Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2023 | vol. 49 | No 1

Download PDF Download RIS Download Bibtex


Many countries, including Indonesia, face severe water scarcity and groundwater depletion. Monitoring and evaluation of water resources need to be done. In addition, it is also necessary to improve the method of calculating water, which was initially based on a biophysical approach, replaced by a socio-ecological approach. Water yields were estimated using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. The Ordinary Least Square (OLS) and geographic weighted regression (GWR) methods were used to identify and analyze socio-ecological variables for changes in water yields. The purpose of this study was: (1) to analyze the spatial and temporal changes in water yield from 2000 to 2018 in the Citarum River Basin Unit (Citarum RBU) using the InVEST model, and (2) to identify socio-ecological variables as driving factors for changes in water yields using the OLS and GWR methods. The findings revealed the overall annual water yield decreased from 16.64 billion m3 year-1 in the year 2000 to 12.16 billion m3 year-1 in 2018; it was about 4.48 billion m3 (26.91%). The socio-ecological variables in water yields in the Citarum RBU show that climate and socio-economic characteristics contributed 6% and 44%, respectively. Land use/Land cover (LU/LC) and land configuration contribution fell by 20% and 40%, respectively.The main factors underlying the recent changes in water yields include average rainfall, pure dry agriculture, and bare land at 28.53%, 27.73%, and 15.08% for the biophysical model, while 30.28%, 23.77%, and 10.24% for the socio-ecological model, respectively. However, the social-ecological model demonstrated an increase in the contribution rate of climate and socio-economic factors and vice versa for the land use and landscape contribution rate. This circumstance demonstrates that the socio-ecological model is more comprehensive than the biophysical one for evaluating water scarcity.
Go to article

Authors and Affiliations

Irmadi Nahib
Wiwin Ambarwulan
Dewayany Sutrisno
Mulyanto Darmawan
Yatin Suwarno
Ati Rahadiati
Jaka Suryanta
Yosef Prihanto
Aninda W. Rudiastuti
Yustisi Lumban Gaol

  1. Research Center for Geospatial, Research Organization for Earth Sciences and Maritime,National Research and Innovation Agency, Cibinong Science Center,Jl. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
Download PDF Download RIS Download Bibtex


Ecotoxicological biotests were applied in order to evaluate their suitability as early warning systems in the continuous monitoring of lowland shallow dam reservoirs located in Central Europe. The following biotests were used: Daphtoxkit F™magna, Algaltoxkit F™, Ostracodtoxkit F, Phytotoxkit and MARA Test. The experiment was conducted from July 2010 to December 2012 in Goczalkowice Reservoir (the Vistula River, Poland), serving as a model. For the analysis, 41 out of 52 measured water indices were used to assess its toxicity to living organisms. The results of biotests were correlated with 41 hydrochemical indices of water quality. The pattern of relationships among the result of biotest and hydrochemical indices as well as Factor Analysis (FA) and Primary Component Analysis (PCA) revealed that: i) signs of ecotoxicity detected with biotests were associated with either low fl ow periods or spring surface runoff of water; ii) single events of increased ecotoxicity in the depression areas behind saddle dam pump stations appearedafter high fl ow periods; iii) elevated toxicity was accompanied by high concentrations of dissolved and suspended substances; iv) FA and PCA demonstrated correlations among the results of biotests and damming parameters, water conductivity, alkali and transitory metal metals (Ca, Fe, Cu, Zn), and several forms of nitrogen phosphorous and carbon compounds concentration. The relationships suggest that batteries of biotests may serve as a cost-eff ective tool for continuous monitoring of water quality in dam reservoirs and can detect eff ects of extreme hydrologic events, local toxic discharges, and signs of the trophic status of the reservoirs
Go to article

Authors and Affiliations

Piotr Łaszczyca
Mirosław Nakonieczny
Maciej Kostecki

  1. Retired university professor, University of Silesia in Katowice, Poland
  2. University of Silesia in Katowice, Poland
  3. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex


Owing to its high concentrations of nitrogen and phosphorus, the slurry from water hyacinth (Pontederia crassipes) biogas production cannot be discharged directly without further treatment. To achieve the target of water recycling, a new strategy of combining a Carrousel oxidation ditch with a water spinach wetland was developed in this study for the harmless treatment of Pontederia crassipes biogas slurry. First, the water quality characteristics of the biogas slurry were measured. Then, comprehensive tests of the combined slurry treatment system were carried out to verify pollutant removal performance and mechanism. The results showed that the Carrousel oxidation ditch reduced the inlet pollutant load of the subsequent water spinach wetland. The chemical oxygen demand (COD), and ammonium nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) contents of the average effluent from the combined system were less than 50 mg/L, 1.6 mg/L, 6 mg/L, and 0.5 mg/L, respectively, which means that all met urban sewage treatment standard of Level 1 Grade A (GB18918-2002). Gas chromatography – mass spectrometry analysis showed that the combined system had decreased various types of organic pollutants in the biogas slurry exponentially, efficiently removing alkane pollutants, aromatic hydrocarbons, and heterocyclic compounds. Scanning electron microscopy images revealed very large surface area of the water spinach roots in the wetland, which played important roles in enriching the microorganisms and trapping organic matter. Plant absorption, microbial degradation, and filtration were the primary ways in which the water spinach wetland purified the biogas slurry.
Go to article


  1. Appels, L., Lauwers, J., Degrève J., Helsen, L., Lievens, L., Willems, K., Van Impe, L. & Dewil, R. (2011). Anaerobicdigestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, 15, 9, pp. 4295-4301. DOI:10.1016/j.rser.2011.07.121
  2. Ariffin, F. D., Halim, A. A., Hanafiah, M. M., Awang, N., Othman, M. S., Azman, S. A. A. & Bakri, N. S. M. (2019). The effects of african catfish, cltfish, clarias gariepinus pond farm's effluent on water quality of Kesang river in Malacca, Malaysia. Applied ecology and Environmental Research, 17, 2, pp. 1531-1545. DOI:10.15666/aeer/1702_15311545
  3. Bergier, T. & Wlodyka-Bergier, A. (2016). Semi-technical scale research on constructed wetland removal of aliphatic hydrocarbons C7-C40 from wastewater from a car service station. Destalnation and Water Treatment, 57, 3, pp. 1534-1542. DOI:10.1080/19443994.2015.1030122
  4. Carlini, M., Castellucci, S. & Mennuni, A. (2018). Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia, 148, pp. 431-438. DOI:10.1016/j.egypro.2018.08.106
  5. Carnaje, N.P., Talagon, R.B., Peralta, J.P., Shah, K. & Paz-Ferreiro, J. (2018). Development and characterisation of charcoal briquettes from water hyacinth (Eichhomia crassipes)-molasses blend. PLOS One, 13, 11. DOI:10.1371/journal.pone.0207135
  6. China, S.E.P.A.O. (2004), National standard methods for water and wastewater quality analysis. China Environmental Science Press, Beijing, 2004
  7. Das, A., Ghosh, P., Tanmay, P., Ghosh, U., Pati, B.R. & Mondal, K.C. (2016). Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). Biotech, 70, 6, pp. 69-77. DOI:10.1007/s13205-016-0385-y
  8. Das, B., Thakur, S., Chaithanya, M.S. &Biswas, P. (2019). Batch investigation of constructed wetland microbial fuel cell with reverse osmosis (RO) concentrate and wastewater mix as substrate. Biomass and Bioenergy, 122, pp. 231-237. DOI:10.1016/j.biombioe.2019.01.017
  9. Godin, B., Lamaudière, S., Agneessens, R., Schmit. T., Goffart. J-P., Stilmant, D., Gerin, P.A. & Delcarte, J. (2013). Chemical Composition and Biofuel Potentials of a Wide Diversity of Plant Biomasses. Energy Fuels, 27, 5, pp. 2588-2598. DOI: 10.1021/ef3019244
  10. Guragain, Y.N., Coninck, J., Husson, F., Durand, A. & Rakshit, S.K. (2011). Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology, 102, 6, pp.4416-4424. DOI:10.1016/j.biortech.2010.11.125
  11. Jan, V., (2010). Constructed wetlands for wastewater treatment. Water, 2, 3, pp. 530-549. DOI:10.3390/w2030530
  12. Jin, P.K., Wang, X.B., Wang, X.C., Hgo, H.H. & Jin, X. (2015). A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch. Bioresource Technology. 198, pp. 23-30. DOI: 10.1016/j.biortech.2015.08.145
  13. Li, T.J., Jin, Y., Huang, Y., (2022). Water quality improvement performance of two urban constructed water quality treatment wetland engineering landscaping in Hangzhou, China. Water Science and Technology, 85, 5, pp.1454-1469. DOI:10.2166/wst.2022.063
  14. Li, X.L., Zhang, J., Zhang, X., Li, J., Liu, F. & Chen, Y. (2019). Start-up and nitrogen removal performance of CANON and SNAD processes in a pilot-scale oxidation ditch reactor. Process Biochemistry, 84, pp. 134-142. DOI: 10.1016/j.procbio.2019.06.010
  15. Li, X-N., Song, H-L., Li W., Lu, X-W. & Nishimura, O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological engineering, 36, 4, pp. 382-390. DOI: 10.1016/j.ecoleng.2009.11.004
  16. Liu, F., Sun, L., Wan, J.B., et al. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. Journal of Environmental Science, 89, pp. 252-262. DOI:10.1016/j.jes.2019.08.015.
  17. Patyal, V., Jaspal, D., Khare, K., (2021). Materials in constructed wetlands for wastewater remediation: A review. Water Environment Reserach, 93,12, pp.2853-2872. DOI:10.1002/wer.1648
  18. Ren, N.Q., Li, J.Z., (2004). Biological Technology in the Treatment of Environmental Pollution. Chemical Industry Press, Beijing 2004.
  19. Sierra, C.G., Hernández, M.G., Murrieta R. (2022). Alternative uses of water Hyacinth (Pontederia crassipes) from a sustainable perspective: a systematic literature review. Sustainability, 14, 7, pp. 3931. DOI:10.3390/su14073931
  20. Steinhoff-Wrześniewska, A., Strzelczyk, M., Helis, M., Paszkiewicz-Jasińska, A., Gruss, Ł., Pulikowski, K. & Skorulski, W. (2022). Identification of catchment areas with nitrogen pollution risk for lowland river water quality. Archives of Environmental Protection, 48, 2, pp. 53-64. DOI: 10.24425/aep.2022.140766.
  21. Tuszynska, A., Kolecka, K., Quant, B., (2013). The influence of phosphorus fractions in bottom sediments on phosphate removal in semi-natural systems as the 3rd stage of biological wastewater treatment, Ecological Engineering, 53, pp.321-328. DOI:10.1016/j.ecoleng.2012.12.068
  22. Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 1, pp. 48-65. DOI: 10.1016/j.scitotenv.2006.09.014
  23. Wang, J.., Li, A., Wang, Q., Zhou, Y., Fu, L. &Li, Y. (2010). Assessment of the manganese content of the drinking water source in Yancheng, China, Journal of Hazardous Materials, 182, 1-3, pp.259-65. DOI:10.1016/j.jhazmat.2010.06.023
  24. Wu, L., Li, X.N., Song, H.L., (2013). Enhanced removal of organic matter and nitrogen in a vertical-flow constructed wetland with Eisenia foetida, Desalination and water treatment, 51,40-42, pp.7460-7468. DOI: 10.1080/19443994.2013.792140
  25. Wu, Y.F., (2013). Characteristics of DOM and Removal of DBPs Precursors across O-3-BAC Integrated Treatment for the Micro-Polluted Raw Water of the Huangpu River, Water, 5, 4, pp.1472-1486. DOI: 10.3390/w5041472
  26. Xia, S.B., Liu, J.X., (2004). An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment, Process Biochemistry. 39, 9, pp. 1111-1117. DOI:10.1016/S0032-9592(03)00216-4
  27. Xu, D., Liu, S., Chen, Q. & Ni, J. Xu, D., Liu, S., Chen, Q. & Ni, J. (2017). Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment, AMB Express, 7, 40. DOI:10.1186/s13568-017-0336-y
  28. Yang, G., Wang, B., Wang, H., He, Z., Pi, Z., Zhou, J., Liang, T., Chen, M., He, T. & Fu, T. (2022). Removal of organochlorine pesticides and metagenomic analysis by multi-stage constructed wetland treating landfill leachate. Chemosphere, 301, 134761. DOI:10.1016/j.chemosphere.2022.134761
  29. Yin, F.F., Guo, H.F., (2022). Influence of additional methanol on both pre- and post-denitrification processes in treating municipal wastewater. Water Science and Technology, 85, 5, pp.1434-1443. DOI:10.2166/wst.2022.060
  30. Yu, Y.Q., Lu, X.W., (2017). Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment. Saudi Journal of Biological Sciences, 24, 5, pp.526-531. DOI:10.1016/j.sjbs.2014.09.011
  31. Zhai, X., Piwpuan, N., Arias, C.A., Headley, T. & Brix, H. (2013). Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems?. Ecological Engineering, 61, 19, pp. 555-563. DOI:10.1016/j.ecoleng.2013.02.014
  32. Zhang, C., Ye, H., Liu, F., He, Y., Kong, W. & Sheng, K. (2016). Determination and visualization of ph values in anaerobic digestion of water hyacinth and rice straw mixtures using hyperspectral imaging with wavelet transform denoising and variable selection. Sensors, 16, 2, pp.2-10. DOI:10.3390/s16020244
  33. Zhang, Q.Z., Weng, C., Huang, H., Achal, V. & Wang, D. (2016). Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process, Frontiers in Microbiology, 6 ,1411. DOI:10.3389/fmicb.2015.01411
  34. Zhang, Z., Li, B-I.., Xiang, X-Y.,Zhang, C. & Chai, H. (2012). Variation of biological and hydrological parameters and nitrogen removal optimization of modified Carrousel oxidation ditch process, Journal of Central South University, 19, 9, pp. 842-849. DOI:10.1007/s11771-012-1081-7
  35. Zhu, X., Campanaro, S., Trea, L., Kougias, P.G. & Angelidaki, I. (2019). Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Research, 151, pp. .271-279. DOI:10.1016/j.watres.2018.12.041
Go to article

