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Experiments and modelling of electrospinning process
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Abstract. Very thin liquid jets can be obtained using electric field, whereas an electrically-driven bending instability occurs that enormously
increases the jet path and effectively leads to its thinning by very large ratios, enabling the production of nanometre size fibres. This mechanism,
although it was discovered almost one century ago, is not yet fully understood. In the following study, experimental data are collected, with the
dual goal of characterizing the electro-spinning of different liquids and evaluating the pertinence of a theoretical model.
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1. Introduction

Nanotechnology has become in recent years a topic of great
interest to scientists and engineers, and is now established as
a prioritised research area in many countries. The reduction
of the size to the nano-meter range brings an array of new
possibilities in terms of material properties, in particular with
respect to achievable surface to volume ratios. A variety of
applications are being currently considered for nano-structural
materials, including composites with reinforcing carbon nano-
tubes, whiskers or nano-clay platelets, metal nanotubes (met-
allisation followed by polymer degradation), electrically con-
ductive nano-fibres (polyaniline, coatings, nano-electronic ma-
chines), encapsulation of micro particles/compounds with drug
action for burns treatment and wound healing/dressing, high
performance/multifunctional filters (dust, bacteria, viruses) as
well as applications in biomedicine with the use of biomaterial
polymers (scaffold fabrication, protein fibres in arterial walls,
coatings on prosthetic devices for implants).

The production of nano-scale dimension materials is not a
trivial task. One of the simplest possibilities to reach small size
is the mechanical elongation of a melt material and produc-
tion of thin wires or fibres. This technique, well developed in
the textile industry, has intrinsic physical limitations mainly re-
lated to hydrodynamic instabilities and mechanical constraints.
Hence, two approaches have been recently developed to facil-
itate the production of nanofibres, namely electrospinning of
nanofibres from polymer solutions or melts, and production of
nanofibres by the so-called flash-spinning or melt-blown tech-
nique. The versatility of electrospinning makes it particularly
interesting [1], as it has been already applied to more than
20 different polymer types including PA, PP, PE, PAN, PEO,
Nylon-6, polyaniline and aramids [2–4].

The use of knowledge involving surface engineering at
molecular and atomic level creates new perspectives for the
production of multifunctional textile materials and nonwoven
materials [5], with tailored (comfort, medical, technical) prop-
erties. Applications such as controlled wettability, adhesion
of biological, organic deposits (washing and cleaning), chemi-

cal activity (coloration), barrier properties (gases, liquids, heat,
magnetic field, harmful radiations, antibacterial), bioactivity,
bio-compatibility, optical characteristics (photochromic, UV
protection, sensors) are in sight. An interesting field is elec-
tronics where the use of electrospun fibres is being considered
for the design of electronic circuits [6–8].

2. Electrospinning vs. classical spinning process
Formation of fibres by elongating slender liquid jets is a well
established approach in textile industry. Typically, a molten
polymer leaves an orifice and rapidly hardens due to heat or
mass transfer to the environment or due to chemical reactions.
The fibre is then “wound-up” downstream while large body
forces exerted along the fibre stretch the jet.

Instability of the liquid column and mechanical fracture of
the fibre are the main limitations of the process. In the absence
of external forces, the resulting radius of the jet depends on
the orifice diameter only. Due to surface tension and interfa-
cial forces at the orifice it is impossible to directly generate
very thin jets in the micrometer range, so that stretching ap-
pears as the only alternative to bypass this limit. For highly
viscous, Newtonian fluids (water-glycerol solutions), gravita-
tional stretching may lead to two orders of magnitude thinning
of the jet (Fig. 1), [9]. However, due to the capillary insta-
bility and to aerodynamic forces, the length of liquid filaments
obtained in such a way is limited to a few hundreds diameters
only.

The stability problem of liquid jets dramatically changes
for non-Newtonian fluids [10]. Formation of very long liquid
filaments from polymers led to successful commercial applica-
tions to produce synthetic textiles. A polymer, usually melted,
is fed into capillaries of a multifilament spinneret. The ex-
truded filaments are drawn down to smaller diameters by action
of a godet roll to winder [11]. A typical take-up velocity may
reach hundreds of meters per second and extension ratio of a
few hundred percent. Using classical spinning technique it is
possible to obtain filaments of a few micrometers over an elon-
gation distance of several meters. Further elongation becomes
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practically very difficult to achieve. A distance between spin-
neret and winder needs to be extended to several kilometres to
reach nano-size fibres. Even so, controlling filament stability
over such a distance would not be practically achievable.

