Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 63
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.

Go to article

Authors and Affiliations

P. Łukowski
Download PDF Download RIS Download Bibtex

Abstract

The preliminary stage of asphalt mixture production involves the drying and dedusting of coarse aggregates. The most common types of coarse aggregates used are limestone and basalt. In the process of drying and dedusting the dryer filter accumulates large quantities of waste in the form of mineral powder.

This paper introduces an investigation into limestone powder waste as a potential microfiller of polymer composites. Physical characteristics such as the granulation the of powder collected from the filter - in terms of the season of its collection and the type of input materials used - were analysed. A scanning electron microscope (SEM) was used for the investigation described within this paper. The obtained results were compared against those of other materials which can be used as polymer composites microfillers.

Go to article

Authors and Affiliations

M. Kępniak
P. Woyciechowski
W. Franus
Download PDF Download RIS Download Bibtex

Abstract

The influence of ion implantation on the structure and properties of polymers is a very complex issue. Many physical and chemical processes taking place during ion bombardment must be taken into consideration. The complexity of the process may exert both positive and negative influence on the structure of the material. The goal of this paper is to investigate the influence of H+, He+ and Ar+ ion implantation on the properties of polypropylene membranes used in filtration processes and in consequence on fouling phenomena. It has appeared that the ion bombardment caused the chemical modification of membranes which has led to decrease of hydrophobicity. The increase of protein adsorption on membrane surface has also been observed.

Go to article

Authors and Affiliations

Karolina Kotra-Konicka
Joanna Kalbarczyk
Jakub M. Gac
Download PDF Download RIS Download Bibtex

Abstract

The general standards and guidelines recommendations for PCC suggest alternating conditions of curing: starting with wet conditions for effective hydration of Portland cement followed by air-dry conditions for polymer hardening. The often accepted curing regime of PCC covers 5 days of wet curing and then the air-dry curing but it is not the optimum one. The aim of the investigation was to find the best scenario for PCC with two types of polymer modifiers: two-component epoxy resin and water dispersion of polyacrylates. The following exploitation properties were accepted as the criteria of evaluation of PCC curing effectiveness: compressive strength, tensile splitting strength, surface tensile strength (by pull-off method), wear resistance, water penetration under pressure and resistance to carbonation. The optimum time of PCC wet curing is possibly between 7 and 14 days, however, it have to be verified experimentally for specific PCC composition.

Go to article

Authors and Affiliations

P. Woyciechowski
Download PDF Download RIS Download Bibtex

Abstract

It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45

GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal

properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the

temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as

benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is

characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers

presence on the amount of released harmful products.

The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the

0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a

beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be

observed.

Go to article

Authors and Affiliations

S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
D. Drożyński
K. Kaczmarska
S. Cukrowicz
B. Gawluk
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the preparation and measurement of an experimental polymer graphite cathode that

seems to be a promising and cheap source of electrons utilizing cold field-emission in high- and ultra-high

vacuum. Polymer graphite seems to be a proper material as it contains a large amount of hybridized carbon

with a low degree of surface oxidation and silicon monoxide (SiO). Within the frame of this work, a special

experimental method of tip preparation has been designed and tuned. This method is based on ion milling

inside a dual-beam electron microscope enabling to obtain ultra-sharp tips of a diameter smaller than 100 nm

with a predefined opening angle. The charge transport within experimental samples is evaluated based on

results provided by the noise spectroscopy of the total emission current in the time and frequency domains.

Go to article

Authors and Affiliations

Alexandr Knápek
Miroslav Horáček
Jana Chlumská
Tomáš Kuparowitz
Dinara Sobola
Josef Šikula
Download PDF Download RIS Download Bibtex

Abstract

Very thin liquid jets can be obtained using electric field, whereas an electrically-driven bending instability occurs that enormously increases the jet path and effectively leads to its thinning by very large ratios, enabling the production of nanometre size fibres. This mechanism, although it was discovered almost one century ago, is not yet fully understood. In the following study, experimental data are collected, with the dual goal of characterizing the electro-spinning of different liquids and evaluating the pertinence of a theoretical model.