Authors and Affiliations

Yaqin Yu
Xueyou Fang
Lanying Li
Yumeng Xu

  1. Yancheng Institute of Technology, China
  2. Xi'an University of Architecture and Technology, China
Download PDF Download RIS Download Bibtex


The aim of the study was to assess the possibility of using natural carbonaceous materials such aspeat, lignite, and hard coal as low-cost sorbents for the removal of Direct Orange 26 azo dye from an aqueous solution. The adsorption kinetics and the influence of experimental conditions were investigated. The following materials were used in the research: azo dye Direct Orange 26, Spill-Sorb “Fison” peat (Alberta, Canada), lignite (Bełchatów, Poland), and hard coal (“Zofiówka” mine, Poland). The morphology and porous structure of the absorbents were tested. Dye sorption was carried out under static conditions, with different doses of sorbents, pH of the solution, and ionic strength. It was observed that the adsorption of Direct Orange 26 dye on all three adsorbents was strongly dependent on the pH of the solution, while the ionic strength of the solution did not affect the adsorption efficiency. The adsorption kinetics were consistent with the pseudo-second-order reaction model. The stage which determines the rate of adsorption is the diffusion of the dye in the near-surface layer. The process of equilibrium adsorption of Direct Orange 26 dye on all tested adsorbents is best described by the Langmuir isotherm. The maximum adsorption capacity for peat, brown coal and hard coal was 17.7, 15.1 and 13.8 mg/g, respectively. The results indicate that peat, lignite, and hard coal can be considered as alternative adsorbents for removing azo dyes from aqueous solutions.
Go to article


  1. Al-Ghouti, M.A. & Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. DOI:10.1016/j.jhazmat.2020.122383
  2. Allen, S.J., Mckay,G. & Porter, J.F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, pp. 322–333. DOI:10.1016/j.jcis.2004.08.078
  3. Bansal, R.C. & Goyal, M. (2005). Activated Carbon Adsorption, Taylor & Francis, CRC Press, Boca Raton, 2005. DOI:10.1201/9781420028812
  4. Bhatti, H.N., Safa, Y., Yakout, S.M., Shair, O.H., Iqbal, M. & Nazir, A. (2020). Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150, pp. 861–870. DOI:10.1016/j.ijbiomac.2020.02.093
  5. Dzieniszewska, A. & Kyzioł-Komosińska, J. (2018). Zdolności sorpcyjne wybranych substancji bogatych w materię organiczną w stosunku do barwników, Polska Akademia Nauk, Komitet Inżynierii Środowiska, Monografie IPIS PAN, Nr 142, Zabrze, Polska.
  6. Goswami, L., Kushwaha, A., Kafle, S.R. & Kim, B.-S. (2022). Surface modification of biochar for dye removal from wastewater. Catalysts, 12, 817. DOI:10.3390/catal12080817
  7. Gupta, V.K. & Suhas (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90, pp. 2313–2342. DOI:10.1016/j.jenvman.2008.11.017
  8. Hassani, A., Vafaei, F., Karaca,S. & Khataee, A.R. (2014). Adsorption of a cationic dye from aqueous solution using Turkish lignite: Kinetic, isotherm, thermodynamic studies and neural network modeling. Journal of Industrial and Engineering Chemistry, 20, pp. 2615– 2624. DOI:10.1016/j.jiec.2013.10.049
  9. Herrera-González, A.M., Reyes-Angeles, M.C. & Peláez-Cid, A.A. (2021). Adsorption of anionic dyes using composites based on basic polyelectrolytes and physically activated carbon. Desalination and Water Treatment, 230, 346–358. DOI:10.5004/dwt.2021.27445
  10. Izadyar, S. & Rahimi, M. (2007). Use of beech wood sawdust for adsorption of textile dyes. Pakistan Journal of Biological Sciences, 10, 2, pp. 287–293.
  11. Kajjumba, G.W., Emik, S., Öngen, A., Özcan, H.K. & Aydın, S. (2018). Modelling of adsorption kinetic processes – errors, theory and application. [in:] Advanced sorption process applications, Edebali, S. (Ed), IntechOpen, Rijeka, pp. 1–19.
  12. Kaushik, C.P., Tuteja, R., Kaushik, N. & Sharma, J.K. (2009). Minimization of organic chemical load in direct dyes effluent using low cost adsorbents. Chemical Engineering Journal, 155, pp. 234–240. DOI: 10.1016/j.cej.2009.07.042
  13. Konicki, W., Hełminiak, A., Arabczyk, W. & Mijowska, E. (2017). Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. Journal of Colloid and Interface Science, 497, pp. 155–164. DOI:10.1016/j.jcis.2017.03.008
  14. Kreiner, K. & Żyła, M. (2006). Binarny charakter powierzchni węgla kamiennego. Górnictwo i Geoinżynieria, 30, 2, pp. 19–34.
  15. Kuśmierek, K., Gałan, M., Kamiński, W. & Świątkowski, A. (2020a). Use of sawdust as a low-cost sorbent for the removal of azo dyes from water. Przemysl Chemiczny, 99, 2, pp. 201–205. DOI:10.15199/62.2020.2.2
  16. Kuśmierek, K., Świątkowski, A., Wierzbicka, E. & Legocka, I. (2020b). Enhanced adsorption of Direct Orange 26 dye in aqueous solutions by modified halloysite. Physicochemical Problems of Mineral Processing, 56, 4, pp. 693–701. DOI:10.37190/ppmp/124544
  17. Kuśmierek, K., Zarębska, K. & Świątkowski, A. (2016). Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water. Water Science & Technology, 73, 8, pp. 2025–2030. DOI:10.2166/wst.2016.046
  18. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. & Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, pp. 275–290. DOI:10.1016/j.biori.2019.09.001
  19. de Mattos, N.R., de Oliveira, C.R., Camargo, L.G.B., da Silva, R.S.R. & Lavall, R.L. (2019). Azo dye adsorption on anthracite: a view of thermodynamics, kinetics and cosmotropic effects. Separation and Purification Technology, 209, pp. 806-814. DOI:10.1016/j.seppur.2018.09.027
  20. O'Keefe, J.M.K., Bechtel, A., Christanis, K., Dai, S., DiMichele, W.A., Eble, C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V., Wagner, N.J., Ward, C.R. & Hower, J.C. (2013). On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, pp. 58–87. DOI:10.1016/j.coal.2013.08.007
  21. Rafique, M.A., Kiran, S., Ashraf, A., Mukhtar, N., Rizwan, S., Ashraf, M. & Arshad, M.Y. (2022). Effective removal of Direct Orange 26 dye using copper nanoparticles synthesized from Tilapia fish scales. Global NEST Journal, 24, 2, pp. 311–l 317. DOI:10.30955/gnj.004234
  22. Rusu, L., Harja, M,. Simion, A.I., Suteu, D., Ciobanu, G. & Favier, L. (2014). Removal of Astrazone Blue from aqueous solutions onto brown peat. Equilibrium and kinetics studies. Korean Journal of Chemical Engineering, 31, 6, pp. 1008–1015. DOI:10.1007/s11814-014-0009-3
  23. Safa, Y. & Bhatti, H.N. (2011). Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination, 272, pp. 313–322. DOI:10.1016/j.desal.2011.01.040
  24. Safa, Y., Bhatti, H.N., Bhatti, I.A. & Asgher, M. (2011). Removal of Direct Red-31 and Direct Orange-26 by low cost rice husk: Influence of immobilisation and pretreatments. Canadian Journal of Chemical Engineering, 89, pp. 1554–1565. DOI:10.1002/cjce.20473
  25. Sepulveda, L., Fernandez, K., Contreras, E. & Palma, C. (2004). Adsorption of dyes using peat: equilibrium and kinetic studies. Environmental Technology, 25, pp. 987–996. DOI:10.1080/09593332508618390
  26. Sočo, E., Pająk, D. & Kalembkiewicz, J. (2020). Multi-component sorption and utilization of solid waste to simultaneous removing basic dye and heavy metal from aqueous system. Archives of Environmental Protection, 46, pp. 62-75. DOI:10.24425/aep.2020.132527
  27. Tan, K.L. & Hameed, B.H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, pp. 25–48. DOI:10.1016/j.jtice.2017.01.024
  28. Tarasevich, Y.I. (2001). Porous structure and adsorption properties of natural porous coal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 176, pp. 267–272. DOI:10.1016/S0927-7757(00)00702-0
  29. Tomczak, E. & Blus, M. (2016). Sorption dynamics of Direct Orange 26 dye onto a corncob plant sorbent. Ecological Chemistry and Engineering S, 23, 1, pp. 175–185. DOI:10.1515/eces-2016-0012
  30. Tomczak, E. & Tosik, P. (2014). Sorption equilibrium of azo dyes Direct Orange 26 and Reactive Blue 81 onto a cheap plant sorbent. Ecological Chemistry and Engineering S, 21, 3, pp. 435–445. DOI:10.2478/eces-2014-0032
  31. Venkata Mohan, S., Chandrasekhar Rao, N. & Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. Journal of Hazardous Materials, B90, pp. 189–204. DOI:10.1016/S0304-3894(01)00348-X
  32. Wani, K.A., Jangid, N.K. & Bhat, A.R. (2020), Impact of textile dyes on public health and the environment, IGI Global, Hershey, USA.
Go to article

