wang, W. & Wong, P.K. (2016). Visible-light-driven photocatalytic inactivation of Escherichia coli by magnetic Fe2O3–AgBr, Water Res., 90, pp. 111–118. DOI:10.1016/j.watres.2015.12.022
  85. Ouyang, K., Dai, K., Chen, H., Huang, Q., Gao, C. & Cai, P. (2017). Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation, Ecotoxicol. Environ. Saf., 136, pp. 40–45. DOI:10.1016/j.ecoenv.2016.10.030
  86. Ouyang, K., Dai, K., Walker, S.L., Huang, Q., Yin, X. & Cai, P. (2016). Efficient photocatalytic disinfection of Escherichia coli O157: H7 using C70-TiO2 hybrid under visible light irradiation, Sci. Rep., 6, 25702. DOI:10.1038/srep25702
  87. Padmavathy, N. & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles e an antimicrobial study, Sci. Technol. Adv. Mater., 9, 035004. DOI:10.1088/1468-6996/9/3/035004
  88. Page, K., Palgrave, R.G., Parkin, I.P., Wilson, M., Savin, S.L.P. & Chadwick, A.V. (2007). Titania and silver-titania composite films on glass - Potent antimicrobial coatings, Journal of Materials Chemistry, 17, pp. 95-104. DOI:10.1039/b611740f
  89. Pasquini, L.M., Hashmi, S.M., Sommer, T.J., Elimelech, M. & Zimmerman, J.B. (2012). Impact of surface functionalization on bacterial cytotoxicity of single walled carbon nanotubes, Environ. Sci. Technol., 46, pp. 6297–6305. DOI:10.1021/es300514s
  90. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A. & O'shea, K. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, pp. 331–349. DOI:10.1016/j.apcatb.2012.05.036
  91. Petronella, F., Truppi, C., Ingrosso, A., Placido, T., Striccoli, M., Curri, M.L., Agostiano, A. & Comparelli, R. (2016). Nanocomposite materials for photocatalytic degradation of pollutants, Catal. Today, 281, pp. 85-100. DOI:10.1016/j.cattod.2016.05.048
  92. Podporska-Carroll, J., Panaitescu, E., Quilty, B., Wang, L., Menon, L. & Pillai, S.C. (2015). Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes, Appl. Catal. B: Environ., 176, pp. 70–75. DOI:10.1016/j.apcatb.2015.03.029
  93. Qin, J., Huo, J., Zhang, P., Zeng, J., Wang, T. & Zeng, H. (2015). Improving photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation, Nanoscale, 8, pp. 2249–2259, DOI:10.1039/C5NR06346A
  94. Qu, X., Alvarez, P.J. & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment, Water Res., 47, pp. 3931–3946. DOI:10.1016/j.watres.2012.09.058
  95. Raizada, P., Sudhaik, A. & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review, Materials Science for Energy Technologies, 2(3), pp. 509-525. DOI:10.1016/j.mset.2019.04.007
  96. Rana, S., Srivastava, R., Sorensson, M. & Misra, R. (2005). Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system, Mater. Sci. Eng. B, 119, pp. 144–151. DOI:10.1016/j.mseb.2005.02.043
  97. Rawat, J., Rana, S., Srivastava, R. & Misra, R.D.K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C, 27, pp. 540–545. DOI:10.1016/j.msec.2006.05.021
  98. Reddy, M.P., Venugopal, A. & Subrahmanyam, M. (2007). Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst, Water Res., 41, pp. 379–386. DOI:10.1016/j.watres.2006.09.018
  99. Reddy, P.A.K., Reddy, P.V.L., Kwon, E., Kim, K.H., Akter T. & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media, Environ. Int., 91, pp. 94-103. DOI:10.1016/j.envint.2016.02.012
  100. Rengifo-Herrera, J., Kiwi, J. & Pulgarin, C.N. (2009). S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation, J. Photochem. Photobiol. A, Chem., 205, pp. 109–115. DOI:10.1016/j.jphotochem.2009.04.015