Fig. 1. Glycerol jet issued from a 0.2 mm nozzle and elongated grav-
itationally to a 5µm thread (after Ref. 9)

Electrospinning occurs when the electric forces at the sur-
face of a polymer solution or melt overcome the surface ten-
sion and cause an electrically charged jet to be ejected. The use
of electrostatic forces may lead to new ways for farther elon-
gation of material. It was already observed by Rayleigh [12]
that a thin liquid jet issues from an electrically charged pendant
droplet. This effect has been investigated in details by Taylor
[13], who solved a stability problem for the surface shape of
charged droplets that highlighted the existence of a critical an-
gle for the droplet tip, called the “Taylor cone”. Observations
of liquid jetting from the droplet tip have been reported as in-
dicators of electro-spraying, i.e. dispersion of the liquid to a
mist of micro droplets. The droplets seemed to form a char-
acteristic dispersion cone, distinctly visible with the naked eye
or with a standard camera. High speed imaging gave evidence
that the cone is actually an envelope of the bending loops of a
spinning jet [14,15]. Indeed, the charged liquid jet is submitted
to a spiralling motion when accelerated towards the collector.
For solidifying polymers, the looping instability results in ex-
treme elongation values. The axial tension of a fibre, provided
by electrostatic forces, leads to elongation ratios of 10000 and
more without breaking the thread [1]. The resulting nanofibre
is often collected as an interconnected web of thin filaments
(fibre mat) on the surface of a grounded target. The process,
patented already in 1934 [16], is called electrospinning.

Various parameters, including the electric field intensity,
the solution viscosity, the polymer relaxation time, the elec-
tric resistance, and the charge carried by liquid jet affect elec-
trospinning, as indicated by parametric study performed by
Theron et al. [2]. For dilute polymer solutions and Newto-
nian liquids, surface tension may also modify the fibre sta-
bility [2,17,18]. Gravity seems to be negligible and some re-

ports demonstrated successful electrospinning against gravita-
tion [19]. Observations indicate that electrospinning is possi-
ble for non-Newtonian as well as for Newtonian fluids, but the
range of optimal parameters for its initiation is yet difficult to
predict.

Despite the simplicity of the electrospinning technology
industrial applications of electrospinning are still relatively
rare, mainly due to the unresolved problem of very low fibre
throughput for existing devices [19]. Collection of experimen-
tal data and their confrontation with simple physical models
appears as an effective approach towards the development of
practical tools for controlling and optimising the electrospin-
ning process. In the following, we present examples of elec-
trospinning experiments performed in our laboratory and re-
sults of numerical simulations, based on a simplified physical
description of the main phenomena involved.

3. Experimental

In the experiment a pendent droplet of the investigated poly-
mer solution is supported by surface tension at the tip of a glass
pipette. A thin silver wire is immersed in the pipette that ap-
plies a potential bias to the liquid. About 20 cm below the tip
of pipette a copper grid plays the double role of collector and
ground electrode. Due to the surface tension the droplet is ini-
tially in equilibrium with gravitational forces and prevents the
solution to flow from the pipette. When the potential differ-
ence between the pipette and the collector is increased above
about 5 kV, the electrical forces acting on charges induced in
the liquid overcome the forces associated with surface tension.
The electrically charged liquid jet emerges from a conical ap-
pendage that is created at the droplet surface. Since straight
electrified liquid jets are unstable in the presence of electri-
cal field, a bending instability develops shortly after the jet
emerges from the tip. Some possible origins for the initial
perturbation are non-uniformity of the electric field or local
temperature fluctuation at the liquid surface. Once the bend-
ing appears, it generates a sequence of helical loops as a result
of the interaction of repulsion forces between charges trapped
in the jet and stabilizing forces of surface tension, viscoelas-
ticity (if present) and applied electrical field. The diameter
of the loops reaches several centimetres while their average
downward velocity remains relatively low (∼1 m/s). Hence,
the elongation forces acting on the jet during few milliseconds
of its flight into the collector result in enormous thinning of
the jet diameter. Figure 2a shows electrified liquid jet recorded
with standard video framing time (30 fps). The initial jet looks
as though it splits into a bunch of secondary liquid treads, a
process described as “splaying” by Doshi and Renecker [20].
High speed imaging using video camera with 4500 fps (Fig.
2b) reveals, however, a drastically different picture. The multi-
jetting seen in the previous figure appears to be a mere optical
illusion, created by the superposition of multiple light reflec-
tions from several loops. The jet emerging from the pipette
preserves a continuous form, eventually forming a sequence of
strongly bent loops.