Authors and Affiliations

Krzysztof Kuśmierek
Lidia Dąbek
Andrzej Świątkowski

  1. Institute of Chemistry, Military University of Technology, Warsaw, Poland
  2. Faculty of Environmental Engineering, Geomatics and Renewable Energy,Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex


The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42±0.17 mW/m2 (7.75±0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00±0.05%, 64.31±0.20%, 50.02±0.10%, 48.00±0.30%, and 42.05±0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
Go to article


  1. Almeida-Naranjo, C.E, Guachamin, G., Guerrero, V.H. & Villamar, C.V. (2020). Heliconia stricta hubber behavior on hybrid constructed wetlands fed with synthetic domestic wastewater. Water, 12, 5, pp. 1373. DOI:10.3390/w12051373
  2. APHA AWWA WEF (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington 2005.
  3. Araneda, I., Tapia, N.F., Allende, K.L. & Vargas, I.T. (2018). Constructed wetland-microbial fuel cell for sustainable greywater treatment. Water, 10, 7, pp. 940. DOI:10.3390/w10070940
  4. Bracher, G.H., Carissmi, E., Wolff, D.B., Graepin, C. & Hubner, A.P. (2020). Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environmental Technology, 42, 17, pp. 2669-2679. DOI:10.1080/09593330.2019.1709905
  5. Chaijak, P., Lertworapreecha, M., Changkit, N. & Sola, P. (2022). Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria. Biointerface Research in Applied Chemistry, 12, 4, pp. 5601-5609. DOI:10.33263/BRIAC124.56015609
  6. Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. & Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology, 28, 8, pp. 1360-1366. DOI:10.4014/jmb.1803.03015
  7. Corbella, C. & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the Total Environment, 631-632, 1, pp. 1406-1414. DOI:10.1016/j.scitotenv.2018.03.084
  8. Das, B., Gaur, S.S., Katha, A.R., Wang, C.T. & Katiyar, V. (2021). Crosslinked poly(vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells. International Journal of Hydrogen Energy, 46, 10, pp. 7073-7086. DOI:10.1016/j.ijhydene.2020.11.213
  9. Dincer, I. & Siddiqui, O. (2020). Ammonia fuel cells, Elsevier, Amsterdam 2020.
  10. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W.. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol, 296, pp.122350. DOI:10.1016/j.biortech.2019.122350
  11. Guadarrama-Perez, O., Bahena-Rabadan, K., Dehesa-Carrasco, U., Perez, V.H.G. & Estrada-Arriaga, E.B. (2020). Bioelectricity production using macrophytes in constructed wetland-microbial fuel cells. Environmental Technology, 2020. DOI:10.1080/09593330.2020.1841306
  12. Han, J.L., Yang, Z.N., Wang, H., Zhou, H.Y., Xu, D., Yu, S. & Gao, L. (2021). Decomposition of pollutants from domestic sewage with the combination system of hydrolytic acidification coupling with constructed wetland microbial fuel cell. Journal of Cleaner Production, 319, 1, pp. 128650. DOI:10.1016/j.jcliepro.2021.128650
  13. Ho, V.T.T., Dang, M.P., Lien, L.T., Huynh, T.T., Hung, T.V. & Bach, L.G. (2020). Study on domestic wastewater treatment of the horizontal subsurface flow wetlands (HSSF-CWs) using Brachiaria mutica. Waste and Biomass Valorization, 11, 10, pp. 5627-5634. DOI:10.1007/s12649-020-01084-4
  14. Karla, M.R., Alejandra, V.A.C., Lenys, F. & Patricio, E.M. (2022). Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. Science of the Total Environment, 809, 1, pp. 151115. DOI:10.1016/j.scitotenv.2021.151115
  15. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
  16. Klimsa, L., Melcakova, I., Novakova, J., Bartkova, M., Hlavac, A., Krakovska, A., Dombek, V. & Andras, P. (2020). Recipient pollution caused by small domestic wastewater treatment plants with activated sludge. Carpathian Journal of Earth and Environmental Science, 15, 1, pp. 19-25. DOI:10.26471/cjees/2020/015/104
  17. Libecki, B. & Mikolajczyk, T. (2021). Phosphorus removal by microelectrolysis and sedimentation in the integrated devices. Archives of Environmental Protection, 47, 1, pp. 3-9. DOI:10.24425/aep.2021.136442
  18. Moondra, N., Jariwala, N.D. & Christian, R.A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22, 14, pp. 1480-1486. DOI:10.1080/15226514.2020.1782829
  19. Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T. & Ky, N.M. (2020). Removal of nutrients and pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research, 25, 5, pp. 652-658. DOI:10.4491/eer.2019.285
  20. Ni, J., Steinberger-Wilckens, R. & Wang, O.H. (2021). Simultaneous domestic wastewater treatment and electricity generation in microbial fuel cell with Mn(IV) oxide addition. Chemistry Select, 6, 3, pp.369-375. DOI:10.1002/slct.202004680
  21. Pasquini, L., Munoz, J.F., Pons, M.N., Yvon, J., Dauchy, X., France, X., Le, N.D., France-Lanord, C. & Gorner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. The Science of the Total Environment, 481, 1, pp. 456-468. DOI:10.1016/j.scitotenv.2014.02.075
  22. Rajasulochana, P. & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 4, pp.175-184. DOI:10.1016/j.reffit.2016.09.004
  23. Shukla, R., Gupta, D., Singh, G. & Mishra, V.K. (2021). Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 31, 1, pp. 13. DOI:10.1186/s42834-021-00087-7
  24. Vega de Lille, M.I., Hernandez Cardona, M.A., Tzakum Xicum, Y.A., Giacoman-Vallejos, G. & Quintal-Franco, C.A. (2021). Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 1, pp.106243. DOI:10.1016/j.ecoleng.2021.106243
  25. Vo, N.X.P., Hoang, D.D.N., Huu, T.D., Van, T.D., Thanh, H.L.P. & Xuan, Q.V.N. (2021). Performance of vertical up-flow-constrcuted wetland integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. Environment Technology, 1, 1, pp. 1-16. DOI:10.1080/09593330.2021.2014574
  26. Wang, J.F., Song, X.S., Wang, Y.H., Bai, J.H., Li, M.J., Dong, G.Q., Lin, F.D., Lv, Y.F. & Yan, D.H. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophyte. Science of the Total Environment, 607, 1, pp. 53-62. DOI: 10.1016/j.scitotenv.2017.06.243
  27. Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y.L. & Cao, S.W. (2018). Degradation of nitrobenzene-containing wastewater by a microbial fuel cell coupled constructed wetland. Ecological Engineering, 112, 1, pp. 65-71. DOI:10.1016/j.ecoleng.2017.12.018
  28. Xu, F., Cao, F.Q., Kong, Q., Zhou, L.I., Yuan, Q., Zhu, Y.J., Wang, Q., Du, Y.D. & Wang, Z.D. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, pp. 476-486. DOI:10.1016/j.cej.2018.02.003
  29. Yang, S.L., Zheng, Y.F., Mao, Y.X., Xu, L., Jin, Z., Zhao, M., Kong, H.N., Huang, X.F. & Zheng, X.Y. (2021). Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. Journal of Cleaner Production, 279, 1, pp. 123434. DOI:10.1016/j.jclepro.2020.123434
  30. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K. & Ng, W.J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). Journal of Environmental Sciences, 30, 1, pp. 30-46. DOI:10.1016/j.jes.2014.10.013
Go to article