Go to article

Authors and Affiliations

T.A. Kowalewski
S. Błoński
S. Barral
Download PDF Download RIS Download Bibtex

Abstract

Two constructions of microfluidic structures are described in this paper. A fibre optic microcell for spectrophometric measurements and a microcell for fluorescence experiments were designed and tested. The structures were made of polymer optical fibres which were incorporated into polymeric material i.e. poly(dimethylsiloxane). The structures were tested as detectors in absorbance measurement (solutions of bromothymol blue with diffierent pH were used) and in fluorescence tests (solution of fluoresceine was used).

Go to article

Authors and Affiliations

D. Stadnik
M. Chudy
Z. Brzózka
A. Dybko
Download PDF Download RIS Download Bibtex

Abstract

The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.

Go to article

Authors and Affiliations

Bülent Ekici
Aykut Kentli
Haluk Küçük
Download PDF Download RIS Download Bibtex

Abstract

This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid) or poly(sodium acrylate)/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.
Go to article

Authors and Affiliations

B. Grabowska
A. Bobrowski
K. Kaczmarska
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand (���� �� ). The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).

Go to article

Authors and Affiliations

S. Cukrowicz
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
D. Drożyński
K. Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

Electrochemical amperometric gas sensors represent a well-established and versatile type of devices with unique features: good sensitivity and stability, short response/recovery times, and low power consumption. These sensors operate at room temperature, and therefore have been applied in monitoring air pollutants and detection of toxic and hazardous gases in a number of areas. Some drawbacks of classical electrochemical sensors are overcome by the solid polymer electrolyte (SPE) based on ionic liquids. This work presents evaluation of an SPE-based amperometric sensor from the point of view of current fluctuations. The sensor is based on a novel three-electrode sensor platform with solid polymer electrolytes containing ionic liquid for detection of nitrogen dioxide − a highly toxic gas that is harmful to the environment and presenting a possible threat to human health even at low concentrations. The paper focuses on using noise measurement (electric current fluctuation measurement) for evaluation of electrochemical sensors which were constructed by different fabrication processes: (i) lift-off and drop-casting technology, (ii) screen printing technology on a ceramic substrate and (iii) screen printing on a flexible substrate.

Go to article

Authors and Affiliations

Petr Sedlak
Petr Kubersky
Pavel Skarvada
Ales Hamacek
Vlasta Sedlakova
Jiri Majzner
Stanislav Nespurek
Josef Sikula
Download PDF Download RIS Download Bibtex

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.

Go to article

Authors and Affiliations

Krzysztof Mleczko
Piotr Ptak
Zbigniew Zawiślak
Marcin Słoma
Małgorzata Jakubowska
Andrzej Kolek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a dynamic analysis of the damaged masonry building repaired with the Flexible Joint Method. Numerical analysis helped to determine the effect of the applied repairing method on natural frequencies as well as values of stresses and accelerations in the analyzed variants of numerical model. They confirmed efficiency of the proposed repair method.

Go to article

Authors and Affiliations

A. Kwiecień
P. Kuboń
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an experimental behaviour of the basalt fibre reinforced polymer composite by external strengthening to the concrete beams. The BFRP composite is wrapped at the bottom face of R.C beam as one layer, two layers, three layers and four layers. The different characteristics – are studied in – first crack load, ultimate load, tensile and compressive strain, cracks propagation, crack spacing and number of cracks etc. To – investigate, total of five beams size 100×160×1700 mm were cast. One beam is taken as control and others are strengthened with BFRP composite with layers. From this investigation, the first crack load is increased depending on the increment in layers from 6.79% to 47.98%. Similarly, the ultimate load carrying – capacity is increased from 5.66% to 20%. The crack’s spacing is also reduced with an increase in the number of layers.

Go to article

Authors and Affiliations

A. Chandran
M. Neelamegam
Download PDF Download RIS Download Bibtex

Abstract

The paper is of practical importance and describes the construction of a test rig and the measurement method for determining the relative emissivity coefficient of thermosensitive thin polymer coatings. Polymers are high-molecular chemical compounds that produce chains of repeating elements called ‘mers’. The polymers can be natural and artificial. The former ones form the building material for living organisms, the latter – for plastics. In this work, the words plastics and polymers are used as synonyms. Some plastics are thermosensitive materials with specific physical and chemical properties. The calorimetric method mentioned in the title consists of two steps. The first stage, described here, involves very accurately measuring the emissivity of black paint with the highest possible relative emissivity coefficient, which covers the surface of the heater and the inner surface of the chamber. In the second step, the thermosensitive polymer will be placed on the inner surface of the chamber, while black paint with a known emissivity coefficient will remain on the heater. Such a way of determining the properties of thermosensitive polymers will increase the error of the method itself, but at the same time will avoid melting of the polymer coating. During the tests, the results of which are presented in this work, the emissivity coefficient of the black paint was obtained in the range of 0.958–0.965.
Go to article