  101. Rengifo-Herrera, J.A. & Pulgarin, C. (2010). Photocatalytic activity of N, S co-doped and N doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation, Sol. Energy, 84, pp. 37–43. DOI:10.1016/j.solener.2009.09.008
  102. Richter, C., Panaitescu, E., Willey, R.J. & Menon, L. (2007). Titania nanotubes prepared by anodization in fluorine-free acids, J.Mater. Res., 22, pp. 1624-1631. DOI:10.1557/JMR.2007.0203
  103. Rincón, A.G. & Pulgarin, C. (2003). Photocatalytic inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration, Appl. Catal. B, 44, pp. 263-284. DOI:10.1016/S0926-3373(03)00076-6
  104. Rtimi, S., Baghriche, O., Pulgarin, C., Lavanchy, J.C. & Kiwi, J. (2013). Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Technol., 232, pp. 804–813. DOI:10.1016/j.surfcoat.2013.06.102
  105. Rtimi, S., Pulgarin, C., Sanjines, R., Nadtochenko, V., Lavanchy, J.C. & Kiwi, J. (2015). Preparation and mechanism of Cu-decorated TiO2–ZrO2 films showing accelerated bacterial inactivation, ACS Appl. Mater. Interfaces, 71, pp. 12832–12839. DOI:10.1098/rsfs.2014.0046
  106. Saito, T., Iwase, T., Horie, J. & Morioka, T. (1992). Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B, 14, pp. 369–379. DOI:10.1016/1011-1344(92)85115-B
  107. Seery, M.K., George, R., Floris, P. & Pillai, S.C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, J. Photochem. Photobiol. A, 189, pp. 258-263. DOI:10.1016/j.jphotochem.2007.02.010
  108. Sengupta, J. & Hussain C.M. (2021). Carbon nanomaterials to combat virus: A perspective in view of COVID-19, Carbon Trends 2, 100019. DOI:10.1016/j.cartre.2020.10 0 019
  109. Stan, M.S., Nica, I.C., Dinischiotu, A., Varzaru, E., Iordache, O.G, Dumitrescu, I., Popa, M., Chifiriuc, M.C., Pircalabioru, G.G. & Lazar, V. (2016). Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-Doped titanium dioxide nanoparticles, Materials, 9, 78. DOI:10.3390/ma9090789
  110. Sun, L., Du, T., Hu, C., Chen, J., Lu, J., Lu, Z. & Han, H. (2017). Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light, ACS Sustain Chem. Eng., 5, pp. 8693–8701. DOI:10.1021/acssuschemeng.7b01431
  111. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. & Bae, Y.C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, J. Photochem. Photobiol. A, 163, pp. 37-44. DOI:10.1016/S1010-6030(03)00428-3
  112. Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Mahrous, H. & Salem, M.F. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens, J Food Saf., 31, pp. 211-218. DOI:10.1111/j.1745-4565.2010.00287.x
  113. Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D. & Wang, G. (2018). Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water, Chem., 5, pp. 1–17. DOI:10.1016/j.chempr.2018.12.009
  114. Thurston, J.H., Hunter, N.M. & Cornell, K.A. (2016). Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films, RSC Adv., 6, pp. 42240–42248. DOI:10.1039/C6RA05613J
  115. Thurston, J.H., Hunter, N.M., Wayment, L.J. & Cornell, K.A. (2017). Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity, J. Colloid. Interface Sci., 505, pp. 910–918. DOI:10.1016/j.jcis.2017.06.089
  116. Wang, S., Yang, S., Quispe, E., Yang, H., Sanfiorenzo, C., Rogers, S.W., Wang, K., Yang, Y. & Hoffmann, M.R. (2021). Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO₂ Nanotube Arrays, ACS ES&T Engineering, 1 (3). pp. 612-622. DOI:10.1021/acsestengg.1c00011