Analysing single frames from the high speed camera, it is
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possible to follow the evolution of the jet shape. However,
only the initial thickness and primary thinning of the jet can
be quantitatively evaluated using such images. The outcome
of electrospinning becomes evident only after analysing un-
der microscope the web-like structure collected on the ground
electrode (Fig. 3a).

Characterisation of the electrospinning process is not a
simple task, neither experimentally nor theoretically. The
bending instability of an electrified jet is far from being a
well controllable and reproducible phenomenon. The observed
looping motion of the jet changes its amplitude and pitch in a
stochastic way. This significantly differs from the well known
buckling instability [21], typical for viscous jets interacting
with a plane collector. Therefore the structure of collected
nano-web is usually very irregular and special focusing tech-
niques [22] are necessary to obtain a partially ordered material.

Fig. 2. Development of the bending instability for 0.1 mm jet of
polyethylene-oxide water-alcohol solution. The measured average ve-
locity of the jet is about 2 m/s and the electric potential 7.5 kV for a
20 cm height; image obtained with standard camera, exposure time
33 ms (a), high speed camera imaging, exposure time 0.1 ms. The

image width corresponds to 40mm physical length (b)

Fig. 3. Nanofibres of polyethylene-oxide: web like structure observed
on the collector (a), sample from the collector under optical micro-
scope, image width 15 mm (b), the same sample under electron mi-

croscope, image width 7µm (c)

To reveal the main factors driving the electrospinning mecha-
nisms two global characteristics have been evaluated from the
experiment: the length of the straight part of the jet before
bending instability occurs, and the initial angle of the loop-
ing envelope. The main factors affecting the process are the
electrical potential and liquid properties. A simple approxima-
tion proposed by Reneker et al. [14] predicts a nearly linear
increase of the straight segment with the applied voltage. Ac-
cording to this model the initial angle of the looping envelope
strongly depends on evaporation and solidification rate for the
polymer solutions. Nevertheless, the expected tendency is a
decrease of the loop radius (and the envelope angle) with in-
creasing electric potential. These general predictions are veri-
fied for three different polymer solutions. The most important
parameter for a robust electrospinning process is the solution
viscoelasticity. For comparison, the electrospinning of a New-
tonian fluid, glycerol, is also characterized. The basic parame-
ters of the fluids used are summarized in Table 1.
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Table 1

Main characteristics of four sets of electrospinning experiments

Material Solvent Kinematic
viscosity∗ ν

[mm2/s]

Concentration
Cwt [%]

Φ [kV] Comments on electrospinning

PEO –
polyethyleneoxide
(M = 4×105 g/mol)

40% ethanol –
water solution

85–113 3–4 3–12 good and stable process for
voltage up to 10 kV

DBC – dibutyrylchitin ethanol 15 9 6–16 fairly good
PAN – polyacrylonitrile DMF (dimethyl-

formamide)
19 15 5–25 good

glycerol water 150 88 20–30 difficult (no solidification)
∗ zero shear rate viscosity limit for non-Newtonian liquids given as reference

Fig. 4. Effect of the applied voltage on the length of the straight segment (left ordinate) and the spiral envelope angle (right ordinate) for three
investigated polymer solutions: 4% PEO (a), 9% DBC (b), 15% PAN (c) (comp. Table 1)

Fig. 5. Electrospinning of an 88% glycerol solution (comp. Table 1),
actual image width: 65 mm

The experiments are performed at room temperature under
normal atmospheric pressure. Bright field illumination using
Fresnel lens and high speed CCD camera (Fastcam Roper Sci-
entific) are used to capture movies of the spinning jet. The
typical recording speed is 4500 fps (comp. Fig. 2b). A high
resolution PIV camera (PCO) and double pulsed NdYag laser
are used for measuring the velocity of the jet. For this purpose
a very small amount of 50 nm fluorescent particles are added to

the solution and their displacement recorded using laser light
pulses of 5 ns duration. The system permits to record the mo-
tion of jet segments, to visualize the looping structure and to
estimate the flow velocity in the upper segments of the jet. The
pipette and grounded collector are closed in a 50 cm× 50 cm
× 80 cm Plexiglas box to protect the electronic camera from
electrostatic discharge and to avoid disturbances from ambient
air motion.