Authors and Affiliations

Pimprapa Chaijak
Phachirarat Sola

  1. Thaksin University, Thailand
  2. Thailand Institute of Nuclear Technology (Public Organization) (TINT), Thailand
Download PDF Download RIS Download Bibtex


Liquid chromatography-mass spectrometry was used to detect and analyze phenolic compounds in the surface waters of four urban lakes in Xi’an – Hancheng Lake, Xingqing Lake, Nanhu Lake, and Taohuatan Lake. A total of 5 phenolic compounds were detected from the water samples, with a concentration range of ND-100.32 ng/L, of which bisphenol A (BPA) and nonyl phenol (NP) were the main types of phenolic compounds pollution in the four lakes. Pearson correlation analysis was used to analyze the concentration of phenolic compounds in the lake waters of Xi’an City and the water quality indicators COD, TP, NH3-N, DO, and pH during the same period. It was found that there was a significant positive relationship between the concentration of BPA and COD, the concentration of estradiol (17-beta-E2), estrone (E1) and TP and TN, the concentration of octylphenol (4-t-OP) and pH. The ecological risk assessment (ERA) shows that the concentration of BPA, 4-t-OP and NP in the lakes is at a medium risk level( is between 0.1–1), and that of E1 is at a high risk level (is greater than 1). Female cells (breast cancer cells) and male germ cells (testis cells) of mice were used as research objects to explore BPA and NP Toxic effect on mouse germ cells. BPA and NP at a concentration of 10-8 mol/L were found to have the most value-inducing effect on MCF-7 breast cancer cells positive for estrogen receptor. Obviously, both BPA and NP can induce the proliferation of testicular Sertoli cells
Go to article

Authors and Affiliations

Min Wang
Yutong Zhang
Jingxin Sun
Chen Huang
Hongqin Zhai

  1. Xi’an University of Technology, China
Download PDF Download RIS Download Bibtex


As a rule, nitrates are present in all natural water bodies. Their increased concentrations are connected with the discharge of insufficiently treated wastewater from industrial and communal enterprises, agricultural and livestock complexes. Recent scientific publications concerning treatment methods for nitrates removal from natural water and wastewater were analyzed in order to create effective and low-waste technology for obtaining high quality water. It has been established that the ion exchange method is quite effective for removing nitrates from water. In the paper, the processes of ion exchange removal of nitrates from water on low-axis anionite in DOWEX Marathon WBA in Сl- form were investigated. During the sorption of nitrates with a concentration of 186, 205, 223 and 2200 mg/dm3, it was established that the full exchangeable dynamic capacity was 1.075, 1.103, and 1.195, 1.698 g-eq/dm3, respectively. To regenerate anionite, solutions of ammonia as well as potassium chloride, ammonium chloride and potassium carbonate were used in this work. The choice of potassium and ammonium compounds is due to the prospect of further use of regeneration solutions for the production of liquid fertilizers.
Go to article


  1. Alguacil-Duarte, F., González-Gómez, F. & Romero-Gámez, M. (2022). Biological nitrate removal from a drinking water supply with an aerobic granular sludge technology: An environmental and economic assessment. Journal of Cleaner Production, 367. DOI:10.1016/j.jclepro.2022.133059
  2. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review. Archives of Environmental Protection, 45, 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
  3. Boubakri, A., Al-Tahar Bouguecha, S. & Hafiane, A. (2022). FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Separation and Purification Technology, 298. DOI:10.1016/j.seppur.2022.121621
  4. Gutiérrez, M., Biagioni, R.N., Alarcón-Herrera, M.T. & Rivas- Lucero, B.A. (2018). An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624, pp. 1513–1522. DOI:10.1016/j. scitotenv.2017.12.252
  5. Hansen, B., Sonnenborg, T.O., Møller, I., Bernth, J.D., Høyer, A., Rasmussen, P., Sandersen P.B.E. & Jørgensen, F. (2016). Nitrate vulnerability assessment of aquifers. Environmental Earth Sciences, 75, 12. DOI:10.1007/s12665-016-5767-2
  6. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water. Environ. Sci. Technol., 50, pp. 2765–2766. doi:10.1021/ acs.est.6b00679.
  7. Królak, E. & Raczuk, J. (2018). Nitrate concentration-related safety of drinking water from various sources intended for consumption by neonates and infants. Archives of Environmental Protection, 44, 1, pp. 3–9. DOI:10.24425/118176
  8. National report on drinking water quality and drinking water supply in Ukraine in 2021. Database ‘Ministry of Regional Development of Ukraine’ (in Ukrainian).
  9. Nujić, M., Milinković, D. & Habuda-Stanić, M. (2017). Nitrate removal from water by ion exchange. Croatian journal of food science and technology, 9, 2, pp. 182–186. DOI:10.17508/ CJFST.2017.9.2.15
  10. Preetham, V. & Vengala, J. (2023). Adsorption isotherm, kinetic and thermodynamic studies of nitrates and nitrites onto fish scales. In Recent Advances in Civil Engineering, pp. 429–442. doi:10.1007/978-981-19-1862-9_27
  11. Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I. & Akhmedova, V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering and Environmental Technology, 22, 4, pp. 14–21. DOI:10.12912/27197050/137874
  12. Song, Q., Zhang, S., Hou, X., Li, J., Yang, L., Liu, X. & Li, M. (2022). Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO2 nanotube array by highly dispersed trace cu doping. Journal of Hazardous Materials, 438. DOI:10.1016/j. jhazmat.2022.129455
  13. Trus, I., Gomelya, M., Skiba, M., Pylypenko, T. & Krysenko, T. (2022). Development of Resource-Saving Technologies in the use of sedimentation inhibitors for reverse osmosis installations. J. Ecol. Eng., 23(1), pp. 206–215. DOI:10.12911/22998993/144075
  14. Trus, I. (2022). Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology and Metallurgy, 57, 3, pp. 550–558.
  15. Trusa, I. M., Gomelya, M. D. & Tverdokhlib, M. M. (2021). Evaluation of the contribution of ion exchange in the process of demanganization with modified cation exchange resin ku-2- 8. Journal of Chemistry and Technologies, 29, 4, pp. 540–548. DOI:10.15421/jchemtech.v29i4.242561
  16. Trus, I. & Gomelya, M. (2022). Low-waste technology of water purification from nitrates on highly basic anion exchange resin. Journal of Chemical Technology and Metallurgy, 57, 4, pp. 765–772. 93_br4_2022_pp765-772.pdf
  17. Trusb, I., Gomelya, M., Skiba, M. & Vorobyova, V. (2021). Promising method of ion exchange separation of anions before reverse osmosis. Archives of Environmental Protection, 47, 4, pp. 93–97. DOI:10.24425/aep.2021.139505
  18. Trus, I., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O. & Levytska, O. (2020). Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3(6–105), pp. 21–27. DOI:10.15587/1729-4061.2020.206443 Vasilache, N., Cruceru, L., Petre, J., Chiriac, F. L., Paun, I., Niculescu, M., Pirvu F. & Lupu, G. (2018). The removal of nitrate from drinking water, natural water by ion exchange using ion exchange resin, purolite A520E and A500. Iternational Symposium “The Environment and the Industry”, SIMI 2018, Proceedings Book DOI:10.21698/simi.2018.fp53 Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277. DOI:10.1016/j.jenvman.2020.111330 Ward, M.H., Jones, R.R., Brender, J.D., de Kok, T.M., Weyer, P. J., Nolan, B. T., Vilanueva C.M. & van Breda, S.G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 7. DOI:10.3390/ijerph15071557 Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/ precipitation process. Archives of Environmental Protection, 46, 3, pp. 22–29. DOI: 10.24425 / aep.2020.134532.
  19. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province. Poland. Archives of Environmental Protection, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
Go to article

Authors and Affiliations

Inna Trus
Mukola Gomelya
Vita Halysh
Mariia Tverdokhlib
Iryna Makarenko
Tetiana Pylypenko
Yevhen Chuprinov
Daniel Benatov
Hennadii Zaitsev

  1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  2. State University of Economics and Technology: Kryvyi Rih, Ukraine
Download PDF Download RIS Download Bibtex


The uncertainty in the supply of crude oil, increasing the number of vehicles and rising air pollution, especially in urban areas, has prompted us to look for alternative fuels. It is understood that using Compressed Natural Gas (CNG) in IC engines could be a mid-term solution to these problems. It is well established that CNG has better combustion characteristics and low emissions compared to conventional gasoline and diesel fuel. In the present study, an experiment was conducted to evaluate the engine performance and exhaust emissions using various percentages of CNG in dual fuel mode. CNG was mixed in the intake manifold’s air stream, and diesel was injected after the compression of the CNG air mixture. This paper presents experimental results of 40%,60%, and 80% CNG in the air stream. Engine performance and emissions are presented and discussed at a speed of 1200 rpm to 1500 rpm in steps of 50 rpm. The results of the experiments showed that adding CNG to diesel engines in dual-fuel combustion significantly impacted performance and emissions. Compared to single diesel fuel combustion, dual fuel combustion increases brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) at all CNG energy shares and engine speeds. Carbon monoxide (CO) and hydrocarbon (HC) emissions were increased, while nitrogen oxide (NOX) and smoke opacity were decreased in dual fuel combustion compared to single diesel fuel.
Go to article


