Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 41
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents issues related to the application of a moving horizon estimator for state variables reconstruction in an advanced control structure of a drive system with an elastic joint. Firstly, a short review of the commonly used methods for state estimation in presented. Then, a description of a state controller structure follows. The design methodology based on the poles-placement method is briefly described. Next, the mathematical algorithm of MHE is presented and some crucial features of MHE are analysed. Then, selected simulation and experimental results are shown and described. The investigation shows, among others, the influence of window length on the quality of state variables estimation.

Go to article

Authors and Affiliations

P. Serkies
Download PDF Download RIS Download Bibtex

Abstract

A brushless direct-current (BLDC) and permanent-magnet synchronous motors (PMSMs) with permanent magnets are characterised by the highest operating parameters among all electric motors. High dynamics and the possibility of controlling their work improves the operating parameters of the drive system and reduces the operating costs of such a device. The high cost of these machines associated with the complexity of their construction is a serious barrier to increasing their range in small propulsion systems, where lower energy consumption does not give such spectacular financial profits. To reduce costs, manufacturers often limit the variety of manufactured engines so that by increasing the volume, the unit cost of the device can be minimised. This is often hindered by the implementation of projects deviating from standards where it is necessary to use drive systems of different power. The solution to this problem could be the use of two independent drive systems working in strict correlation to ensure sufficient operating parameters of the device. The article presents a method of controlling a drive system in which two propulsion systems with PMSM engines were used. These devices are communicated with each other by a serial bus, by means of which data necessary for the correct operation of motors connected by a drive belt are transmitted. Since these machines affect both the working machine and each other, it is necessary to optimise such a system so as to avoid excessive oscillation of the drive torque in the system.

Go to article

Authors and Affiliations

Krzysztof Jakub Kolano
Download PDF Download RIS Download Bibtex

Abstract

Current drive control systems tend to push control loops to the limits of their performance. One of the ways of doing so is to use advanced optimization algorithms, usually related to model-based off-line calculations, such as genetic algorithms, the particle swarmoptimisation or the others. There is, however, a simpler way, namely to use predictive control formalism and by formulation of a simple linear programming problem which is easy to solve using powerful solvers, without excessive computational burden, what is a reliable solution, as whenever the optimization problem has a feasible solution, a global minimizer can be efficiently found. This approach has been deployed for a servo drive system operated by a real-time sampled-data controller, verified between model-in-the-loop and hardwarein- the-loop configurations, for a range of prediction horizons, as an attractive alternative to classical quadratic programming-related formulation of predictive control task.
Go to article

Authors and Affiliations

Dariusz Horla
1
ORCID: ORCID
Piotr Pinczewski
2

  1. Institute of Robotics and Machine Intelligence, Poznan University of Technology, Piotrowo 3a Str., 60-965 Poznan, Poland
  2. IT.integro sp. z o.o. Zabkowicka 12 Str., 60-166 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a methodology for creating dynamic characteristics of fuel consumption and intensity of emission of toxic components of exhaust gas. The source of data is the result of modal analysis of fuel consumption and emission intensity obtained from experimental drive tests. Two certified tests have been used: European NEDC and American Ff P- 75. A general algorithm for obtaining dynamic characteristics in the form of approximated functions is formulated on the basis of measured data. Examples of characteristics obtained for a real car with spark ignition engine are presented. The results obtained from experimental measurements and numerical simulations are compared and discussed.
Go to article

Authors and Affiliations

Krzysztof Brzozowski
Kazimierz Romaniszyn
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a model of a car with special attention given to the drive system. Two possible drive systems were considered: with standard differential and independent drive of each wheel by means of an electric motor. In both cases, flexibilities of live axle shafts have been taken into consideration. A 3D model of the car was assumed. The model consists of a system of rigid bodies connected one with another by means of elastic-damping elements. The phases of static and kinetic friction were considered in the steering and drive systems. The method of homogenous transformations was used in the mathematical description. The results of computer simulations are presented.
Go to article

Authors and Affiliations

Marek Szczotka
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

Acoustical Driving Forces (ADF), induced by propagating waves in a homogeneous and inhomogeneous lossy fluid (suspension), are determined and compared depending on the concentration of suspended particles. Using integral equations of the scattering theory, the single particle (inclusion) ADF was calculated as the integral of the flux of the momentum density tensor components over the heterogeneity surface. The possibility of negative ADF was indicated. Originally derived, the total ADF acting on inclusions only, stochastically distributed in ambient fluid, was determined as a function of its concentration. The formula for the relative increase in ADF, resulting from increased concentration was derived. Numerical ADF calculations are presented. In experiments the streaming velocities in a blood-mimicking starch suspension (2 μm radius) in water and Bracco BR14 contrast agent (SF6 gas capsules, 1 μm radius) were measured as the function of different inclusions concentration. The source of the streaming and ADF was a plane 2 mm diameter 20 MHz ultrasonic transducer. Velocity was estimated from the averaged Doppler spectrum obtained from originally developed pulsed Doppler flowmeter. Numerical calculations of the theoretically derived formula showed very good agreement with the experimental results.

Go to article

Authors and Affiliations

Janusz Wójcik
Wojciech Secomski
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the application of a novel Model Predictive Control structure for the drive system with an induction motor. The proposed controller has a cascade-free structure that consists of a vector of electromagnetics (torque, flux) and mechanical (speed) states of the system. The long-horizon version of the MPC is investigated in the paper. In order to reduce the computational complexity of the algorithm, an explicit version is applied. The influence of different factors (length of the control and predictive horizon, values of weights) on the performance of the drive system is investigated. The effectiveness of the proposed approach is validated by some experimental tests.