A typical appearance of the electrically charged jet of PEO
polymer solution is shown in Fig. 2b. The path of the jet
formed at the tip of a pendant droplet is characterised by three
distinct segments. The first one is a classical straight or slightly
curved cylinder with typical length of several millimetres. Its
length varies nearly linearly with the electrical potential ap-
plied and depends on the liquid properties. The second seg-
ment starts by a sudden bending instability of the straight cylin-
der, leading to the development of a conical spiral. The spiral
height and diameter may reach several centimetres. The di-
ameter of the upper part of the jet changes from 0.2 mm to
about 50µm for the first loop. The jet velocity in its upper
parts, estimated using fluorescent particles, is relatively low.
For the investigated PEO solution it is about 1 m/s at 3 kV and
rises nearly linearly to 2.5 m/s at 10 kV. The growth rate of
the spiral diameter depends on the electrical potential and fluid
properties. After following several loops the conical shape be-
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comes distorted. Large, irregular loops characterize the last jet
segments, which are finally collected on the metal electrode.
The diameter of the collected fibres can be as small as 50–
100 nm, leading to a stretching factor of more than a thousand
(Fig. 3b,c). Precise measurements of the jet geometry and
velocity in its lower segments could not be performed. Micro-
scopic close-up imaging is necessary for such measurements.
However, a too close presence of the camera deforms the local
electrostatic field attracting the jet, and in addition exposes the
electronic to harmful corona discharges.

The onset of the electrospinning instability is strongly
conditioned by the electrostatic potential applied between the
pipette and the collector. The most favourable value was usu-
ally in the range 1–3 kV/m, and could be found by a manual
“trial and error” variation of the applied voltage. According to
the simple model of the electro-bending instability proposed
by Reneker et al [14], increased voltage increases the length of
the rectilinear segment of the jet and decreases the angle of the
spiral envelope. The model appears to appropriately describe
the behavior of polyethylene-oxide solution (Fig. 4a).

For this solution, the bending instability treshold of the jet
was observed at about 3 kV. Farther increase of the voltage
elongates the straight part of the jet and leads to the develop-
ment of relatively stable, large amplitude looping. The initial
bending is nearly perpendicular to the jet direction. Above 5
kV the spiral envelope angle decreases while the length of the
straight portion of the fibre increases further. It is worth noting
that at slightly lower polymer concentration (3%) high ampli-
tude oscillations of the straight segment length were observed.
Similar oscillations were reported by Theron et al. [2] and in-
terpreted as an effect of the competition between the supply of
liquid and its withdrawal by the electric field. Future investi-
gations are necessary to elucidate the nature of this unstable
interaction.

Experiments performed for DBC solutions show an oppo-
site relation for the location of the first bending (Fig. 3b), i.e.
the length of the straight segment diminishes with the applied
voltage. Only above 12 kV this trend reverses, but farther in-
crease of the voltage quickly terminates the looping process.
The third investigated polymer solution (PAN) exhibits more
or less the same behaviour (comp. Fig. 4c) as with PEO.

There are several possible factors which could be responsi-
ble for the observed differences. Solidification of the polymer,
not controlled in the experiment, is one of the factors which
may totally modify the development of the bending instability.
The mechanical properties of the looping fibre evolves contin-
uously along its path in a manner that is difficult to predict,
being influenced by local stresses due to the external electro-
static force, by interaction of charges within each segment of
the fibre, by solidification and solvent evaporation. Their in-
fluence on the highly non-linear process responsible for the
electro-bending instability is difficult to estimate using simple
mechanical models.

The most important fluid parameter responsible for the
spinning process of polymers is viscoelasticity. However, it
is worth to note that electrospinning is also possible for New-
tonian fluids, and long looping sequences of glycerol jet could

be observed (Fig. 5). The glycerol jet forms a relatively long
and well controllable spiral before it atomises into tiny droplets
due to the capillary instability. However, the stretching factor
for Newtonian fluid is relatively small and amounts to approx-
imately ten. Viscosity appears to be a very important factor
in this configuration. By decreasing or increasing the contents
of water in glycerol electrospinning disappears and the rela-
tively straight jet breaks up into many small droplets several
centimetres downstream from the tip.