  1. Bari, S. & Hossain, S.N. (2019). Performance of a diesel engine run on diesel and natural gas in dual-fuel mode of operation. Energy Procedia, 160, pp. 215–222. DOI:10.1016/j.egypro.2019.02.139
  2. Gharehghani, A., Hosseini, R., Mirsalim, M., Jazayeri, S.A. & Yusaf, T. (2015). An experimental study on reactivity-controlled compression ignition engine fueled with biodiesel/natural gas. Energy, 89, pp. 558–567. DOI:10.1016/
  3. Jamrozik, A., Tutak, W. & Grab-Rogaliński, K. (2019). An experimental study on the performance and emission of the diesel/CNG dual-fuel combustion mode in a stationary CI engine. Energies, 12(20), 3857. DOI:10.3390/en12203857
  4. Johnson, D.R., Heltzel, R., Nix, A.C., Clark, N. & Darzi, M.(2017). Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development. Applied energy, 206, pp. 739–750. DOI:10.1016/j.apenergy.2017.08.234
  5. Kalghatgi, G.T. (2014). The outlook for fuels for internal combustion engines. International Journal of Engine Research, 15(4), pp. 383–398. DOI:10.1177/1468087414526189
  6. Lee, S., Kim, C., Lee, S., Lee, J. & Kim, J. (2020). Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine. Fuel, 262, 116607. DOI:10.1016/j. fuel.2019.116607
  7. McTaggart-Cowan, G.P., Jones, H.L., Rogak, S.N., Bushe, W.K., Hill, P.G. & Munshi, S.R. (2005, January). The effects of high-pressure injection on a compression-ignition, direct injection of natural gas engine. In Internal combustion engine division fall technical conference, Vol. 47365, pp. 161–173. DOI:10.1115/ICEF2005-1213
  8. Pathak, S.K., Nayyar, A. & Goel, V. (2021). Optimization of EGR effects on performance and emission parameters of a dual fuel (Diesel+ CNG) CI engine: An experimental investigation. Fuel, 291, 120183. DOI:10.1016/j.fuel.2021.120183
  9. Rai, A.A., Bailkeri, N.K. & BR, S.R. (2021). Effect of injection timings on performance and emission Characteristics of CNG diesel dual fuel engine. Materials Today: Proceedings, 46, pp. 2758–2763. DOI:10.1016/j.matpr.2021.02.509
  10. Shim, E., Park, H. & Bae, C. (2018). Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine. Applied energy, 225, pp. 1068–1077. DOI:10.1016/j.apenergy.2018.05.060
  11. Stelmasiak, Z., Larisch, J., Pielecha, J. & Pietras, D. (2017). Particulate matter emission from dual fuel diesel engine fuelled with natural gas. Polish Maritime Research. DOI:10.1515/pomr-2017-0055
  12. Stelmasiak, Z., Larisch, J. & Pietras, D. (2017). Issues related to naturally aspirated and supercharged CI engines fueled with diesel oil and CNG gas. Combustion Engines, 56. DOI:10.19206/ CE-2017-205
  13. Tripathi, G., Sharma, P. & Dhar, A. (2020). Effect of methane augmentations on engine performance and emissions. Alexandria Engineering Journal, 59(1), pp. 429–439. DOI:10.1016/j. aej.2020.01.012
  14. Wang, Z., Zhang, F., Xia, Y., Wang, D., Xu, Y. & Du, G. (2021). Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel, 289, 119869. DOI:10.1016/j.fuel.2020.119869
  15. Wei, L. & Geng, P. (2016). A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Processing Technology, 142, pp. 264–278. DOI:10.1016/j. fuproc.2015.09.018
  16. Wyrwa, A. (2010). Towards an integrated assessment of environmental and human health impact of the energy sector in Poland. Archives of Environmental Protection, 36(1) pp. 41–48.
  17. Yousefi, A., Guo, H. & Birouk, M. (2018). Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions. Applied Energy, 229, pp. 375–388. DOI:10.1016/j. apenergy.2018.08.017
  18. Yousefi, A., Guo, H. & Birouk, M. (2019). Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel, 235, pp. 838–846. DOI:10.1016/j.fuel.2018.08.064
  19. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), pp. 108–119. DOI 10.24425/aep.2021.138469
Go to article

Authors and Affiliations

Neeraj Kumar
Bharat Bhushan Arora
Sagar Maji

  1. Delhi Technological University, Delhi, India
Download PDF Download RIS Download Bibtex


Many paper-related products are in daily use all over the world. Although paper is one of the most recycled materials in the European Union, no end-of-waste criteria have been defi ned. Typical paper and cardboard should be recycled, but paper materials with impurities, such as cooking oil, sand, or plastic, are much more problematic. In particular, paper contaminated with cooking oil or butter (e.g., pizza boxes) is diffi cult waste. Also baking parchment paper cannot be stored as waste paper after use. Composting could be a solution, but in many municipal solid waste collection systems, this waste types are collected with the mixed waste stream, what fi nally leads this material to landfi lling or incinerating processes. Parchment paper and pizza box cardboard contain a lot of cellulose and in landfi lls are a source of CO2 and CH4. Incineration of these materials also leads to CO2 emission. The aim of this study was to investigate the degradation of cooking-oil-contaminated paper in media with a low inorganic nitrogen content. Cardboard usually used for packaging purposes was used as pre-test material. Two types of paper usually used in the kitchen were used: pizza box cardboard and parchment paper highly contaminated with cooking oil. Two types of low inorganic nitrogen media were tested: mature municipal waste compost (MSWC) and leaf mold (LM). The decrease of mass of both paper sample types was correlated with process time. Both tested sample types: dry cellulose materials and paper with cooking oil added, were partly or completely decomposed after 6 weeks of bioprocessing in aerobic conditions without an additional dose of inorganic nitrogen. According to waste separation rules, wet paper or paper contaminated with cooking oil have to be stored with other wastes which are „not possible for further use”. This work show possibility to change these rules.
Go to article


  1. Agarwal, G., Liu, G. & Lattimer, G. (2014) Pyrolysis and Oxidation of Cardboard. Fire safety science-proceedings of the eleventh international symposium. pp. 124–137. DOI:10.3801/IAFSS. FSS.11-124
  2. Ahmed, S., Hall, A.M. & Ahmed, S.F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30–31, Asian University for Women, Chittagong, Bangladesh.
  3. Al-Mutairi, N. (2009) Co-composting of manure with fat, oil, and grease: Microbial fingerprinting and phytotoxicity evaluation. Can. J. Civ. Eng. 36(2) pp. 209–218. DOI:10.1139/L08-117
  4. Aluyor, E.O., Obahiagbon, K.O. & Ori-jesu, M. (2009) Biodegradation of vegetable oils: A review. Scientific Research and Essay, 4(6), pp. 543–54.
  5. Andlar, M., Rezic, T., Mardetko, M., Kracher, D., Ludwig, R. & Santek B. (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18 pp. 768–778. DOI:10.1002/ elsc.201800039
  6. Balada, I., Altmann, V. & Šařec, P. (2016) Material waste paper recycling for the production of substrates and briquettes. Agronomy Research 14(3), pp. 661–671.
  7. Bekiroğlu, S., Elmas, G.M. & Yagshiyev, Y. (2017) Contribution to Sustainability and the National Economy Through Recycling Waste Paper from Istanbul’s Hotels in Turkey. BioResources, 12(4), pp. 6924–6955. DOI:10.15376/biores.12.4.6924-6955
  8. Bogaard, J. & Whitmore, P.M. (2002) Explorations of the role of humidity fluctuations in the deterioration of paper. Studies in Conservation, 47(3), pp. 11–15. DOI:10.1179/sic.2002.47.s3.003
  9. Borrego, S., Gómez de Saravia, S., Valdés, O., Vivar, I., Battistoni, P. & Guiamet, P. (2016) Biocidal activity of two essential oils on fungi that cause degradation of paper documents. International Journal of Conservation Science, 7(2), pp. 369–380.
  10. Cichosz, G. & Czeczot, H. (2011) Oxidative stability of edible fats – consequences to human health. Bromat. Chem. Toksykol. XLIV, 1, pp. 50–60
  11. Ciesielczuk, T., Poluszyńska, J., Rosik-Dulewska, Cz., Sporek, M. & Lenkiewicz, M. (2016). Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological engineering, 95, pp. 485–491. DOI:10.1016/j.ecoleng.2016.06.100
  12. Cuvelier, M.E., Soto, P., Courtois, F., Broyart, B. & Bonazzi, C. (2017) Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control, 73, part 3, pp. 1466–1473. DOI:10.1016/j.foodcont.2016.11.008
  13. Franica, M., Grzeja, K. & Paszula, S. (2018) Evaluation of quality parameters of selected composts. Archives of Waste Management and Environmental Protection, 20(1), pp. 21–32.
  14. Ghehsareh, M.G., Khosh-Khui, M. & Nazari, F. (2011) Comparison of Municipal Solid Waste Compost, Vermicompost and Leaf Mold on Growth and Development of Cineraria (Pericallis × hybrida ‘Star Wars’). Journal of Applied Biological Sciences, 5 (3), 55–58.
  15. Gumienna, M., & Czarnecki, Z. (2010). The surface-active compounds of microbiological origin. Nauka Przyr. Technol., 4, 4, #51. (in Polish)
  16. Kaakinen, J., Vahaoja, P., Kuokkanen, T. & Roppola, K. (2007) Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method. J. Automated Methods and Management in Chemistry, 034601. DOI:10.1155/2007/34601
  17. Karahan, S. (2020) Investigation of Recycling Possibilities of Stacked Waste Office Paper for at Least Five Years. GUSTIJ, 10(2) pp. 366 – 373. DOI:10.17714/gumusfenbil.606061
  18. Li, Z., Wrenn, B.A. & Venosa, A.D. (2005) Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation 16, pp. 341–352. DOI:10.1007/s10532-004-2057-6
  19. Micales, J.A., & Skog, K.E. (1997) The Decomposition of Forest Products in Landfills. International Biodeterioration & Biodegradation, 39, 2–3, pp. 145–158.
  20. Nowińska, A., Baranowska, J. & Malinowski, M. (2019) The analysis of biodegradation process of selected paper packaging waste. Infrastructure And Ecology Of Rural Areas 3, pp. 253–261. DOI:10.14597/INFRAECO.2019.3.1.018
  21. Osono, T. (2019) Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 35, pp.30–43. DOI:10.1111/1440-1703.12063
  22. Ozimek, A. & Kopeć, M. (2012). Assessment of biological activity of biomass at different stages of composting process with use of the oxitop control measurement system. Acta Agrophysica, 19(2), 379–390.
  23. Perez, J., Munoz-Dorado, J., Rubia, T. & d.l. Martınez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5 (2), pp. 53–63. DOI:10.1007/s10123-002- 0062-3
  24. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski M. (2021) The effect of temperature on the biodegradation of different types of packaging materials under test conditions. Archives of Environmental Protection, 47(4), pp. 74–83. DOI:10.24425/aep.2021.139503
  25. Rajae, A., Ghita, A.B., Souabi, S., Winterton, P., Cegarra, J. & Hafidi M. (2008) Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: Physical–chemical, microbiological, and spectroscopic analysis. Bioresource technology, 99(18), pp. 8571–8577. DOI:10.1016/j. biortech.2008.04.007
  26. Saletes, S., Siregar, F.A., Caliman, J.P. & Liwang, T. (2004) Ligno- Cellulose Composting: Case Study on Monitoring Oil Palm Residuals. Compost Science & Utilization, 12(4), pp. 372–382. DOI:10.1080/1065657X.2004.10702207
  27. Salihu, I., Mohd, Y.S., Nur, A.Y. & Siti, A.A. (2018) Microbial degradation of vegetable oils: a review, 3, pp. 45–55.
  28. Smirnova. I.E. & Saubenova, M.G. (2001) Use of Cellulose- -Degrading Nitrogen-Fixing Bacteria in the Enrichment of Roughage with Protein. Applied Biochemistry and Microbiology, 37(1), pp. 76–79.
  29. Wan Razali, W.A., Baharuddin, A.S., Talib, A.T., Sulaiman, A., Naim, M.N., Hassan, M.A. & Shirai, Y. (2012) Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources, 7(4), pp. 4786–4805.
  30. Wołczyński, M. & Janosz-Rajczyk, M. (2014) Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation. Archives of Environmental Protection, 40(2), pp. 103–113. DOI:10.2478/aep-2014-0019
Go to article