Go to article

Authors and Affiliations

Karol Tomasz Wróbel
Krzysztof Szabat
ORCID: ORCID
Piotr Serkies
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose sensorless backstepping control of a double-star induction machine (DSIM). First, the backstepping approach is designed to steer the flux and speed variables to their references and to compensate uncertainties. Lyapunov”s theory is used and it demonstrates that the dynamic tracking of trajectories tracking is asymptotically stable. Second, unfortunately, this law control called sophisticated is a major problem which leads to the necessity of using a mechanical sensor (speed, load torque). This imposes an additional cost and increases the complexity of the montage. In practice, this variable is unknown and its measurement is expensive. To restrain this problem we estimate speed and load torque by using a Luenberger observer (LO). Simulation results are provided to illustrate the performance of the proposed approach in high and low variable speeds and load torque disturbance.

Go to article

Authors and Affiliations

Hadji Chaabane
Khodja Djalal Eddine
Chakroune Salim
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to show possibility and advantages of initial control plane reproduction for an adaptive fuzzy controller. Usually the fuzzy control is used when the object is not very well known. Yet the truth is, however, that some, at least general information about the object, is available. Usually, in such a case, optimization algorithms are used to tune the control structure. The purpose of this article is to show how to find a starting point that is closer to optimum than a statistically random point, and this way to obtain better results in a shorter time.

Go to article

Authors and Affiliations

Piotr Derugo
Mateusz Żychlewicz
Download PDF Download RIS Download Bibtex

Abstract

Cells of a prototype powered wheelchair can be designed in various connections to provide different supply voltages which has impact on the efficiency of other wheelchair drive elements. The impact of cell configuration and resulting battery voltage on overall efficiency of power elements have been studied to determine the optimal configuration and voltage of the pack. A brief description of a battery energy storage system was given, and main requirements and variables were introduced to reveal the flexibility of the battery design. The efficiency versus supply voltage plots of a drive converter and battery charger were presented and discussed to find the optimal battery voltage. The motor design was analyzed from the fill factor perspective. The calculated efficiency parameters of all drive power elements were used to discuss and select an optimal battery cell configuration.

Go to article

Authors and Affiliations

Kristaps Vitols
Andrejs Podgornovs
Download PDF Download RIS Download Bibtex

Abstract

Accurate information on Induction Motor (IM) speed is essential for robust operation of vector controlled IM drives. Simultaneous estimation of speed provides redundancy in motor drives and enables their operation in case of a speed sensor failure. Furthermore, speed estimation can replace its direct measurement for low-cost IM drives or drives operated in difficult environmental conditions. During torque transients when slip frequency is not controlled within the set range of values, the rotor electromagnetic time constant varies due to the rotor deep-bar effect. The model-based schemes for IM speed estimation are inherently more or less sensitive to variability of IM electromagnetic parameters. This paper presents the study on robustness improvement of the Model Reference Adaptive System (MRAS) based speed estimator to variability of IM electromagnetic parameters resulting from the rotor deep-bar effect. The proposed modification of the MRAS-based speed estimator builds on the use of the rotor flux voltage-current model as the adjustable model. The verification of the analyzed configurations of the MRAS-based speed estimator was performed in the slip frequency range corresponding to the IM load adjustment range up to 1.30 of the stator rated current. This was done for a rigorous and reliable assessment of estimators’ robustness to rotor electromagnetic parameter variability resulting from the rotor deep-bar effect. The theoretical reasoning is supported by the results of experimental tests which confirm the improved operation accuracy and reliability of the proposed speed estimator configuration under the considered working conditions in comparison to the classical MRAS-based speed estimator.

Go to article

Authors and Affiliations

Jarosław Rolek
Grzegorz Utrata
Andrzej Kaplon
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an experimental stand for testing the front car camera S-CAM with embedded image recognition systems. The camera sends CAN messages these are converted to USART messages by microprocessor based system. The messages are interpreted by MATLAB script on the basis of database of traffic signs in accordance with Polish Road Code. The testing stand is mainly aimed for educating students interested in the fields of electronics and technologies related to automotive branch, as well. The second objective is a research on efficiency of traffic sign recognition system being one of functionalities of S-CAM camera. The technical specification of testing stand, its functionality and limitations were also discussed. The bench operation was illustrated with examples of stiff images, animation and real movies.
Go to article

Authors and Affiliations

Sławomir Gryś
1

  1. Częstochowa University of Technology, Faculty of Electrical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

Short-term contact losses between a pantograph and a contact wire are not included in the standards nor are they taken into account in evaluating pantograph-contact wire interaction. These contact losses, however, accelerate wear and tear as well as disturb operation of vehicles’ drive systems. The article presents the effects of short-term contact breaks as well as an analysis of impact of contact breakages on a vehicle’s current at 3 kV DC power supply. Results of voltage and current oscillations measured in real conditions when pantograph of a DC driven chopper vehicle was running under isolators were presented. Then a simulation model of a vehicles with ac motors and voltage inverters was derived to undertake simulation experiments verifying operation of such a vehicle in condition similar to those measured in real condition.

Go to article

Authors and Affiliations

T. Maciołek
M. Lewandowski
A. Szeląg
M. Steczek
Download PDF Download RIS Download Bibtex

Abstract

One of the little described problems in hydrostatic drives is the fast changing runs in the hydraulic line of this drive affecting the nature of the formation and intensity of pressure pulsation and flow rate occurring in the drive. Pressure pulsation and flow rate are the cause of unstable operation of servos, delays in the control system and other harmful phenomena. The article presents a flow model in a hydrostatic drive line based on fluid continuity equations (mass conservation), maintaining the amount of Navier-Stokes motion in the direction of flow (x axis), energy conservation (liquid state). The movement of liquids in a hydrostatic line is described by partial differential equations of the hyperbolic type, so modeling takes into account the wave phenomena occurring in the line. The hydrostatic line was treated as a cross with two inputs and two outputs, characterized by a specific transmittance matrix. The product approximation was used to solve the wave equations. An example of the use of general equations is presented for the analysis of a miniaturized hydrostatic drive line fed from a constant pressure source and terminated by a servo mechanism.