Surface tension could be assumed to play a role affecting
jet instability. For the four investigated fluids the surface ten-
sion is very similar, about 50 mN/m. It can be decreased by
adding surface active agents to the solution. A sequence of ex-
perimental runs performed with the 4% PEO solution and dif-
ferent concentration of surface active additive could not high-
light any clear effect of surface tension on the jet geometry,
suggesting its effect is weak. Even small amounts of surfactant
can change viscoelasticity and this way influence the stability
of the electrospinning thread. But apparently for the investi-
gated case this effect was not sufficient to significantly alter
the electrospun (electrospun thread) process.

4. Numerical model
It is very difficult to use experimental data for validating the
correctness of physical models of electrospinning proposed in
the literature [14,23,24]. It is due to the difficulties in estimat-
ing proper values of the basic parameters necessary for mod-
elling, such as charge density, electric field geometry, mass and
charge flow rate, variation of fluid parameters and initial con-
ditions. Hence, results of simulations have to be matched to
the observations rather by fine turning of the input parameters.
To estimate at least qualitatively the effect of basic parameters
implemented in the model proposed by Reneker et al. [14,24]
we perform sequence of simulations varying few of the control
parameters and analysing the shape of fibre tracks produced by
the model.

According to the model the jet dynamics is governed by a
set of three equations representing the Maxwellian model of
stretching viscoelastic segment, mass and momentum conser-
vation for the electrically charged jet segments:

∂σ(s)
∂t

= G
1

λ(s)
∂λ(s)

∂t
− G

µ
σ(s) (1)

D

Dt

[
λ(s)πa2(s)

]
= 0 (2)

ρλ(s)πa2(s)
DV
Dt

(s) = λ(s)πa2(s)q2

∫ s

0

λ(s∗)πa2(s∗)

× C

(
ā(s, s∗)

|r(s)− r(s∗)|
)

r(s)− r(s∗)
|r(s)− r(s∗)|3 ds∗

+ λ(s)πa2(s)q∇Φ

+
∂

∂s

[
πa2(s)σ(s)u(s)

]

+
∂

∂s
[πa(s)αu(s)]

(3)
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whereσ is the longitudinal stress inside the fibre,G – the
Young modulus,µ – the viscosity,λ – the stretching param-
eter (relative elongation with respect to the initial state), and
s is the “frozen jet” Lagrangian parameter, which stretches to-
gether with the fibre. Writing the curvilinear coordinateξ, the
stretching parameterλ can thus be defined asdξ/ds. By con-
vention,σ > 0 corresponds to a tensile force andσ < 0 to
compression.D/Dt = ∂/∂t + V · ∇ denotes the convective
derivative,ρ is the fluid mass density,a is the local radii of
the fibre,r is the absolute coordinate vector,V is the velocity
vector,q is the charge per unit of volume,Φ is the electric po-
tential generated by electrodes,u is a unit vector directed along
the fibre andα is the surface tension.C is a short-range cut off
function for Coulomb interactions, and depends on the ratio of
the fibre radius to the distance between charges (comp. Ap-
pendix). Since this cut off is only relevant for small distances
(s∗ → s), the average fibre radius̄a(s, s∗) can be defined in
a quite loose manner, as long as the following conditions are
fulfilled:

lim
s∗→s

ā(s, s∗) = a(s) (4)

ā(s, s∗) = ā(s∗, s) (5)

The second condition is rather motivated by physical than
mathematical considerations: it ensures that the Coulomb
force acting ons from s∗ remains exactly the opposite of the
force acting froms∗ to s. Some obvious possible candidates
for the definition ofā(s∗, s) are the geometrical or the arith-
metical means ofa(s) anda(s∗). The cut off function is given
by

C(x) =
2
π

1
4x2 + 1

E(2jx), (6)

where E stands for the complete elliptic integral of the second
kind, j – imaginary number.

In our computer simulation a set of electrostatic charges
coupled by viscoelastic one-dimensional elements subjected to
surface tension effects evolves within a static electric field. The
computationally expensive integration of Poisson equation is
avoided by considering the electric potential as a superposi-
tion of an imposed static potential field and of a transient field
created by the charges distributed along the fibre. The electro-
static field is modelled by a sphere-plane capacitor configura-
tion, where the spherical electrode represents the injector and
the infinite plane electrode represents the collector. The fibre-
induced field is in turn approximated by considering only short
range electric interactions, typically between a particle and its
closest 30 neighbours.