Authors and Affiliations

Tomasz Ciesielczuk
Czesława Rosik-Dulewska

  1. Opole University, Poland
  2. Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex


There are currently large quantities of heterogeneous contaminated sites and the in-situ thermal conductive heating (TCH) technology have been widely used in soil remediation. Some engineering cases have shown that when soil remediation of heterogeneous sites use TCH technology, the gases carrying contaminants migrate laterally and contaminate clean areas. However, there are relatively few domestic studies on this phenomenon. Some international scholars have confirmed the occurrence of this phenomenon on the laboratory scale, but have not proposed an effective solution to the above scientific question. This study first introduced the heating mechanism and heating process of TCH. Meanwhile, the forms and transformation mechanism of organic contaminants were fully expounded during soil remediation by TCH. In addition, the formation, migration, accumulation, and lateral diffusion of gaseous contaminants were comprehensively reviewed during the in-situ thermal desorption of heterogeneous strata. Finally, arrangement methods of extraction pipes to effectively capture gas are provided for the heterogeneous contaminated soils remediated by TCH. The results of this study will provide theoretical and technical support for in-depth understanding of steam movement in heterogeneous formations and the remediation of heterogeneous contaminated sites by TCH technology.
Go to article


  1. Baker, R. & Heron, G. (2004). In-Situ delivery of heat by thermal conduction and steam injection for improved DNAPL remediation.TerraTherm, Inc., Fitchburg USA2004.
  2. Baker, R., Lachance, J. & Heron, G. (2006). In-pile thermal desorption of PAHs, PCBs and dioxins/furans in soil and sediment. Land Contamination & Reclamation, 14(2), pp. 620–624. DOI:10.2462/09670513.731
  3. Biache, C., Mansuy-Huault, L., Faure, P., Munier-Lamy, C. & Leyval, C. (2008). Effects of thermal desorption on the composition of two coking plant soils:impact onsolvent extractable organic compounds and metal bioavailability. Environmental Pollution, 3, pp. 671–677. DOI:10.1016/j.envpol.2008.06.020
  4. Bonnard, M., Devin, S., Leyval, C., Morel, J.L. & Vasseur, P. (2010). The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicology and Environmental Safety, 73, pp. 955–960. DOI:10.1016/j.ecoenv.2010.02.02
  5. Brooks, M.C., Wise, W.R. & Annable, M.D. (1999). Fundamental changes in in situ air sparging how patterns. Groundwater Monitoring & Remediation, 19(2), pp. 105–113. DOI:10.1111/j.1745-6592.1999.tb00211.x
  6. Burghardt, J.M. & Kueper, B.H. (2008). Laboratory study evaluating heating of tetrachloroethylene impacted soil. Groundwater Monitoring & Remediation, 28(4), pp. 95–106. DOI:10.1111/ j.1745-6592.2008.00214.x
  7. Carey, V.P. (2007). Liquid-Vapor Phase-change Phenomena, second ed. Taylor and Francis, New York 2007. Cébron, A., Cortet, J., Criquet, S., Biaz, A., Calvert, V., Caupert, C., Pernin, C. & Leyval, C. (2011). Biological functioning of PAHpolluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Research in Microbiology, 162, pp. 896–907. DOI:10.1016/j.resmic.2011.02.011
  8. Chiou, C.T., Porter, P.E. & Schmedding, D.W. (1983). Partition equilibria of nonionic organic compounds between soil organic matter and water. Environmental science & technology, 17, pp. 27–231, DOI:10.1021/es00110a009
  9. Chen, F., Freedman, D.L., Falta, R.W. & Murdochb, L.C. (2012). Henry’slaw constants of chlorinated solvents at elevated temperatures. Chemosphere, 86(2), pp. 156–165. DOI:10.1016/j. chemosphere.2011.10.004
  10. Geistlinger, H., Krauss, G., Lazik, D. & Luckner, L. (2006). Direct gas injection into saturated glass beads: Transition from incoherent to coherent gas flow pattern. Water Resources Research, 42, W07403. DOI:10.1029/2005WR004451
  11. Hegele, P.R. & Mumford, K.G. (2014) Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene. Journal of Contaminant Hydrology, 165, pp. 24–36, DOI:10.1016/j.jconhyd.2014.07.002
  12. Heron, G., Bierschenk, J., Swift, R., Watson, R. & Kominek, M. (2016). Thermal DNAPL source zone treatment impact on a CVOC plume. Groundwater Monitoring & Remediation, 36(1), pp. 26–37. DOI:10.1111/gwmr.12148
  13. Heron, G., Carroll, S. & Nielsen, S.G. (2005). Full-scale removal of DNAPL constituents using steam enhanced extraction and electrical resistance heat. Groundwater Monitoring & Remediation, 25(4), pp. 92–107. DOI:10.1111/j.1745- 6592.2005.00060.x
  14. Heron, G., Lachance, J. & Baker R. (2013). Removal of PCE DNAPL from tight clays using in situ thermal desorption. Groundwater Monitoring & Remediation, 3(4), pp. 31–43. DOI:10.1111/ gwmr.12028
  15. Heron, G., Parker, K., Galligan, J. & Holmes, T.C. (2009). Thermal treatment of 8 CVOC source areas to near nondetect concentrations. Groundwater Monitoring & Remediation, 29(3), pp. 56–65. DOI:10.1111/j.1745-6592.2009.01247.
  16. Hicknell, B.N., Mumford, K.G. & Kueper, B.H. (2018). Laboratory study of creosote removal from sand at elevated temperatures. Contam Hydrol, 219, pp. 40–49. DOI:10.1016/j. jconhyd.2018.10.00
  17. Hiester, U., Muller, M., Koschitzky, H. & Trötschler, O. (2013). In situ thermal treatment for source zone remediation of soil and groundwater. British Medical Journal, 31, pp. 482–484.
  18. Janfada, T.S., Class, H., Kasiri, N. & Dehghani, M.R. (2020). Comparative experimental study on heat-up efficiencies during injection of superheated and saturated steam into unsaturated soil. International Journal of Heat and Mass Transfer, 158, 119235. DOI:10.1016/j.ijheatmasstransfer.2019.119235
  19. Jones, S.F., Evans, G.M. & Galvin K.P. (1999). Bubble nucleation from gas cavities – a review. Adv. Colloid Interfac, 80, pp. 27–50. DOI:10.1016/S0001-8686(98)00074-8
  20. Kueper, B.H. & McWhorter, D.B. (1991). The behaviour of dense, nonaqueous phase liquids in fractured clay and rock. Ground Water, 29(5), pp. 716–728. DOI:10.1111/j.1745-6584.1991. tb00563.
  21. Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E. & Pope, G.A. (2006). Remediation of elemental mercury using in situ thermal desorption(ISTD). Environmental Science & Technology, 40(7), pp. 2384–2389. DOI:10.1021/es050358
  22. Li, K. & Horne, R.N. (2002). A capillary model for geothermal reservoirs. Proceedings of the GRC 2002 Annual Meeting,September 23–25, 2002, Reno, USA: Geothermal Resources Council Trans.
  23. Magdalena. M.K., Mumford, K.G., Johnson, R.L. & Sleep, B.E. (2011) Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones. Advances in Water Resources, 34, PP. 537–549. DOI:10.1016/j. advwatres.2011.01.010