Authors and Affiliations

Ewa Pelińska-Olko
1

  1. Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Thermodynamics and Renewable Energy Sources, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nanostructured systems based on ZnO nanoparticles composite systems/polymer fibers have attracted a lot of attention in the last years because of their applications in multiple areas. Nanofibres based on polymers are used in many domains such as nanocatalysis, controlled release of medicines, environmental protection and so on. This work show the synthesis of cellulose acetate butyrate (CAB) nanofiber useful as substrates for growing ZnO nanocrystals and that ZnO is an unorganic metal oxide nanoparticle used to improve the piezoelectric properties of the polymer. The piezoelectric propertiesof ZnO-doped polymeric was investigated with atomic force microscopy and measurements were performed, in contact technique, in piezoelectric response mode (PFM).In order to analyze the structural and textural features, the obtained materials were characterized using advanced physical-chemical techniques such as X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM). The XRD patterns show the characteristic reflections of ZnO with a hexagonal type wurtzit structure and the broad peaks of the polymer. The SEM images reveal the presence of ZnO nanoparticles on top of the polymer nanofibres.In most ZnO-based nanocomposites their morphology is uncontrolled (agglomerated granules), but in ase of using cellulose acetobutyrate this becomes controlled by observing through flower-like structures SEM and AFM) The study of the functional properties of ZnO/polymer fiber composite systems showed that they have piezoelectric properties which give them the characteristics of smart material with possible sensor and actuator applications.Recent literature reports that the synthesis and characterization of ZnO-polymer nanocomposites are more flexible materials for various applications.
Go to article

Authors and Affiliations

G. Calin
1
ORCID: ORCID
L. Sachelarie
1
ORCID: ORCID
N. Olaru
2
ORCID: ORCID

  1. Apollonia University of Iasi, Faculty of Dental Medicine, 11 Pacurari Str., 700511, Iasi, Romania
  2. Institute of Macromolecular Chemistry “Petru Poni” Iasi, Aleea Grigore Ghica Voda,41A, 700487, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The state of the art in the field of composite polymer bridges in Poland is presented below. Such bridges were built from 1999. Some of them are fully composite polymer structure. Others are developed as hybrid structure. There are two kind of structures: steel girders with FRP deck and FRP girders with concrete deck. Different production methods of FRP elements were used: pultrusion and infusion. Some bridges are the result of research programs, but there are also some commercial projects. Also, the short application history of FRP bridges all over the world is presented and material properties of the construction material are given in the paper. Those materials are much more lighter than steel or concrete. Low weight of FRP materials is an advantage but also disadvantage. It is good from structural and economical point of view because the dimensions of girders, piers and foundation will be smaller. From opposite side to light structure could cause problems related to response of structure against dynamic actions. As a final result the fatigue strength and durability will be reduced. Of course, the high cost of FRP (CFRP especially) limits at the moment range of application. The presented in the paper bridge structures show that despite of mentioned above problems they are now in good conditions and their future life looks optimistic. It could be supposed that modification and/or development of FRP production technologies more better utilizing their properties will create more elegant and useful bridges.
Go to article