Hence, numerical discretization in space considers only
short range electric interactions, typically between a particle
and its closest 30 neighbours. The following scheme is applied
to solve the system of governing equations:

dσi,i+1

dt
= G

(ri+1 − ri)(Vi+1 −Vi)
(ri+1 − ri)2

− G

µ
σi,i+1

d

dt

(
π|ri − ri+1|a2

i,i+1

)
= 0

mi
dVi

dt
= Q2

∑

j 6=i

C

(
āi,j

|ri − rj |
)

ri − rj

|ri − rj |3

−Q∇Φ

+ πa2
i,i+1σi,i+1

ri+1 − ri

|ri+1 − ri|
− πa2

i−1,iσi−1,i
ri − ri−1

|ri − ri−1|
+ πai,i+1α

ri+1 − ri

|ri+1 − ri| − πai−1,iα
ri − ri−1

|ri − ri−1|

(7)

Q denotes the electric charge carried by a single bead and the
“average” radius̄ai,j is defined as:

āi,j =

{
1
2 (ai,j+1 + aj−1,j) if i < j
1
2 (aj,j+1 + ai−1,j) if i > j

(8)

Single subscripts such asi andj refer to beads, while subscript
pairs such asi, i + 1 refer to the viscoelastic elements lying
between consecutive beads. To initiate the computation the
constant velocity of the first particle (subscript 0) introduced
through the tip is imposed until the distance between the tip
and this particle equals the initial bead length:

V0 = − V̇

πa2
0

z for |r0 − rtip| ≤ l0, (9)

where the volume flow ratėV , the initial radiusa0 and the
initial bead lengthl0 are considered as input data. When the
condition|r0 − rtip| > l0 is satisfied a new particle is added
near the tip at a distancel0 from the last particle, with a small
random error on its position in the(x,y) plane:

x0 = xtip + εsinϕ

y0 = ytip + εcosϕ
(10)

whereϕ is a random phase andε is perturbation amplitude.
This initial perturbation is necessary to allow the instability to
develop, but it has otherwise no bearing on the magnitude of
the instability. The value ofε can be thus arbitrarily small (in
theory) and it is in practice only dictated by computer precision
considerations.

Using the leapfrog numerical scheme the system of dis-
crete equations is integrated in time and position for each node
representing discrete form of the charged jet segment evalu-
ated. For a typical time step of 10−7 sec a complete run for the
jet penetrating 20 cm distance from the electrode to the ground
collector can be simulated during 2–3 min on a standard PC.
It permits to perform sensitivity analysis of the model by gen-
erating large number of tracks for various input data. A demo
version of the code can be downloaded and executed in Linux
OS [25].

Figure 6 illustrates bending instability calculated for the
reference case, i.e. the surface tensionα = 0.07 N/m, the volt-
ageΦ = 5 kV applied at 20 cm distance between electrodes, the
dynamic viscosityµ = 10 Pa·s, the elastic modulusG = 105 Pa,
and the jet unit chargeq = 200 C/m3. It can be observed that
the initial perturbation almost immediately develops to large
amplitude bending of the jet. The elongation rate measured

390 Bull. Pol. Ac.: Tech. 53(4) 2005



Experiments and modelling of electrospinning process

as relative change of the distance between nodes reaches fac-
tor 103 shortly after the bending process is initiated. Higher
elongation values can be observed when the jet approaches the
ground electrode. The 20 cm distance between the source elec-
trode and the ground collectors is traversed by the jet tip in less
then 5 ms.

Five examples of calculated jet tracks for physical param-
eters varied around the reference case are collected in Fig. 7.

