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Abstract: Current drive control systems tend to push control loops to the limits of their
performance. One of the ways of doing so is to use advanced optimization algorithms,
usually related to model-based off-line calculations, such as genetic algorithms, the particle
swarm optimisation or the others. There is, however, a simpler way, namely to use predictive
control formalism and by formulation of a simple linear programming problem which is easy
to solve using powerful solvers, without excessive computational burden, what is a reliable
solution, as whenever the optimization problem has a feasible solution, a global minimizer
can be efficiently found. This approach has been deployed for a servo drive system operated
by a real-time sampled-data controller, verified between model-in-the-loop and hardware-
in-the-loop configurations, for a range of prediction horizons, as an attractive alternative to
classical quadratic programming-related formulation of predictive control task.
Key words: constraints, linear programming, optimal control, servo drive

1. Introduction

Drive technology is a core component to obtain proper performance of various machines,
hand-held equipment, robots, or motion control systems. However, there is much more to consider
than meets the eye, apart from just an apt selection of the motor or its suitable design. As any
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new deployment of a novel approach should predominantly focus on the specific application, still
improved performance is a cornerstone and needs to present better control quality or reduced
cost of control. This could account for better dynamics, increased precision and quality or better
energy efficiency of the resultant system [1, 4].

To achieve these goals, drive systems must be selected taking these general ideas. Market
development and continuous technological advances are leading to increase in expectations of the
control quality of drive systems. As a solution, currently the growing popularity of adaptive and
predictive controllers is seen [1,2]. However, the necessary computational power to apply the latter
is much higher than that of classical PID-type controllers, and, in addition, their implementation
and tuning require more knowledge of the problem and more work, though the control quality is
clearly better. The other solutions often use fuzzy logic controllers, artificial neural networks or
advanced optimization techniques using models, leading to particle-swarm optimization [3] or
genetic algorithms used [6].

The above-mentioned predictive control or, in other words, receding-horizon control has
been successfully introduced in the industry, where optimization stage is performed at integer
multiplicities of the sampling period [2]. The optimization procedures are either off-line, though
rather for simpler configurations, where no constraints are taken into consideration, and lead to
obtaining analytical formulae describing control laws, or the optimal solution is found based on an
iterative optimization approach. In such a case, interior-point methods for constrained quadratic
programming problems are used, leading to exhaustive iterative calculations to find the solution.

There is, however, a simpler way of generating optimal control signals, whenever there is
a knowledge about the model of the system, either linear, or nonlinear, in the form of the use of
iterative optimization procedures with lower computational burden connected. The current paper
presents the use of linear programming (LP) to generate optimal control signals in a drive control
task using the powerful MOSEK solver, leading to obtaining the optimal solution in a couple of
milliseconds. As in the case of predictive control, a number of model future outputs is generated
in a specific time horizon [9], what means that, as with predictive control, knowledge of the plant
model and some computational power are required for correct operation of the control system. In
addition, there is also a problem of initialization of the procedure [7]. This is due to the need of
repeated generation of the control signal based on the current measurements obtained from the
system via feedback, updating the knowledge of the controller concerning the behaviour of the
control loop.

In standard, the minimised cost function used in predictive-type controllers is based on a sum
of squared tracking errors in some horizon. As per quadratic forms present in the described cost
function, in the simulation environment one gets a computationally simple procedure with global
minimum found in a reasonable time. Using sum of absolute error values instead of sum of
squared errors is not a common choice, but due to the 𝐿1 penalty function, errors close to zero
are better penalized as in the case of 𝐿2 type one [8].