Go to article

Authors and Affiliations

L. Ułanowicz
G. Jastrzębski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method for designing a neural speed controller with use of Reinforcement Learning method. The controlled object is an electric drive with a synchronous motor with permanent magnets, having a complex mechanical structure and changeable parameters. Several research cases of the control system with a neural controller are presented, focusing on the change of object parameters. Also, the influence of the system critic behaviour is researched, where the critic is a function of control error and energy cost. It ensures long term performance stability without the need of switching off the adaptation algorithm. Numerous simulation tests were carried out and confirmed on a real stand.

Go to article

Authors and Affiliations

T. Pajchrowski
P. Siwek
A. Wójcik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This work evaluates the influence of gate drive circuitry to cascode GaN device’s switching waveforms. This is done by comparing three PCBs using three double-pulse-test (DPT) with different gate driving loop design. Among important parasitic elements, source-side inductance shows a significant impact to gate-source voltage waveform. A simulation model based on experimental measurement of the cascode GaNFET used in this work is modified by author. The simulation model is implemented in a synchronous buck converter topology and hereby to assess the impact of gate driving loop of cascode GaN device in both continuous conduction mode (CCM) and critical conduction mode (CRM). Apart from simulation, a synchronous buck converter prototype is presented for experimental evaluation, which shows a 99.15% efficiency at 5A under soft-switching operation (CRM) with a 59ns dead-time.
Go to article

Bibliography

  1.  Power Electronics UK and CSA CATAPULT, “Opportunities and Challenges of Wide Band Gap Power Devices”, pp. 1–8, 2020.
  2.  E.A. Jones, F.F. Wang, and D. Costinett, “Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges”, IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 707–719 (2016).
  3.  H. Jain, S. Rajawat, and P. Agrawal, “Comparision of wide band gap semiconductors for power electronics applications”, 2008 Int. Conf. Recent Adv. Microw. Theory Appl. Microw, 2008, pp. 878–881.
  4.  S. Chowdhury, Z. Stum, Z. Da Li, K. Ueno, and T.P. Chow, “Comparison of 600 V Si, SiC and GaN power devices”, Mater. Sci. Forum 778–780, pp. 971–974 (2014).
  5.  A. Taube, M. Sochacki, J. Szmidt, E. Kamińska, and A. Piotrowska, “Modelling and Simulation of Normally-Off AlGaN/GaN MOS- HEMTs”, Int. J. Electron. Telecommun. 60(3), 253–258 (2014).
  6.  B.N. Pushpakaran, A.S. Subburaj, and S.B. Bayne, “Commercial GaN-Based Power Electronic Systems: A Review”, J. Electron. Mater. 49(11), 6247–6262 (2020).
  7.  C.T. Ma and Z.H. Gu, “Review of GaN HEMT applications in power converters over 500 W”, Electronics 8(12), 1401 (2019).
  8.  H. Jain, S. Rajawat, and P. Agrawal, Comparision of wide band gap semiconductors for power electronics applications, 2008.
  9.  H. Umeda et al., “High power 3-phase to 3-phase matrix converter using dual-gate GaN bidirectional switches”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, USA, 2018, pp. 894‒897, doi: 10.1109/APEC.2018.8341119.
  10.  K. Nowaszewski and A. Sikorski, “Predictive current control of three-phase matrix converter with GaN HEMT bidirectional switches”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 1077–1085 (2020).
  11.  S.Y. Tang, “Study on characteristics of enhancement-mode gallium-nitride high-electron-mobility transistor for the design of gate drivers”, Electronics 9(10), 1573 (2020).
  12.  J. Rąbkowski, K. Król, M. Zdanowski, and M. Sochacki, “GaN-based soft-switched active power buffer operating at ZCS – problems of start-up and shut-down”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 785–792 (2020).
  13.  S. Davis, “The Great Semi Debate: SiC or GaN?”, 2019. [Online]. Available: https://www.powerelectronics.com/technologies/power- management/article/21864289/the-great-semi-debate-sic-or-gan. [Accessed: 20-Nov-2020].
  14.  Transphorm Inc., “Cascode vs. e-mode” [Online]. Available: https://www.transphormusa.com/en/gan-revolution/#casecode-vs-e-mode.  
  15. Transphrom Inc., “Design Resources” [Online]. Available: https://www.transphormusa.com/en/design-resources/#evaluation-kits. [Accessed: 20-Nov-2020].
  16.  Z. Liu, “Characterization and Application of Wide-Band- Gap Devices for High Frequency Power Conversion”, Ph.D. Thesis, Virginia Tech, 2017.
  17.  F.C. Lee and R. Burgos, “Characterization and Failure Mode Analysis of Cascode GaN HEMT Characterization and Failure Mode Analysis of Cascode GaN HEMT”, Ms.C. Thesis, Virginia Tech, 2014.
  18.  Z. Liu, X. Huang, F.C. Lee, and Q. Li, “Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT”, IEEE Trans. Power Electron. 29(4), 1977–1985 (2014).
  19.  K. Umetani, K. Yagyu, and E. Hiraki, “A design guideline of parasitic inductance for preventing oscillatory false triggering of fast switching GaN-FET”, IEEJ Trans. Electr. Electron. Eng. 11(52), S84–S90 (2016).
  20.  T. Ibuchi and T. Funaki, “A study on parasitic inductance reduction design in GaN-based power converter for high-frequency switching operation”, 2017 International Symposium on Electromagnetic Compatibility – EMC EUROPE, Angers, 2017, pp. 1‒5, doi: 10.1109/ EMCEurope.2017.8094824.
  21.  B. Sun, Z. Zhang, and M.A.E. Andersen, “Research of low inductance loop design in GaN HEMT application”, IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, USA, 2018, pp. 1466‒1470, doi: 10.1109/IECON.2018.8591732.
  22.  Transphorm Inc., “TPH3205WSB 650 V GaN FET in TO-247 (source tab)”, 2017, [Online]. Available: https://www.transphormchina. com/en/document/650v-cascode-gan-fet-tph3205w/
Go to article