Bibliography


[1] Chróścielewski J., Miśkiewicz M., Pyrzowski Ł, Wilde K., “Composite GFRP U-shaped footbridge”, Polish Maritime Research, Special Issue 2017 S1 (93) 2017 Vol. 24, pp. 25–31.
[2] Chróścielewski J., Miśkiewicz M., Pyrzowski Ł, Sobczyk B., Wilde K., “A novel sandwich footbridge – Practical application of laminated composites in bridge design and in situ measurements of static response”, Composites Part B Vol. 126, 2017, pp. 153–161.
[3] De Corte W., Jansseune A., Van Paepegem W., Peeters J., “Structural behaviour and robustness assessment of an InfraCore inside bridge deck specimen subjected to static and dynamic local loading”, Proceedings of the 21st International Conference on Composite Materials, Xi’an, 2017.
[4] Dong C.J., “Development of a process model for the vacuum assisted resin transfer molding simulation by the response surface method”, Composites: Part A Vol. 37, 2006, pp. 1316–1324.
[5] Grotte, B., Karwowski W., Mossakowski, P., Wróbel, M., Zobel, H., Żółtowski, P.: Steel, arch footbridge with composite polymer deck. „Wroclaw Bridge Days” - „Footbridges – Architecture, design, construction, research”. 29–30 November 2007, pp. 135–146.
[6] Grotte B., Karwowski W., Mossakowski P., Wróbel M., Zobel H., Żółtowski P., “Steel, arch footbridge with composite polymer deck with suspended composite polymer deck over S-11 highway nearby Kórnik”, Inżynieria i Budownictwo 1-2/2009, pp. 69–73.
[7] Karwowski W., “Material - structural conditions of joints in FRP bridges”, Ph. D. thesis, Warsaw University of Technology, Warsaw 2011.
[8] Madaj A., “Composite polymer bridges. New structural solutions of bridge girders”, Mosty 3/2015, pp. 58-60.
[9] Mossakowski P., Wróbel M., Zobel H., Żółtowski P. ,Pedestrian steel arch bridge with composite polymer deck. IV International Conference on “Current and future trends in bridge design, construction and maintenance”. Kuala Lumpur. Malaysia. October 2005.
[10] Mylavarapu R., Patnaik A., Puli K., R. K., “Basalt FRP: A new FRP material for infrastructure market?”, Proceedings of 4th International Conference on Advanced Composite Materials in Bridges and Structures, Canadian Society of Civil Engineers, Montreal, 2004.
[11] Patnaik A., “Applications of basalt fiber reinforced polymer (BFRP) reinforcement for transportation infrastructure”. Developing a Research Agenda for Transportation Infrastructure, TRB November, 2009.
[12] Pilarczyk K., “Application of composite panels InfraCore inside bridge structures”, Mosty 5/ 2019, pp. 74–75.
[13] Siwowski T., Kaleta D., Rajchel M., “Structural behaviour of an all-composite road bridge”, Composite Structures 192: pp. 555–567, 2018.
[14] Siwowski T., Rajchel M., Własak L., “Experimental study on static and dynamic performance of a novel GFRP bridge girder”, Composite Structures Vol. 259, 2021.
[15] Siwowski T., Rajchel M., Kulpa M, “Design and field evaluation of a hybrid FRP composite – lightweight concrete road bridge”, Composite Structures, Vol. 230, 2019.
[16] Siwowski T., Rajchel M., “Structural performance of a hybrid FRP composite – lightweight concrete bridge girder”, Composites Part B Vol. 174, 2019.
[17] Wąchalski K., “The design of renovation and widening of the J. Piłsudskiego bridge across Vistula river in Toruń, Poland”, Mosty 1/2021, pp. 50–56, (in Polish).
[18] Zobel H., Karwowski W, Wróbel M., „GFRP pedestrianbridge”, Inżynieria i Budownictwo nr 2/2003, pp. 107–108, (in Polish).
[19] Zobel H., “Composite Polymer Bridges”, Proceedings of 50-tie Conference „Scientific and Research Problems in Civil Engineering”, Krynica 2004, Vol I, pp. 381–410 (in Polish).
[20] Zobel H., Grotte B., Karwowski W., Wasiliew P., Wrobel M., Zoltowski P.: Pedestrian steel arch bridge with composite polymer deck and CFRP stays. IABSE Symposium “Metropolitan Habitats and Infrastructure”. Shanghai, China. September 2004. pp. 88–89 + CD.
[21] Zobel H., Karwowski W., Bridge composite polymer decks. Inżynieria i Budownictwo 11/2005, pp. 594–598. (in Polish).
[22] PN-EN 13706-3: 2004 Composite polymers. Technical Specifications for the profiles produced with pultrusion method. Part 3: Detailed requirements.
[23] http://www.mdacomposites.org/, 2005.
[24] Information Materials of the Mostostal Warszawa S.A. “Com-bridge – construction of the FRP structure”, 2016.
[25] Report of the Research Project “Material and structural conditions for joints in bridge structures made of FRP profiles realized in the Faculty of Civil Engineering at Warsaw University of Technology”. The project realized in 2005–2008 and financed by the Polish Ministry of Education and Science.
[26] https://fiberline.com/, 2021.
[27] https://www.kolbudy.pl, 2021.
Go to article