Fig. 6. Example of numerical simulations of electrostatic instability
of charged liquid jet calculated for the reference parameters

Fig. 7. Examples of numerical simulations of electrostatic instability
of charged liquid jet obtained by changing the reference parameters:
3 times higher surface tension (a), 3 times lower surface tension (b),
halved voltage (c), 5 times higher viscosity (d), double elastic modu-

lus (e)

The model described above due to its simplicity is far from
the realistic configuration. We assume fibre as an ideal insula-

tor of constant physical properties and induced charges moving
in vacuum. To simplify our analysis we neglect very important
for polymers effects of solidification. The fibre is represented
as a chain of one dimensional dumbbells, hence capillary insta-
bility is absent. Despite these limitations some characteristics
of the simulated fibre paths can be related to the observations.
By comparing cases displayed in Figure 7a,b,e, it can be de-
duced that surface tension and elastic modulus stabilize jet and
their increase ceases bending amplitude. By decreasing elec-
trostatic potential (Fig. 7c), the bending amplitude grows. It
partly corresponds to variation of the cone angle in the exper-
iments (comp. Fig. 3a,b). Simulations indicate that increased
fluid viscosity and elastic modulus limits the bending ampli-
tude (Fig. 7d,e). The performed simulations show that some
bending instability is still present even if elastic modulus is set
to null. This zero-elasticity asymptotic behaviour appears to
be analogous to Newtonian fluid (e.g. glycerol) jet.

5. Conclusions
Experimental investigation performed for three polymeric so-
lutions and for glycerol demonstrated the possibility to stretch
liquid jets in the electrical field into fractions of their initial
diameter. Variety of jet paths are observed depending on the
material and electrical potential applied. The present work
repeats and corroborates previous observations [1,14,15], in-
dicating appearance of the whipping instability for electrically
charged liquid jets. Numerical simulations performed illustrate
the ability of such a model to reproduce qualitatively nanofibre
bending. However, it appears difficult to match quantitatively
the observed electrospinning characteristics with the simula-
tion results. In the farther perspective of using simulations as
a design tool, outstanding modelling and numerical issues to
be resolved include a better description of the boundary con-
ditions at the tip and an efficient scheme to account for long
range electric particle interactions. Quantitative validation of
the electrostatic model can be eased by limiting our interest
to Newtonian fluids, for example using aqueous solutions of
glycerol. After such model is experimentally validated, the
next step would be extension of the model to include rheology
and solidification.
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Appendix
A1. On the consistency of the discrete bead model
The discrete modelling of a fibre with 0-dimensional beads
[14] implies that, as the discretization density increases, the
fibre tends to an infinitely thin, one-dimensional continuous
object. It turns out, however, that this continuous description
is mathematically inconsistent, invalidating thus the discrete
bead model. Indeed, the electrostatic force between two con-
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tiguous portions of a straight fibre with constant radius and
uniform charge distribution would amount to,

F1→2 =
∫ 0

−L1

dz1

∫ L2

0

dz2
κq2

l

(z2 − z1)2
(A1)

wherez1 andz2 are the locations of the interacting charges,L1

andL2 are the length of the two contiguous fibre portions, and
ql is the linear charge density of the fibre. It is easily seen that
the double integral in Eq. (A1) is divergent.

This problem has been identified in the analytical study of
Ref. [24] and resolved by arguing that charges are actually dis-
tributed on the outer shell of the fibre, rather than on its centre-
line. Simplifications in the computations have lead, however,
to an underestimation of the resulting cutoff which the present
calculations hope to address. More generally, the following
study aims at showing that the bead model can be made con-
sistent by introducing a short-range cutoff.

A2. Force between two rings of a straight fibre
Let us consider a straight fibre of radiusa charged on its outer
shell with a uniform surface charge densityqs. Using the con-
ventions of Fig. 8, the electrostatic force exerted by an in-
finitesimal surface elementP2 of the ring overS2 an infinitesi-
mal surface elementP1 of the ringS1 in the coordinate system
(i, j,k) is

dFP2→P1 = κq2
sadθ1dz1adθ2dz2

× a(cosθ1 − cosθ2)i + a(sinθ1 − sinθ2)j + (z1 − z2)k

{2a2 [1− cos(θ2 − θ1)] + (z2 − z1)2}3/2
.

(A2)
Computing the electrostatic force between two infinitely thin
ringsS1 andS2, the radial forces cancel to leave a longitudinal
force alongk equal to

dFS2→S1 = κ
dQ1dQ2

4π2

∫ 2π

0

dθ2

∫ 2π

0

dθ1

× (z1 − z2)

{2a2 [1− cos(θ2 − θ1)] + (z2 − z1)2}3/2
.