Authors and Affiliations

Q.Y. Tan
1
E.M.S. Narayanan
1

  1. Department of Electronic and Electrical Engineering, The University of Sheffield, S1 3JD, UK
Download PDF Download RIS Download Bibtex

Abstract

Many industrial rotating machines driven by asynchronous motors are often affected by detrimental torsional vibrations. In this paper, a method of attenuation of torsional vibrations in such objects is proposed. Here, an asynchronous motor under proper control can simultaneously operate as a source of drive and actuator. Namely, by means of the proper control of motor operation, it is possible to suppress torsional vibrations in the object under study. Using this approach, both transient and steady-state torsional vibrations of the rotating machine drive system can be effectively attenuated, and its precise operational motions can be assured. The theoretical investigations are conducted by means of a structural mechanical model of the drive system and an advanced circuit model of the asynchronous motor controlled using two methods: the direct torque control – space vector modulation (DTC-SVM) and the rotational velocity-controlled torque (RVCT) based on the momentary rotational velocity of the driven machine working tool. From the obtained results it follows that by means of the RVCT technique steady-state torsional vibrations induced harmonically and transient torsional vibrations excited by switching various types of control on and off can be suppressed as effectively as using the advanced vector method DTC-SVM.
Go to article

Authors and Affiliations

Paweł Hańczur
1 2
Tomasz Szolc
1
ORCID: ORCID
Robert Konowrocki
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
  2. Schneider Electric Polska Sp. z o.o, ul. Konstruktorska 12, 02-673 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to present the procedure of non-standard road signs and markings implementation in Poland to improve road safety and traffic performance of road infrastructure. The authors investigated the following cases: road and its surroundings’ perception and understanding improvement; warning of increased risk of accidents ; road works; speed management and ITS. The procedure was developed on the basis of interdisciplinary research, including: observation of drivers behaviour in real traffic; comparative crash analysis on sections with and without non-standard signs or markings; surveys on the understanding signs and marking; driving simulator experiments. As a result of the research, an implementation procedure for non-standard signs and markings, in the form of flowchart, was developed. In the designed procedure the following study of non-standard signs can be distinguished: questionnaire studies, eye tracking tests and driving simulator tests. The choice of the test method depends on the preliminary assessment of sign understanding, based on the results of the questionnaires. Moreover, thresholds for the declared understanding level, which determines the selection of additional tests to be done prior to the implementation of the sign, are given. The guidelines for conducting tests, analysis and monitoring of implementation were described as well.
Go to article

Authors and Affiliations

Alessandro Calvi
1
Stanisław Gaca
2
Tomasz Kamiński
3
ORCID: ORCID
Mariusz Kieć
2
Mikołaj Kruszewski
3

  1. Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00-146 Rome, Italy
  2. Cracow University of Technology, Faculty of Civil Engineering, 24 Warszawska Str., 31-155 Cracow, Poland
  3. Motor Transport Institute, Transport Telematics Center, Jagiellońska 80 Str., 03-301 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Distracted driving is a significant factor affecting road safety and it can occur as a result of using mobile phones while driving. The aim of the current research is to present the prevalence of mobile phone use by Polish car drivers, based on the roadside and online survey. The field study showed that 11.6% of 1867 drivers were using mobile phones while being in motion and 26.1% of 203 drivers when stopped in front of traffic lights. While moving, 8.9% were manipulating the device by hand and 2.6% – holding it to ear. During the stop, 14.2% of the observed motorists were manipulating it, 3.0% – holding it to the ear, and 8.9% – talking through a hands-free or headset. To determine how many people generally use mobile phones while driving (not only during momentary observation), a questionnaire was also carried out. The vast majority of 252 surveyed drivers (82.9%) admitted to using mobile phones while driving, and an equally large proportion considered this behavior as dangerous for transport safety (81.3%). Most of the motorists reported using cell phones: rarely (44.4%), both when stopped and being in motion (58.9%), in a built-up area (63.6%), holding it in hand (43.5%) and in order to chat or write messages (81.8%). The majority of drivers using cell phones while driving were male and in the 25–44 or 18–24 age group. None of the respondents caused an accident due to the use of these devices, but 1.6% were guilty of a collision caused by this reason.
Go to article

Authors and Affiliations

Paulina Szrywer
1
ORCID: ORCID
Joanna Wachnicka
1
ORCID: ORCID
Wojciech Kustra
1
ORCID: ORCID
Orazio Pellegrino
2
ORCID: ORCID

  1. University of Technology, Department of Highway and Transportation Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk
  2. University of Messina, Department of Engineering, Contrada di Dio – Villaggio Sant’Agata, Messina, Italy
Download PDF Download RIS Download Bibtex

Abstract

The main goal of robot path planning is to design an optimal path for a robot to navigate from its starting point to its goal while avoiding obstacles and optimizing certain criteria. A novel method using marine predator algorithm which is used in the field of robot path planning is presented. The proposed method has two steps. First step is to build a mathematical model of path planning while second step is optimization process using marine predator algorithm. Simulation results show that the proposed method works well and has good performance in different situations. Therefore, this method is an effective method for robot path planning and related applications.
Go to article

Authors and Affiliations

Qiang Wang
1
Yinghui Huang
2

  1. College of Electronic and ElectricalEngineering, Bengbu University, Bengbu 233030, China
  2. College of Computer and Information Engineering, Bengbu University, Bengbu233030, China
Download PDF Download RIS Download Bibtex