  24. Martin, E.J. & Kueper, B.H. (2011). Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions. Journal of Contaminant Hydrology, 126, pp. 291–300. DOI:10.1016/j.jconhyd.2011.09.004
  25. Martin, E.J., Mumford, K.G. & Kueper, B.H. (2016). Electrical resistance heating of clay layers in water-saturated sand. Groundwater Monitoring & Remediation, 36(1), pp. 54–61. DOI:10.1111/gwmr.12146
  26. Martin, E.J., Mumford, K.G, Kueper, B.H. & Siemens, G.A. (2017). Gas formation in sand and clay during electrical resistance heating. International Journal of Heat and Mass Transfer, 110, pp. 855–862. DOI:10.1016/j.ijheatmasstransfer.2017.03.056
  27. Mumford, K.G., Martin, E.J. & Kueper, B.H. (2021). Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation. Journal of Contaminant Hydrology, 243, 103892. DOI:10.1016/J. JCONHYD.2021.103892
  28. Mumford, K.G., Smith, J.E. & Dickson, S.E. (2008). Mass flux from a non-aqueous phase liquid pool considering spontaneous expansion of a discontinuous gas phase. Journal of Contaminant Hydrology, 98, pp. 85–96. DOI:10.1016/j.jconhyd.2008.02.007
  29. Munholland, J.L. (2015) Electrical resistance heating of groundwater impacted by chlorinated solvents in heterogeneous sand. ProQuest Dissertations. Munholland, J.L., Mumford, K.G. & Kueper, B.H. (2016). Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. Journal of Contaminant Hydrology, 184, pp. 14–24. DOI:10.1016/j.jconhyd.2015.10.011
  30. Netzeva, T.I., Aptula, A.O., Chaudary, S.H., Duffy, J.C., Schultz, T.W., Schűrmann, G. & Cronin, M.T.D. (2003). Structure-Activity Relationships for the Toxicity of Substituted Poly-Hydroxylated. Benzenes to Tetrahymena Pyriformis: influence of Free Radical Formation. Qsar & Combinatorial Science, 22(6), pp. 575–582.
  31. Nilsson, B., Tzovolou, D., Jeczalik, M., TomaszKasela, T., Slack,W., Klint, K.E., Haeseler, F. & Tsakiroglou, D.C. (2011). Combining steam injection with hydraulic fracturing for the in-situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel. Journal of Environmental Management, 92. DOI:10.1016/j.jenvman.2010.10.004
  32. Oberle. D. & Kluger, M. (2015). In situ remediation of 1, 4-dioxane using electrical resistance heating. Remediation Journal, 25(2), pp. 35–42. DOI:10.1002/rem.21422
  33. O’Carroll, D.M. & Sleep, B.E. (2007). Hot water flushing for immiscible displacement of a viscous NAPL. Journal of Contaminant Hydrology, 91, pp. 47–266. DOI:10.1016/j.jconhyd.2006.11.003
  34. Schwarzenbach, R.P., Gschwend, P.M. & Imboden, D.M. (2003). Environmental Organic Chemistry, JohnWiley &Sons, New Jersey2003. Scriven, L.E. (1959). On the dynamics of phase growth. Chemical Engineering Science, 10, PP. 1–13, DOI:10.1016/0009- 2509(59)80019-1
  35. Sinnott, R.K. (2005). Coulson’s and Richardson’s Chemical Engineering, Chemical Engineering Design. Elsevier Inc., UK2005.
  36. Sleep, B.E. & Ma, Y.F. (1997). Thermal variation of organic fluid properties and impact on thermal remediation feasibility. Journal of Soil Contamination, 6(3), pp. 281–306. DOI:10.1080/15320389709383566
  37. Smith, J.M. & Van Ness, H.C. (1987). Introduction to Chemical Engineering Thermodynamics. Mc-Graw Hill, Inc., New York 1987.
  38. Sun, H., Yang, X.R., Xie, J.Y. & Zhao, Y.S. (2021). Remediation of Diesel-Contaminated Aquifers Using Thermal Conductive Heating Coupled With Thermally Activated Persulfate. Water Air Soil Pollut, 232: 293. DOI:10.1007/s11270-021-05240-x
  39. Suthersan. S.S., Horst. J., Schnobrich. M., Welty, N. & McDonough, J. (2016). Remediation Engineering-Design Concepts Second Edition, CRC Press, Boca Raton 2016.
  40. Tang, S., Wang, X., Mao, Y., Zhao, Y., Yang, H. & Xie, Y.F. (2015). Effect of dissolved oxygen concentration on iron efficiency: removal of three chloroacetic acids. Water Research, 73, pp. 342–352. DOI:10.1016/j.watres.2015.01.02
  41. Triplett Kingston,J.L., Dahlen, P.R. & Johnson, P.C. (2010). State-of- -the-practice review of in situ thermal technologies. Groundwater Monitoring & Remediation, 30 (4), pp. 64–72. DOI:10.1111/ j.1745-6592.2010.01305.x
  42. Triplett Kingston, J.L., Johnson, P.C., Kueper, B.H. & Mumford, K.G. (2014). In situ thermal treatment of chlorinated solvent source zones. Chlorinated Solvent Source Zone Remediation, 7, pp. 509–557.
  43. Udell, K.S. (1996). Heat and mass transfer in clean-up of underground toxic wastes. In Annual Reviews of Heat Transfer, 7, pp. 333–405. DOI:10.1615/AnnualRevHeatTransfer.v7.80.
  44. Vermeulen, F. & McGee, B. (2000). In situ electromagnetic heating for hydrocarbon recovery and environmental remediation. J Can. Pet. Technol, 39(8), pp. 24–28. DOI:10.2118/00-08-DAS
  45. Voort, M., Kempenaar, M., Driel, M., Raaijmakers, M.J. & Mendes, R. (2016). Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 19(4), pp. 375–382. DOI:10.1111/ele.12567
  46. Zhao, C., Mumford, K.G. & Kueper, B.H. (2014). Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment. Journal of Contaminant Hydrology, 164, pp. 49–58. DOI:10.1016/j.jconhyd.2014.05.008
Go to article

Authors and Affiliations

Wei Ji
Rong-Bing Fu
Cai-Hong Gao
Jia-Bin Yao

  1. State Key Laboratory of Pollution Control and Resources Reuse,College of Environmental Science and Engineering, Tongji University, Shanghai 200092, ChinaCentre for Environmental Risk Management and Remediation of Soil and Groundwater,Tongji University, Shanghai 200092, China
Download PDF Download RIS Download Bibtex


The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc especially in 2020 and the first half of 2021 and has left severe after-effects affecting not only the health sector but also all aspects of human life. The aim of this study is to inspect the current trends of the quantities of household waste produced during the first four waves of the pandemic. The study was carried out in Guelma city, northeastern of Algeria, where the first containment was registered on February 25, 2020, it concerns an Italian national (Mohamed et al. 2021). An increase in the production of household waste of approximately 14% during the first containment was recorded in the study area, with the interruption of recycling, which caused an enormous pressure on the technical landfill center of Guelma. The results showed that the trend of waste production decreased at the following averages: 205.80; 198.92; 196.69 and 192.43 tons, for the first four waves of COVID-19 respectively. Therefore, a return to the pre-pandemic state would be close, which dampens the impact and pressure on the landfill and the environment. This research allows for perceiving the waste management status in Algeria, between the pandemic and post-pandemic period.
Go to article