In order to test the approach, Matlab’s simulation environment is selected, to perform model-
in-the-loop simulations, leading eventually to hardware-in-the-loop tests using the Modular Servo
System of Inteco. Control performance of the sampled-data controller is analysed here in terms
of a linear penalty function and two types of constraints imposed on the control signal, namely
amplitude and rate constraints, and a range of prediction horizons to fully mirror the quality
of control. The laboratory stand offers an easy connection to the hardware via USB, thanks to
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a toolbox provided by Inteco. Since the current paper is the follower of the research report [5]
considering generalised predictive control, also verified on the same laboratory stand, some details
connected to the description of the system are provided in a brief manner. Nevertheless, all the
necessary formulae, derivations and calculations needed to define the optimisation problem are
provided.

The novelty of the paper is related to using a standard linear programming approach to obtain
an efficient and reliable model-based control solution, using powerful and reliable LP solvers,
whereas the major contribution is in terms of analysis of the interplay between prediction horizons,
control performance and various constraints imposed on the control signal.

In Section 2, a short description of the laboratory stand is given, accompanied with the
derivation of the model of the plant. Section 3 delivers a frank introduction to the predictive-like
performance index and outlines the optimisation approach adopted in the research. Section 4
presents the means of performing optimisation in real-time, and Section 5 presents the main
results in the rotational velocity control task. Finally, the last Section summarizes the paper.

2. Modular servo system laboratory stand

The experimental setup comprises a real-time DAC card, to offer communication between
the hardware and the control software, including the solver, and the servo system comprising
the 12 V/77 W DC motor, a tachogenerator and a brass cylinder forming an inertia load (with
connected moment of inertia 𝐽 and damping coefficient 𝑐), as presented in Fig. 1. The output
voltage of the tacho-generator is proportional to the angular velocity, forming the output signal
of the closed-loop system, i.e., 𝑦(𝑡) = 𝜔(𝑡) = ¤\ (𝑡).

Fig. 1. Diagram of the experimental setup

The calculated control signal (calculated armature voltage) is fed to the servo system using
an RT-DAC card and Simulink Coder to follow real-time requirements. The constrained control
signal (armature voltage actually applied to the system) is limited to 12 V, and is presented
throughout the paper in a dimensionless form as |𝑢(𝑡) | ≤ 1 [10].

Let \ (𝑠) denote the Laplace transform of the angular position \ (𝑡) of the shaft, and 𝑉 (𝑠) the
transform of the calculated armature voltage 𝑣(𝑡) = 𝑒𝑎 (𝑡), 𝐾 and 𝑇 denote gain and time constant
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of the following closed-loop transfer function:

𝐺 (𝑠) = \ (𝑠)
𝑉 (𝑠) =

𝐾

𝑠 (𝑇𝑠 + 1) , (1)

resulting from the derivations presented in [5]. Having transformed (1) into its state-space repre-
sentation with the state vector of the form x(𝑡) = [𝑥1 (𝑡), 𝑥2 (𝑡)]𝑇 = [\ (𝑡), 𝜔(𝑡)]𝑇 one gets

¤𝑥1 (𝑡) = 𝑥2 (𝑡),

¤𝑥2 (𝑡) =
−1
𝑇
𝑥2 (𝑡) +

𝐾

𝑇
𝑢(𝑡),

(2)

which correspond in a standard state-space notation to:

A =


0 1

0
−1
𝑇

 ,
x =


0
𝐾

𝑇

 ,
c𝑇 =

[
1, 0

]𝑇
,

𝑑 = 0.

(3)

When deriving the system of equations of state for the linear model, many simplifications
should be made, one of which is the assumption the system being linear, what gives rise to the
need to remove the static nonlinearity from the system, related to friction, which causes that for
near-zero values of the control voltage supplying the system. Since a nonlinear model capturing
the above problem can be written using the following formulae:

¤𝑥1 (𝑡) = 𝑥2 (𝑡),
¤𝑥2 (𝑡) = 𝑐 (𝑢(𝑡) − 𝑔 (𝑥2 (𝑡))) ,

(4)

with 𝑔(𝑥2) as an inverse static characteristic of the loop 𝑢 = 𝑓 (𝜔), and 𝑓 is some nonlinear
function, removal of the nonlinearity leads to the equations connected to (1).