Abstract

The in-wheel motor is installed in wheels, and road excitation acts on the in-wheel motor directly through a wheel, which affects the flow field characteristics of the motor’s liquid cooling system, and affects the thermal field characteristics of the in-wheel motor. Aiming at this problem, the in-wheel motor drive system is taken as the research object in this paper. Firstly, the heat flow coupling analysis model of the in-wheel motor drive system is established by using the heat flow coupling theory. Then the vibration response of in-wheel motor stator and shell under different road excitation obtained from the previous study is taken as the load. Finally, thermal field characteristics of the water-cooled the in-wheel motor under different working conditions are studied, and the influence law of different speed and road grades on the thermal field characteristics is obtained. The results show that under the road excitation, the maximum temperature of each component of the in-wheel motor decreases due to the vibration effect of road excitation on the flow field of the cooling system, and the decrease of the stator and winding is the most obvious. Additionally, the higher the speed, the greater the road roughness coefficient, the greater the temperature drop of each component of the in-wheel motor. However, the thermal field distribution of local parts of the motor is relatively uneven under road excitation, which leads to greater thermal stress of the local parts and increases the risk of motor damage.
Go to article

Bibliography

[1] Chen Yi, Yao Yihua, Lu Qinfen, Huang Xiaoyan,Ye Yunyue, Thermal modeling and analysis of doublesided water-cooled permanent magnet linear synchronous machines, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35, no. 2, pp. 695–712 (2016).
[2] Qiu Hongbo, Zhang Yong, Yang Cunxiang, Yi Ran, Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020).
[3] Kim S.C., Kim W., Kim M.S., Cooling performance of 25 kW in-wheel motor for electric vehicles, International Journal of Automotive Technology, vol. 14, no. 4, pp. 559–567 (2013).
[4] Karnavas Y.L., Chasiotis I.D., Peponakis E.L., Cooling system design and thermal analysis of an electric vehicle’s in-wheel PMSM, Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, pp. 1439–1445 (2016).
[5] Ding Yonggen, Xu Tianji, Zhang Nan, Hai Lu, Analysis of Drive Motor Housing Cooling Structure Design and Thermal Simulation of New Energy Vehicle, Auto Time, vol. 16, pp. 71–72 (2020).
[6] Zhao Lanping, Jiang Congxi, Xu Xin, Yang Zhigang, The Effects of Oil Cooling on the Temperature Field of Out-rotor In-wheel Motor Under Vehicle Operation Environment, Automotive Engineering, vol. 41, no. 4, pp. 373–380 (2019).
[7] Gao Panpan, Study on Cooling and Heat Transfer about Electrical Transmission System of Wheeled Vehicle, Master Thesis, Department of Mechanical Engineering, Beijing Institute of Technology, Beijing (2015).
[8] Funieru B., Binder A., Thermal design of a permanent magnet motor used for gearless railway traction, Proceedings of the 2008 34thAnnual Conference of the IEEE Industrial Electronics Society, Orlando, FL, USA, pp. 2061–2066 (2008).
[9] Chien C.H., Jang J.Y., 3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel, Applied Thermal Engineering, vol. 28, no. 17–18, pp. 2327–2336 (2008).
[10] Zeng Jinling, Xu Yu, Han Yepeng, Li Guanhua, Zhang Qun, Cooling Simulation Analysis Based on Multi-Field Coupling Technology of Permanent Magnet Synchronous Motor, Journal of Shanghai Jiaotong University, vol. 48, no. 9, pp. 1246–1251+1256 (2014).
[11] Huang Z., Marquez F., Alakula M., Yuan J., Characterization and application of forced cooling channels for traction motors in HEVs, Proceedings of the 2012 XXth International Conference on Electrical Machines, Marseille, France, pp. 1212–1218 (2012).
[12] Zheng Ping, Liu R., Thelin P., Nordlund E., Sadarangani C., Research on the Cooling System of a 4QT Prototype Machine Used for HEV, IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 61–67 (2008).
[13] Tan Di,Wang Qiang, Modeling and Simulation of the Vibration Characteristics of the In-Wheel Motor Driving Vehicle Based on Bond Graph, Shock and Vibration, vol. 1, pp. 1–14 (2016).
[14] Li Donghe, Analysis on Temperature Field of Oil-Cooled Motor Used in Vehicles, Small and Special Electrical Machines, vol. 44, no. 7, pp. 37–40 (2016).
[15] Song Fan, Research on heating and cooling of in-wheel motor drive system, Master Thesis, Department of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo (2019).
[16] Weili Li, Shoufa Li, Ying Xie, Stator-rotor Coupled Thermal Field Numerical Calculation of Induction Motors and Correlated Factors Sensitivity Analysis, Proceedings of the CSEE, vol. 24, pp. 85–91 (2007).
[17] Chai F., Tang Y., Pei Y. et al., Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor, Energies, vol. 10, no. 9, p. 818 (2016).
[18] Lei Liu, The Study of Thermal Characteristics in Various Conditions and Cooling System of Permanent Magnet Synchronous Motor in Pure Electric Vehicle, Hefei University of Technology, Master Thesis (2015).
[19] Lin Maocheng, Zhao Jihai, GB 7031-1987 Vehicle vibration input - pavement flatness representation method, Standard Press of China (1987).
Go to article

Authors and Affiliations

Jie Feng
1
Di Tan
1
Meng Yuan
1

  1. Shandong University of Technology, School of Transportation and Vehicle Engineering, 266 Xincun West Road, Zhangdian District, Shandong Province, Zibo, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of determining the efficiency of the slewing drive system applied in tower cranes. An algorithm for the proper selection of a permanent magnet synchronous motor (PMSM) for crane applications is presented. In the first stage of our research the proper PMSM was proposed on the basis of the simulation calculation. Next, the PM motor was examined on a special test bench. The experimental setup allows determining major electrical and mechanical parameters of the motor drive system. The applied slewing system consists of: an inverter, gear, cable drum and a permanent magnet motor. The performance and efficiency of the system were experimentally determined. Selected results of the experimental measurement are presented and discussed.
Go to article