  1. Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T.R. & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of The Total Environment, 730, 138996. DOI:10.1016/j. scitotenv.2020.138996
  2. Adyel, T.M. (2020). Accumulation of plastic waste during COVID-19. Science, 369(6509), pp. 1314–1315. DOI:10.1126/science. abd9925
  3. AND (2020). Report on the State of Waste Management in Algeria (Assessed 03 july 2022).
  4. Anderson, R.M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T.D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), pp. 931–934. DOI:10.1016/S0140-6736(20)30567-5
  5. Andi (2020). National Agency for the Development of Investments (Andi). The borough of Guelma. Volumes 1–19. Presentation of the wilaya (borough) 2015. Assessed on Sep 09, 2020. http:// Journal of Environmental Engineering.
  6. Aouissi, H.A., Kechebar, M.S.A., Ababsa, M., Roufayel, R., Neji, B., Petrisor, A.-I. Ohmagari, N. (2022). The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare, 10(7), 1341. DOI:10.3390/healthcare10071341
  7. Boroujeni, M., Saberian, M. & Li, J. (2021). Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus. Environmental Science and Pollution Research, 28(11), pp. 14182–14191. DOI:10.1007/s11356-021-12556-y
  8. Chen, D.M.-C., Bodirsky, B.L., Krueger, T., Mishra, A. & Popp, A. (2020). The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7), 074021. DOI:10.1088/1748-9326/ab8659
  9. Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L.& Li, X. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15-e16. DOI:10.1016/ S2215-0366(20)30078-X
  10. Chen, W., Zhang, N., Wei, J., Yen, H.-L. & Li, Y. (2020). Short- -range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 176, 106859. DOI:10.1101/2020.03.16.20037291
  11. Contributors, V. (2021). Economic Crisis and Mentality of Youth in Post-Pandemic Period edited by Sagar Simlandy: PS Opus Publications.
  12. DGPPS, M. (2020). Plan de préparation et de riposte à la menace de l’infection coronavirus Covid-19. Disponible sur: http://www. sante. gov. dz/images/Prevention/cornavirus/Plan-de-prparation. PDF.
  13. Ebner, N. & Iacovidou, E. (2021). The challenges of Covid-19 pandemic on improving plastic waste recycling rates. Sustainable Production and Consumption, 28, pp. 726–735. DOI:10.1016/j. spc.2021.07.001
  14. Ghennam, N. (2020). Waste Recycling Business in Algeria – Opportunities and Challenges for SME. Al-Riyada Bus. Econ. J., 6, pp. 10–22.
  15. Hyun, M. (2020). Korea sees steep rise in online shopping during COVID-19 pandemic. ZD Net. Assessed on April 12, 2020. 19-vaccine-website-stealing-info-from-visitors/
  16. Iyer, M., Tiwari, S., Renu, K., Pasha, M. Y., Pandit, S., Singh, B. & Balasubramanian, V. (2021). Environmental survival of SARSCoV- 2 – a solid waste perspective. Environmental Research, 197, 111015. DOI:10.1016/j.envres.2021.111015
  17. Jribi, S., Ben Ismail, H., Doggui, D. & Debbabi, H. (2020). COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environment, Development and Sustainability, 22(5). DOI:10668-020-00740-y
  18. Kampf, G., Todt, D., Pfaender, S. & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3), pp. 246–251. DOI:10.1016/j.jhin.2020.01.022
  19. Kandel, N., Chungong, S., Omaar, A. & Xing, J. (2020). Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. The Lancet, 395(10229), pp. 1047–1053. DOI:10.1016/S0140-6736(20)30553-5
  20. Kebaili, F. K., Baziz-Berkani, A., Aouissi, H.A., Mihai, F.-C., Houda, M., Ababsa, M. & Fürst, C. (2022). Characterization and Planning of Household Waste Management: A Case Study from the MENA Region. Sustainability, 14(9), 5461. DOI:10.3390/su14095461
  21. Klemeš, J.J., Van Fan, Y., Tan, R.R. & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127, 109883. DOI:10.1016/j.rser.2020.109883
  22. Leveau, C.M., Aouissi, H.A. & Kebaili, F.K. (2022). Spatial diffusion of COVID-19 in Algeria during the third wave. GeoJournal, 1–6. DOI:10.1007/s10708-022-10608-5
  23. Lounis, M., Rais, M.A., Bencherit, D., Aouissi, H.A., Oudjedi, A., Klugarová, J. & Riad, A. (2022). Side Effects of COVID-19 Inactivated Virus vs. Adenoviral Vector Vaccines: Experience of Algerian Healthcare Workers. Frontiers in Public Health, 10, 896343-896343. DOI:10.3389/fpubh.2022.896343
  24. Low, D., & Koh, A. (2020). Singapore’s Food Delivery Surge during Lockdown Highlights Waste Problems. Bloomberg News, (Accessed 18 July2020).
  25. Mohamed, K., Amina, M.-S., Mouaz, M.B.E., Zihad, B. & Wafa, R. (2021). The impact of the coronavirus pandemic on the household waste flow during the containment period. Environmental Analysis Health and Toxicology, 36(2), e2021011. DOI:10.5620/ eaht.2021011
  26. Mol, M.P.G. & Caldas, S. (2020). Can the human coronavirus epidemic also spread through solid waste? Waste Management & Research, 38(5), pp. 485–486. DOI:10.1177/0734242X20918312
  27. Nzediegwu, C. & Chang, S. (2020). Developing Countries For Submission to: Resources Conservation y Recycling Type of Paper: Perspective. Resources, Conservation. Recycling, 104947.
  28. Paleologos, E.K., Elhakeem, M. & Amrousi, M.E. (2018). Bayesian analysis of air emission violations from waste incineration and coincineration plants. Risk Analysis, 38(11), pp. 2368–2378. DOI:10.1111/risa.13130
  29. Ranney, M.L., Griffeth, V. & Jha, A.K. (2020). Critical supply shortages – the need for ventilators and personal protective equipment during the Covid-19 pandemic. New England Journal of Medicine, 382(18), e41. DOI:10.1056/NEJMp2006141
  30. Remuzzi, A. & Remuzzi, G. (2020). COVID-19 and Italy: what next? The Lancet, 395(10231), pp. 1225–1228. DOI:10.1016/S0140- 6736(20)30627-9
  31. Roy, P., Mohanty, A.K., Wagner, A., Sharif, S., Khalil, H., & Misra, M. (2021). Impacts of COVID-19 outbreak on the municipal solid waste management: Now and beyond the pandemic. ACS Environmental Au, 1(1), pp. 32–45. DOI:10.1021/ acsenvironau.1c00005
  32. SNGID. (2019). National Waste Management Strategy https://www. pour-la-gestion- int%C3%A9gr%C3%A9e-desd% C3%A9chets-SNGID-2035-cas-des-POPs.pdf (accessed on 15 June 202)
  33. Van Fan, Y., Jiang, P., Hemzal, M. & Klemeš, J.J. (2021). An update of COVID-19 influence on waste management. Science of the Total Environment, 754, 142014. DOI:10.1016/j. scitotenv.2020.142014
  34. Vaverková, M.D., Paleologos, E.K., Dominijanni, A., Koda, E., Tang, C.S., Wdowska, M., Li, Q., Guarena, N., Abdel- Mohsen, O.M., Vieira, C.S., Manassero, M., O’Kelly, B.C., Xie, Q., Bo, MV., Adamcová, D.,. Podlasek, A., Anand, U.M., Arif, M., Venkata Siva Naga Sai Goli, Kuntikana, G., Palmeira, E.M., Pathak, S. & Singh, D.N. (2020). Municipal solid waste management under COVID-19: challenges and recommendations. Environmental Geotechnics, 8(3), pp. 217–232. DOI:10.1680/jenge.20.00082
  35. WHO (2020). COVID-19 2020 situation summary – updated 19 April 2020. Available at. cases-updates/summary. html#covid19-pandemic (Accessed 20 june 2021 ).
  36. WHO (2022). The COVID-19 weekly epidemiological Update – updated 12 October 2022. Available. publications/m/item/weekly-epidemiological-update-on-covid- 19-12-october-2022 (Accessed 18 /10/ 2022).
  37. World Health Organization. Worldmeter (2015). Worldmeter 2015. Available online: https:// (accessed on 12 March 2022).
  38. Yang, Y., Li, W., Zhang, Q., Zhang, L., Cheung, T. & Xiang, Y.-T. (2020). Mental health services for older adults in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e19. DOI:10.1016/S2215-0366 (20)30079-1
  39. Zandifar, A. & Badrfam, R. (2020). Iranian mental health during the COVID-19 epidemic. Asian Journal of Psychiatry, 51. DOI:10.1016/j.ajp.2020.101
Go to article

Authors and Affiliations

Amina Mesbahi-Salhi
Mohamed Kaizouri
Bachir El Mouaz Madoui
Wafa Rezaiguia
Zihad Bouslama

  1. Laboratory of Ecology of Earth and Aquatic Systems, University of Badji Mokhtar,Annaba, 23052, Algeria
  2. University of Mohamed Cherif Messaadia, Souk-Ahras, 41043, Algeria

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to:

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, ( (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution and reproduction in any medium provided the article is properly cited, is not used for commercial purposes and no modification or adaptation are made.

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made

The manuscripts should be submitted on-line using the Editorial System available at The journal does not have article processing charges (APCs) nor article submission charges.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges
The publication fee of an article in the Journal is:
25 EUR/100 zł per page (black and white or in gray scale),
35 EUR/130 zł per page (color).
The journal does not have article processing charges (APCs) nor article submission charges.

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.


All Reviewers in 2022

Alonso Rosa, Alwaeli Mohamed, Arora Amarpreet, Babu A., Barbieri Maurizio, Bień Jurand, Bogacki Jan, Bogumiła Pawluśkiewicz, Boutammine Hichem, Burszta-Adamiak Ewa, Cassidy Daniel, Chowaniec Józef, Czerniawski Robert, da Silva Elaine, Dąbek Lidia, Dannowski Ralf, Delgado-González Cristián Raziel, Dewil Raf, Djemli Samir, Du Rui, Egorin A. M., Fadillah‬ ‪Ganjar‬‬, Gangadharan Praveena, Garg Manoj, Gębicki Jacek, Generowicz Agnieszka, Gnida Anna, Golovatyi Sergey, Grabda Mariusz, Guo Xuetao, Gusiatin Mariusz, Han Lujia, Holnicki Piotr, Houali Karim, Iwanek Małgorzata, Janczukowicz Wojciech, Jan-Roblero J., Jarosz-Krzemińska Elżbieta, Jaspal Dipika, Jorge Dominguez, Kabała Cezary, Kalka Joanna, Karaouzas Ioannis, Khadim Hussein Jabar Khadim, Khan Moonis Ali, Kojić Ivan, Kongolo Kitala Pierre, Kozłowski Kamil, Kucharski Mariusz, Lu Fan, Łukaszewski Zenon, Majumdar Pradeep, Mannheim Viktoria, Markowska-Szczupak Agata, Mehmood Andleeb, Mol Marcos, Mrowiec Bożena, Nałęcz-Jawecki Grzegorz, Ochowiak Marek, Ogbaga Chukwuma, Oleniacz Robert, Pan Ligong, Paruch Adam, Pietras Dariusz, Piotrowska-Seget Zofia, Płaza Grażyna, Pohl Alina, Poikane Sandra, Poluszyńska Joanna, Dudzińska Marzenna, Rawtani Deepak, Rehman Khalil, Rogowska Weronika, Rzeszutek Mateusz, Saenboonruang Kiadtisak, Sebakhy Khaled, Sengupta D.K., Shao Jing, Sočo Eleonora, Sojka Mariusz, Sonesten Lars, Song Wencheng, Song ZhongXian, Spiak Zofia, Srivastav Arun, Steliga Teresa, Surmacz-Górska Joanna, Świątkowski Andrzej Symanowicz Barbara, Szklarek Sebastian, Tabina Amtul, Tang Lin, Torrent Sergi, Trafiałek Joanna, Vijay U., Vojtkova Hana, Wang Qi, Wielgosiński Grzegorz, Wilk Pawel, Wiśniewska Marta, Yin Xianqiang, Zając Grzegorz, Zalewski Maciej, Zegait Rachid, Zerafat Mohammad, Zgórska Aleksandra, Zhang Chunhui, Zhang Wenbo, Zhu Guocheng, Zwierzchowski Ryszard

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.

All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.

Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more