Authors and Affiliations

Tomasz Siwowski
1
ORCID: ORCID
Henryk Zobel
2
ORCID: ORCID
Thakaa Al-Khafaji
2
ORCID: ORCID
Wojciech Karwowski
2
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil & Environmental Engineering & Architecture, ul. Powstancow Warszawy 12, 35-859 Rzeszow, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIU for the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

We experimentally studied three different D-shape polymer optical fibres with an exposed core for their applications as surface plasmon resonance sensors. The first one was a conventional D-shape fibre with no microstructure while in two others the fibre core was surrounded by two rings of air holes. In one of the microstructured fibres we introduced special absorbing inclusions placed outside the microstructure to attenuate leaky modes. We compared the performance of the surface plasmon resonance sensors based on the three fibres. We showed that the fibre bending enhances the resonance in all investigated fibres. The measured sensitivity of about 610 nm/RIUfor the refractive index of glycerol solution around 1.350 is similar in all fabricated sensors. However, the spectral width of the resonance curve is significantly lower for the fibre with inclusions suppressing the leaky modes.

Go to article

Authors and Affiliations

K. Gasior
T. Martynkien
G. Wojcik
P. Mergo
W. Urbanczyk
Download PDF Download RIS Download Bibtex

Abstract

In recent years, a growing problem of water deficit has been observed, which is particularly acute for agriculture. To alleviate the effects of drought, hydrogel soil additives – superabsorbent polymers (SAPs) – can be helpful.
The primary objective of this article was to present a comparison of the advantages resulting from the application of synthetic or natural hydrogels in agriculture. The analysis of the subject was carried out based on 129 articles published between 1992 and 2020. In the article, the advantages of the application of hydrogel products in order to improve soil quality, and crop growth.
Both kinds of soil amendments (synthetic and natural) similarly improve the yield of crops. In the case of natural origin polymers, a lower cost of preparation and a shorter time of biodegradation are indicated as the main advantage in comparison to synthetic polymers, and greater security for the environment.
Go to article

Authors and Affiliations

Beata Grabowska-Polanowska
1
ORCID: ORCID
Tomasz Garbowski
1
ORCID: ORCID
Dominika Bar-Michalczyk
1
ORCID: ORCID
Agnieszka Kowalczyk
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based capacitive humidity sensors, as well as of modelling the behaviour of that type of sensor. A logarithmic functional relationship between the relative humidity and the change of sensor output value at low humidity is suggested.

Go to article

Authors and Affiliations

Jacek Majewski
Download PDF Download RIS Download Bibtex

Abstract

Measurement of low-frequency noise properties of modern electronic components is a very demanding challenge due to the low magnitude of a noise signal and the limit of a dissipated power. In such a case, an ac technique with a lock-in amplifier or the use of a low-noise transformer as the first stage in the signal path are common approaches. A software dual-phase virtual lock-in (VLI) technique has been developed and tested in low-frequency noise studies of electronic components. VLI means that phase-sensitive detection is processed by a software layer rather than by an expensive hardware lock-in amplifier. The VLI method has been tested in exploration of noise in polymer thick-film resistors. Analysis of the obtained noise spectra of voltage fluctuations confirmed that the 1/f noise caused by resistance fluctuations is the dominant one. The calculated value of the parameter describing the noise intensity of a resistive material, C = 1·10−21 m3, is consistent with that obtained with the use of a dc method. On the other hand, it has been observed that the spectra of (excitation independent) resistance noise contain a 1/f component whose intensity depends on the excitation frequency. The phenomenon has been explained by means of noise suppression by impedances of the measurement circuit, giving an excellent agreement with the experimental data.
Go to article

Authors and Affiliations

Adam Witold Stadler
Andrzej Kolek
Zbigniew Zawiślak
Andrzej Dziedzic
Download PDF Download RIS Download Bibtex

Abstract

A review is given on a number of colloidal phenomena with special reference to their applicability to nanoparticles. Phenomena addressed include preparation, electric double layers and their characterization, electrokinetics, van der Waals and Lifshits forces, electric and steric particle interaction.

Go to article

Authors and Affiliations

J. Lyklema

This page uses 'cookies'. Learn more