Bibliography

[1] Gansen A.U., Chokkalingam L.N., Self-start synchronous reluctance motor new rotor designs and its performance characteristic, International Transaction on Electrical Energy Systems, vol. 29, no. 11, pp. 1–22 (2019).
[2] Resa J., Cortes D., Marquez-Rubio J.F., Navarro D., Reduction of induction motor energy consumption via variable velocity and flux references, Electronics, vol. 8, no. 740, pp. 1–14 (2019).
[3] Belmans R., Bisschots F., Trimmer R., Practical design considerations for braking problems in overhead crane drives, Annual Meetings of IEEE Industry Applications Society – IAS, vol. 1, pp. 473–479 (1993).
[4] Baranski M., FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at hight ambient temperature, COMPEL, vol. 38, no. 4, pp. 1120–1132 (2019).
[5] Kometani H., Sakabe S., Nakanishi K., 3-D electro-magnetic analyses of a cage induction motor with rotor skew, IEEE Transactions on Energy Conversion, vol. 11, no. 2, pp. 331–337 (1996).
[6] Torrent M., Perat J.I., Jimenez J.A., Permanent magnet synchronous motor with different rotor structures for traction motor in high speed trains, Energies, vol. 11, no. 1549, pp. 1–17 (2018).
[7] Knypinski Ł., Nowak L., Demenko A., Optimization of the synchronous motor with hybrid permanent magnet excitation system, COMPEL, 2015, vol. 34, no. 2, pp. 448–455 (2015).
[8] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020).
[9] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5, pp. 1–11 (2020).
[10] Dorell D.G., Popescu M., Evans L., Staton D.A., Knight A.M., Comparison of the permanent magnet drive motor with a cage induction motor design for a hybrid electric vehicle, Proceedings of International Power Electronics Conference – ICCE ASIA, pp. 1–6 (2010), DOI: 10.1109/IPEC.2010.5543566.
[11] Baranski M., Szel˛agW., Łyskawinski W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019).
[12] Slusarek B., Kapelski D., Antal L., Zalas P., Gwozdziewicz M., Synchronous motor with hybrid permanent magnets on the rotor, Sensors, vol. 14, pp. 12425–12436 (2014).
[13] Jedryczka C., Szel˛ag W., Piech J., Multiphase permanent magnet synchronous motors with fractional slot windings, COMPEL, vol. 35, no. 6, pp. 1937–1948 (2016).
[14] Wardach M., Pałka R., Paplicki P., Bronisławski M., Novel hybrid excited machine with flux barriers in rotor structure, COMPEL, vol. 37, no. 4, pp. 1489–1499 (2018).
[15] Młynarek P., Łukaniszyn M., Jagiełła M., Kowol M., Modelling of heat transfer in low-power IPM synchronous motors, IET Science, Measurement and Technology, vol. 12, no. 8, pp. 1066–1073 (2018).
[16] Rebelo J.M., Silvestre M.A.R., Development of a coreless permanent magnet synchronous motor for a battery electric shell eco marathon prototype vehicle, Open Engineering, vol. 8, no. 1, pp. 382–390 (2018).
[17] Knypinski Ł., Krupinski J., The energy conversion efficiency in the trolley travelling drive system in tower cranes, Proceedings of 15-th Selected Issue of Electrical Engineering and Electronics – WZEE, pp. 1–4 (2020), DOI: 10.1109/WZEE48932.2019.8979940.
[18] Egrov A., Kozlow K., Belogusev V., Method for evaluation of the chain derive efficiency, Journal of Applied Engineering Science, vol. 341, pp. 277–282 (2015).
[19] Janaszek M., The analysis of the influence unequal parameters of motors on the work of multimotors traction drive, Journal of the Electrical Engineering Institute (in Polish), vol. 286, pp. 1–26 (2015).
[20] Dambrauskas K., Vanagas J., Zimnickas T., Kalvaitisand A., Ažubalis K., A method for efficiency determination of permanent magnet synchronous motor, Energies, vol. 13, no. 1004, pp. 1–15 (2020).
[21] Knypinski Ł., Krupinski J., Application of the permanent magnet synchronous motors for tower cranes, Przegląd Elektrotechniczny, vol. 96, no. 1, pp. 27–30 (2020), DOI: 10.15199/48.2020.01.07.
[22] Geng S., Zhang Y., Qiu H., Yang R., Yi R., Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 68, no. 2, pp. 399–410 (2019).
[23] Dong S., Zhang Q., Ma H., Wang R., Design for the interior permanent magnet synchronous motor drive system based on the Z-source inverter, Energies, vol. 12, no. 3350, pp. 1–14 (2019).
[24] Chen Z., Zhang H., Tu W., Luo G., Manoharan D., Kennel R., Sensorless control for permanent magnet synchronous motor in rail transient applications using segmented synchronous modulation, IEEE Access, vol. 7, pp. 76669–7667 (2019).
[25] Putz Ł., Bednarek K., Kasprzyk L., Analysis of higher harmonics generated by LED lamps, Przegląd Elektrotechniczny, vol. 96, no. 4, pp. 90–93 (2020).
[26] https://www.krupinskicranes.com, accessed July 2020.
Go to article

Authors and Affiliations

Łukasz Knypiński
1
ORCID: ORCID
Jacek Krupiński
2

  1. Poznan University of Technology, Poland
  2. Krupinski Cranes, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to meet the lightweight requirements of high-speed trains, the inductancecapacitance (LC) resonance circuits are cancelled in the traction drive system of some high-speed electric multiple units (EMUs) in China, which will lead to large low-order current harmonics on the grid side in the traction drive system of EMUs, seriously affecting the power quality. Therefore, the low-order harmonic current of the traction drive system of an EMU is studied in this paper. Firstly, the working principle of a four-quadrant pulse rectifier in a traction drive system is analyzed, and then the generation mechanism of loworder current harmonics on the grid side is studied deeply. Secondly, the voltage outer loop and current inner loop control of a four-quadrant pulse rectifier are optimized respectively. In the voltage outer loop control, a Butterworth filter is designed to suppress the beat frequency voltage of the DC side voltage, so as to indirectly suppress the low-order current harmonics. In the current inner loop, a quasi-proportional resonance (PR) controller with harmonic compensation is used to suppress low-order current harmonics, and a novel loworder current harmonics suppression strategy based on the Butterworth filter and quasi-PR controller is proposed. Finally, the results of the simulated validation of the proposed control strategy show that compared with the existing method of the notch filter ¸ PR controller, the proposed optimal control strategy has a better effect on low-order current harmonic suppression, and improves the dynamic performance of the control system, further showing the correctness and effectiveness of the optimal control strategy.
Go to article