(A3)
wheredQ1 = 2πaqsdz1 anddQ2 = 2πaqsdz2 are the electro-
static charges of each ring. Introducingψ = (θ2 − θ1)/2 and
the distance between the center of the ringsd = |z2 − z1|, the
above expression can be simplified as follows:

dFS2→S1 = −κ
dQ1dQ2

d2
× 2

π

∫ π/2

0

dψ
[
1 + ( 2a

d )2sin2ψ
]3/2

,

(A4)
where the second factor represents the short-range cutoff. This
cutoff function can in turn be expressed in term of the complete
elliptic integral of the second kind E as,

C(d̂) =
2
π

1
1 + ( 2

d̂
)2

E
(

2j

d̂

)

=
1
π

d̂

π
√

1 + 1
4 d̂2

E


 1√

1 + 1
4 d̂2


 with d̂ =

d

a
.

(A5)

We note that the cutoff function presents the following asymp-
totic behaviours,

C(d̂)
d̂→0∝ d̂

π

lim
d̂→∞

C(d̂) = 1
(A6)

The axial force between two rings behaves thus asd−1 as the
distance between them vanishes. For comparison, the short-
range axial force behaves asd in the simplified approach of
Ref. [24]. This difference is due to the fact that instead of con-
sidering the interaction between two rings, Ref. [24] considers
the interaction between a ring and a point located on the axis
of the fibre.

Fig. 8. Charges on two interacting rings of a straight fibre

A3. Axial and bending force between two rings of a curved
fibre
Let us now consider a curved fibre. Using the conventions
of Fig. 9, the electrostatic force exerted by an infinitesimal
surface elementP2 of the ring S2 over an infinitesimal sur-
face elementP1 of the ringS1 in the local coordinate system
(i1, j1,k1) of S1 is

dFP2→P1 = κq2
sadθ1Rdα1adθ2Rdα2

× (x1 − x2)i1 + (y1 − y2)j1 + (z1 − z2)k1

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]
3/2

(A7)
where

x1 − x2 = a(cosθ1 − cosθ2) (A8)

y1− y2 = a(sinθ1− sinθ2)− (R−asinθ2)[1− cos(α2−α1)]
(A9)

z1 − z2 = −(R− asinθ2)sin(α2 − α1) (A10)

Assuming that the radius of curvature is large with regard to
the radius of the fibre,

R À a (A11)

and noting that the distance between the centres of the rings is

d = 2R

∣∣∣∣sin
(

α2 − α1

2

)∣∣∣∣ , (A13)

the expression of the force simplifies to
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dFP2→P1 = κq2
sadθ1Rdα1adθ2Rdα2

×
{

a(cosθ1 − cosθ2)i1
{2a2 [1− cos(θ2 − θ1)] + d2}3/2

+
{a(sinθ1 − sinθ2)−R + Rcos(α2 − α1)} j1

{2a2 [1− cos(θ2 − θ1)] + d2}3/2

+
Rsin(α2 − α1)k1

{2a2 [1− cos(θ2 − θ1)] + d2}3/2

}

(A14)
Just as in the case of a straight fibre, the terms inθ in the nom-
inator will eventually cancel when integrating overθ1 andθ2,
so that they may be eliminated a priori in the expression of the
force exerted by the ringS2 over the ringS1,

dFS2→S1 = κ
dQ1dQ2

4π2

∫ 2π

0

dθ1

∫ 2π

0

dθ2

× R[cos(α2 − α1)− 1]j1 −Rsin(α2 − α1)k1

{2a2 [1− cos(θ2 − θ1)] + d2}3/2
.

(A15)
The nominator is constant with respect toθ1 andθ2 while the
denominator is formally identical to the one obtained in the
case of a straight fibre. Therefore, the same cutoff functionC
as before appears after integration,

dFS2→S1 = κ
dQ1dQ2

d3
C

(
d

a

)
R

× {[cos(α2 − α1)− 1]j1 − sin(α2 − α1)k1} .
(A16)

It is easily verified that this expression differs from the case of
an infinitely thin fibre only by the factorC(d/a). Therefore,
the discretised bead model can be made consistent by simply
weighting the computed force with the cutoff function.

Fig. 9. Charges on two interacting rings of a curved fibre

Using Eq. (A13) it can be noted that for small distances the
projection ofdF on j1 (bending component) tends to a finite,
non-zero value, to be contrasted with thed2 behavior found
previously [24]. As could be expected from the hypothesis
R À a, the projection ofdF onk1 (axial component) behaves
just like in the case of a straight fibre, i.e. ind−1.
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