In the case of a predictive control formalism, it is necessary to obtain a discrete-time counter-
part of the continuous-time model of the system (2) subject to a sampling period 𝑇𝑠 , to calculate
samples of future outputs. The discrete-time model is obtained in an armature voltage-rotational
velocity control loop, i.e., for

¤𝑥(𝑡) = −1
𝑇
𝑥(𝑡) + 𝐾

𝑇
𝑢(𝑡), (5)

which corresponds to first-order dynamics. Using the step-invariant transform one obtains:

𝑌 (𝑧)
𝑈 (𝑧) =

𝐵𝑑𝑧
−1

1 − 𝐴𝑑𝑧
−1 , (6)

𝐴𝑑 = 𝑒−
𝑇𝑠
𝑇 , (7)
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𝐵𝑑 = 𝐾

(
1 − 𝑒−

𝑇𝑠
𝑇

)
, (8)

eventually leading to a discrete-time state-space equations model

𝑦𝑘 = 𝐴𝑑𝑦𝑘−1 + 𝐵𝑑𝑢𝑘−1 , (9)

𝑥𝑘+1 = 𝑒−
𝑇𝑠
𝑇 𝑥𝑘 + 𝐾

(
1 − 𝑒−

𝑇𝑠
𝑇

)
𝑢𝑘 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 , (10)

on the basis of knowledge of (6), with lower index 𝑘 referring to a sample number of a specified
continuous-time signal, i.e., 𝑥𝑘 = 𝑥(𝑘𝑇𝑠), etc.

3. Predictive-type performance index reformulation as a linear
programming problem

In order to verify the performance of the closed-loop system for a given reference profile
𝑟 (𝑡), a predictive-like performance index has been introduced in the form of the following sum
of errors in a horizon of 𝑁𝑦 samples, i.e.,

𝐽 =

𝑁𝑦∑︁
𝑖=1

|𝑒𝑘+𝑖 |, (11)

with the error samples defined as

𝑒𝑘+𝑖 = 𝑟𝑘+𝑖 − 𝑦𝑘+𝑖 = 𝑟𝑘+𝑖 − (𝐴𝑑𝑥𝑘+𝑖−1 + 𝐵𝑑𝑢𝑘+𝑖−1) . (12)

Now, in order to formulate the optimization problem, the minimization task of the above-
mentioned performance index refers to solving the task

min
u

𝑁𝑦∑︁
𝑖=1

|𝑒𝑘+𝑖 |, (13)

which corresponds, in turn, to the following linear programming problem solved at every sampling
instant

min
u,d

𝑁𝑦∑︁
𝑖=1

𝑑𝑖

s.t. − 𝑑𝑖 ≤ 𝑒𝑘+𝑖 ≤ 𝑑𝑖 (𝑖 = 1, . . . , 𝑁𝑦),
d ≥ 0,

(14)

with the vector of dummy variables d ensuring the absolute values to be minimized,

d =
[
𝑑1, 𝑑2, . . . , 𝑑𝑁𝑦−1, 𝑑𝑁𝑦

]𝑇
. (15)

Now, the evolution of the state at the 𝑖-th step can be presented as (for a general SISO case):

x𝑘+𝑖 = A𝑖
𝑑x𝑘 + A𝑖−1

𝑑 B𝑑𝑢𝑘 + A𝑖−2
𝑑 B𝑑𝑢𝑘+1 + . . . + A𝑑B𝑑𝑢𝑘+𝑖−2 + B𝑑𝑢𝑘+𝑖−1 , (16)
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or, simpler, in a matrix form
x𝑘+𝑖 = F(𝑖)𝑥𝑘 + G𝑇 (𝑖)u𝑘,𝑖 , (17)

with:

F(𝑖) = A𝑖
𝑑 , (18)