Authors and Affiliations

Feng Zhao
1
Jianing Zhang
1
ORCID: ORCID
Xiaoqiang Chen
1 2
Ying Wang
1 2
ORCID: ORCID

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, China
  2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou, China
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes two high-order sliding mode algorithms to achieve highperformance control of induction motor drive. In the first approach, the super-twisting algorithm (STA) is used to reduce the chattering effect and to improve control accuracy. The second approach combines the super-twisting algorithm with a quasi-barrier function technique. While the super-twisting algorithm (STA) aims at the chattering reduction, the Barrier super-twisting algorithm (BSTA) aims to eliminate this phenomenon by providing continuous output control signals. The BSTA is designed to prevent the STA gain from being over-estimated by making these gains to decrease and increase according to system’s uncertainties. Stability and finite-time convergence are guaranteed using Lyapunov’s theory. In addition, the two controlled variables, rotor speed, and rotor flux modulus are estimated based on the second-order sliding mode (SOSM) observer. Finally, simulations are carried out to compare the performance and robustness of two control algorithms without adding the equivalent control. Tests are achieved under external load torque, varying reference speed, and parameter variations.
Go to article

Bibliography

[1] Senthilnathan N., Comparative analysis of line-start permanent magnet synchronous motor and squirrel cage induction motor under customary power quality indices, Electrical Engineering, vol. 102, no. 3, pp. 1339–1349 (2020), DOI: 10.1007/s00202-020-00955-2.

[2] Morfin O.A., Miranda U., Valenzuela R.R., Valenzuela F.A., Tellez F.O., Acosta J.C., State-feedback linearization using a robust differentiator combined with SOSM super-twisting for controlling the induction motor velocity, 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, México, pp. 1–6 (2018), DOI: 10.1109/ROPEC.2018.8661477.

[3] Acikgoz H., Real-time adaptive speed control of vector-controlled induction motor drive based on online-trained Type-2 Fuzzy Neural Network Controller, International Transactions on Electrical En- ergy Systems (2021), DOI: 10.1002/2050-7038.12678.

[4] Chen C., Wu H., Lin Y., Stator flux oriented multiple sliding-mode speed control design of induction motor drives, Advances in Mechanical Engineering, vol. 13, no. 5, pp. 1–10 (2021), DOI: 10.1177/16878140211021734.

[5] Steinberger M., Horn M., Fridman L., Variable-Structure Systems and Sliding-Mode Control: From Theory to Practice, Springer International Publishing (2020).

[6] Bartolini G., Levant A., Pisano A., Usai E., Adaptive second-order sliding mode control with uncer- tainty compensation, International journal of Control, vol. 89, no. 9 (2016), DOI: 10.1080/00207179.2016.1142616.

[7] Siddique N., Rehman F.U., Hybrid synchronization and parameter estimation of a complex chaotic network of permanent magnet synchronous motors using adaptive integral sliding mode control, Archives of Electrical Engineering, pp. 137056–137056 (2021), DOI: 10.24425/bpasts.2021.137056.

[8] Quintero-Manriquez E., Sánchez E., Felix R., Induction motor torque control via discrete-time sliding mode, World Autom. Congr., WAC, pp. 1–5 (2016), DOI: 10.1109/WAC.2016.7582984.

[9] Martínez-Fuentes C.A., Ventura U.P., Fridman L., Chattering analysis of Lipschitz continuous sliding-mode controllers, ArXiv200400819 Cs Eess (2020).

[10] Utkin V., Poznyak A., Orlov Y.V., Polyakov A., Chattering Problem in Road Map for Sliding Mode Control Design, Springer International Publishing, pp. 73–82 (2020), DOI: 10.1007/978-3-030- 41709-3.

[11] Chaabane H., Djalal Eddine K., Salim C., Sensorless back stepping control using a Luenberger observer for double-star induction motor, Archives of Electrical Engineering, vol. 69, no. 1, (2020), DOI: 10.24425/aee.2020.131761.

[12] Swikir A., Utkin V., Chattering analysis of conventional and super twisting sliding mode control algorithm, in 2016 14th International Workshop on Variable Structure Systems (VSS), pp. 98–102 (2016), DOI: 10.1109/VSS.2016.7506898.

[13] Utkin V., Hoon Lee, Chattering Problem in Sliding Mode Control Systems, in International Workshop on Variable Structure Systems (VSS’06), Alghero, Italy, pp. 346–350 (2006), DOI: 10.1109/VSS. 2006.1644542.

[14] Sun X., Cao J., Lei G., Zhu J., A Composite Sliding Mode Control for SPMSM Drives Based on a New Hybrid Reaching Law With Disturbance Compensation, IEEE Transactions on Transportation Electrification, vol. 7, no. 3, pp. 1427–1436 (2021), DOI: 10.1109/TTE.2021.3052986.

[15] Jin Z., Sun X., Lei G., Zhu J., Sliding Mode Direct Torque Control of SPMSMs Based on a Hybrid Wolf Optimization Algorithm, IEEE Transactions on Industrial Electronics (2021), DOI: 10.1109/ TIE.2021.3080220.

[16] Pérez-Ventura U., Fridman L., Design of super-twisting control gains: A describing function based methodology, Automatica, vol. 99, pp. 175–180 (2019), DOI: 10.1016/j.automatica.2018.10.023.

[17] Lascu C., Argeseanu A., Blaabjerg F., Super twisting Sliding-Mode Direct Torque and Flux Control of Induction Machine Drives, IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 5057–5065 (2020), DOI: 10.1109/TPEL.2019.2944124.