  117. Wang, W., Li, G., An, T., Chan, D.K.L., Yu, J.C. & Wong, P.K. (2018). Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: the role of type I band alignment, Appl. Catal. B Environ., 238, pp. 126–135. DOI:10.1016/j.apcatb.2018.07.004
  118. Wang, W., Yu, J.C., Xia, D., Wong, P.K. & Li, Y. (2013). Graphene and g-C3N4 nanosheets cow rapped elemental a-sulfur as a novel metalfree heterojunction photocatalyst for bacterial inactivation under visible-light, Environ. Sci. Technol., 47, pp. 8724–8732. DOI:10.1021/es4013504
  119. Wang, Y., Wu, Y., Yang, H., Xue, X. & Liu, Z. (2016a). Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity, Vacuum, 131, pp. 58–64. DOI:10.1016/j.vacuum.2016.06.003
  120. Wang, Z., Dong, K., Liu, Z., Zhang, Y., Chen, Z., Sun, H., Ren, J. & Qu, X. (2016b). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection, Biomaterials, 113, pp. 145–157. DOI:10.1016/j.biomaterials.2016.10.041
  121. Wong, M.S., Chu, W.C., Sun, D.S., Huang, H.S., Chen, J.H., Tsai, P.J., Lin, N.T., Yu, M.S., Hsu, S.F., Wang, S.L. & Chang, H.H. (2006). Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol., 72, pp. 6111-6116. DOI:10.1128/AEM.02580-05
  122. Wu, D., An, T., Li, G., Wang, W., Cai, Y., Yip, H.Y., Zhao, H. & Wong, P.K. (2015). Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite, Appl. Surf. Sci., 358, pp. 137-145. DOI:10.1016/j.apsusc.2015.08.033
  123. Xia, D., Wang, W., Yin, R., Jiang, Z., An, T., Li, G., Zhao, H. & Wong, P.K. (2017). Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species, Appl. Catal. B Environ., 214, pp. 23–33. DOI:10.1016/j.apcatb.2017.05.035
  124. Xu, J., Gao, Q., Bai, X., Wang, Z. & Zhu, Y. (2019). Enhanced visible-light induced photocatalytic degradation and disinfection activities of oxidized porous g-C3N4 by loading Ag nanoparticles, Catal. Today, 332, pp. 227–235. DOI:10.1016/j.cattod.2018.07.024
  125. Xu, J., Li, Y., Zhou, X., Li, Y., Gao, Z.D., Song, Y.Y. & Schmuki, P. (2016). Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform, Chem. Eur. J., 22, pp. 3947–3951. DOI:10.1002/chem.201505173
  126. Xue, J., Ma, S., Zhou, Y., Zhang, Z. & He, M. (2015). Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Appl. Mater. Interfaces, 7, pp. 9630–9637. DOI:10.1021/acsami.5b01212
  127. Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide, Int. J. Inorg. Mater., 3, pp. 643-646. DOI:10.1016/S1466-6049(01)00197-0
  128. Zambrano-Zaragoza, M.L., González-Reza, R. & Mendoza-Muñoz, N. (2018). Nanosystems in edible coatings: A novel strategy for food preservation, International Journal of Molecular Sciences, 19, 705. DOI:10.3390/ijms19030705
  129. Zeng, X., Wang, Z., Meng, N., McCarthy, D.T., Deletic, A., Pan, J.H. & Zhang, X. (2017). Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection, Appl. Catal. B, Environ., 202, pp. 33–41. DOI:10.1016/j.apcatb.2016.09.014
  130. Zhang, L.L., Chen, B., Xie, L.L. & Li, Z.F. (2011). Study on the antimicrobial properties of ZnO suspension against Gram-positive and Gram-negative bacteria strains, Adv. Mater. Res., 393-5, pp. 1488-1491. DOI:10.4028/www.scientific.net/AMR.393-395.1488
  131. Zhao, H., Yu, H., Quan, X., Chen, S., Zhang, Y., Zhao, H. & Wang, H. (2014). Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation, Appl. Catal. B Environ., 152–153, pp. 46–50. DOI:10.1016/j.apcatb.2014.01.023

Date

2022.03.08

Type

Article

Identifier

DOI: 10.24425/aep.2022.140541

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×