[18] Krim S., Gdaim S., Mimouni M.F., Robust Direct Torque Control with Super-Twisting Sliding Mode Control for an Induction Motor Drive, Complexity (2019), DOI: 10.1155/2019/7274353.

[19] Zhang L., Laghrouche S., Harmouche M., Cirrincione M., Super twisting control of linear induction motor considering end effects with unknown load torque, in 2017 American Control Conference (ACC), Seattle, USA, pp. 911–916 (2017), DOI: 10.23919/ACC.2017.7963069.

[20] Utkin V.I., Poznyak A.S., Ordaz P., Adaptive super-twist control with minimal chattering effect, in 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 7009–7014 (2011), DOI: 10.1109/CDC.2011.6160720.


[21] Gonzalez T., Moreno J.A., Fridman L., Variable Gain Super-Twisting Sliding Mode Control, IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2100–2105 (2012), DOI: 10.1109/TAC.2011. 2179878.

[22] Obeid H., Laghrouche S., Fridman L., Chitour Y., Harmouche M., Barrier Function-Based Adaptive Super-Twisting Controller, IEEE Transaction on Automatic Control, vol. 65, no. 11, pp. 4928–4933 (2020), DOI: 10.1109/TAC.2020.2974390.

[23] Obeid H., Fridman L.M., Laghrouche S., Harmouche M., Barrier function-based adaptive sliding mode control, Automatica, vol. 93, pp. 540–544 (2018), DOI: 10.1016/j.automatica.2018.03.078.

[24] Obeid H., Fridman L., Laghrouche S., Harmouche M., Barrier Function-Based Adaptive Twisting Controller, in 2018 15th International Workshop on Variable Structure Systems (VSS), Graz, Austria, pp. 198–202 (2018), DOI: 10.1109/VSS.2018.8460272.

[25] Svečko R., Gleich D., Sarjaš A., The Effective Chattering Suppression Technique with Adaptive Super- Twisted Sliding Mode Controller Based on the Quasi-Barrier Function; An Experimentation Setup, Applied Sciences, vol. 10, no. 2 (2020), DOI: 10.3390/app10020595.

[26] Horch M., Boumédiène A., Baghli L., Sensorless high-order sliding modes vector control for induction motor drive with a new adaptive speed observer using super-twisting strategy, Int. J. Computer Application in Technology, vol. 60, no. 2, pp. 144–153 (2019), DOI: 10.1504/IJCAT.2019.100131.

[27] Morfin O.A., Valenzuela F.A., Betancour R.R., CastañEda C.E, Ruíz-Cruz R., Valderrabano-Gonzalez A., Real-Time SOSM Super-Twisting Combined with Block Control for Regulating Induction Motor Velocity, IEEE Access, vol. 6, pp. 25898–25907 (2018), DOI: 10.1109/ACCESS.2018.2812187.

[28] Listwan J., Application of Super-Twisting Sliding Mode Controllers in Direct Field-Oriented Control System of Six-Phase Induction Motor: Experimental Studies, Power Electronics and Drives, vol. 3, no. 1, pp. 23–34 (2018), DOI: 10.2478/pead-2018-0013.

[29] Lascu C., Blaabjerg F., Super-twisting sliding mode direct torque contol of induction machine drives, in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5116–5122 (2014), DOI: 10.1109/ECCE.2014.6954103.

[30] Rao S., Buss M., Utkin V., Simultaneous State and Parameter Estimation in Induction Motors Using First- and Second-Order Sliding Modes, IEEE Transactions on Transportation Electrification, vol. 56, no. 9, pp. 3369–3376 (2009), DOI: 10.1109/TIE.2009.2022071.

[31] Aurora C., Ferrara A., A sliding mode observer for sensorless induction motor speed regulation, International Journal of Systems Science, vol. 38, no. 11, pp. 913–929 (2007), DOI: 10.1080/00207720701620043.

[32] Sun X., Cao J., Lei G., Guo Y., Zhu J., A Robust Deadbeat Predictive Controller With Delay Com- pensation Based on Composite Sliding-Mode Observer for PMSMs, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10742–10752 (2021), DOI: 10.1109/TPEL.2021.3063226.

[33] Riaz Ahamed S., Chandra Sekhar J.N., Dinakara Prasad Reddy P., Speed Control of Induction Motor by Using Intelligence Techniques, Journal of Engineering Research and Applications, vol. 5, no. 1, pp. 130–135(2015).

[34] Dávila A., Moreno J.A., Fridman L., Optimal Lyapunov function selection for reaching time estimation of Super Twisting algorithm, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, Shanghai, China, pp. 8405–8410 (2009), DOI: 10.1109/CDC.2009.5400466.

[35] Tee K.P., Ge S.S., Tay E.H., Barrier Lyapunov Functions for the control of output-constrained nonlinear systems, Automatica, pp. 918–927 (2009), DOI: 10.1016/j.automatica.2008.11.017.


[36] Obeid H., Fridman L., Laghrouche S., Harmouche M., Golkani M.A., Adaptation of Levant’s differen- tiator based on barrier function, International Journal of Control, vol. 91, no. 9, pp. 2019–2027(2018), DOI: 10.1080/00207179.2017.1406149.

[37] Rolek J., Utrata G., Kaplon A., Robust speed estimation of an induction motor under the conditions of rotor time constant variability due to the rotor deep-bar effect, Archives of Electrical Engineering, vol. 69, no. 2, pp. 319–333 (2020), DOI: 10.24425/aee.2020.133028.

[38] Kiani B., Mozafari B., Soleymani S., Mohammad Nezhad Shourkaei H., Predictive torque control of induction motor drive with reduction of torque and flux ripple, Archives of Electrical Engineering (2021), DOI: 10.24425/bpasts.2021.137727.


Go to article

Authors and Affiliations

Salah Eddine Farhi
1
Djamel Sakri
1
Noureddine Golèa
1

  1. Laboratory of Electrical Engineering and Automatic, LGEA, Larbi Ben M’hidi University, Oum El Bouaghi, Algeria

This page uses 'cookies'. Learn more