G𝑇 (𝑖) =
[
A𝑖−1
𝑑 , A𝑖−2

𝑑 , . . . , A𝑑 , I
]

B𝑑 , (19)

u𝑘,𝑖 =
[
𝑢𝑘 , 𝑢𝑘+1, . . . , 𝑢𝑘+𝑖−2, 𝑢𝑘+𝑖−1

]𝑇
. (20)

In addition to the LP problem statement (14), the authors have decided to include information
about potential constraints imposed on the control signal directly to the LP problem, given as
either standard symmetrical amplitude cut-off constraints of the form

− 𝛼 ≤ 𝑢𝑘+ 𝑗 ≤ 𝛼, (21)

with 𝛼 being the cut-off amplitude, enabling proper tracking, i.e., satisfying

𝛼 ≥
����1 − 𝐴𝑑

𝐵𝑑

���� , (22)

which in the referred case corresponds simply to 𝛼 ≥ 1.
As an extension, enabling shaping the dynamics of the closed-loop system, the other constraint

type has also been included, related to rate constraints, in the form

− 𝛽 ≤ 𝑢𝑘+ 𝑗 − 𝑢𝑘+ 𝑗−1 ≤ 𝛽. (23)

This type of constraint imposed alone always enables asymptotic tracking, provided that there
are no simultaneous amplitude constraints disabling proper tracking. As per the defined range for
amplitude constraints in the case of this deployment, it is obvious that 𝛽 ≥ 2 does not actually
affect the performance of the system, as the amplitude between extreme admissible values of the
control signal is actually 2.

4. Implementation issues of the predictive-type controller

In order to deploy the control strategy, a special solver interface had to be created, which
does not take advantage of a well-developed MathWorks libraries performing optimization task,
as they do not have their C source files available [11]. This is the reason, why the solver has not
been created from the scratch, but the authors have applied for MOSEK student version solver,
which commands can be easily handled by DLL files created by Simulink Coder, and thus – can
work in the considered real-time sampled-data control system [12].

The considered controller has been implemented as a C-mex S-function, and subsequently
compiled to mex64 (Matlab Executable) file using the template of the S-function available with the
Matlab distribution. The issues which had to be, however, tackled out have been related to writing
down all the relations between reference signal samples and predictions of future outputs over
a selected range of prediction horizons, using the formulation as in Section 3. As per a dominating
time constant 𝑇 , identified at the level of approx. 1.1 s in the armature voltage-rotational velocity
control loop, the sampling period for control purposes has been selected as 100 ms.
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5. Simulation and experimental campaign

The experimental campaign has been performed for a 10 second-long reference signal pro-
viding expected changes of the rotational velocity of the shaft, with the step change at the half of
the experiment. In such a configuration, and for the 100 ms sampling period, the predictive-like
control law has been tested based on current measurements of the rotational velocity value. On the
basis of this value, at each sampling instant a prediction of the output signal has been calculated,
leading to solving a linear programming problem. The solution (20), being a vector of control
actions has been used in a receding horizon style, i.e., to implement its first component and re-do
the optimisation at the next sampling period.

On the basis of initial identification campaign, it has been found that 𝐾 = 225 and 𝑇 = 1.1 s.
In addition, at all times it has been assumed that the number of control samples calculated
corresponds to the actual prediction horizon 𝑁𝑦 of the output signal.

At first, model-in-the-loop simulations have been performed over a grid of 19 × 19 configu-
rations of prediction horizon values versus amplitude constraint imposed on calculated control
signals. The values of the performance index used to assess control quality (11) are presented in
Fig. 2. In addition, in that figure, three points are marked and selected on the basis of the perfor-
mance index values, related to the worst, medium and the best control loop performance. It can
be identified that either for tight constraints, or for short prediction horizon, control performance
deteriorates.

Fig. 2. Performance index vs. prediction horizon and amplitude constraint (model-in-the-loop tests)

Selection of the prediction horizon at the level of 𝑁𝑦 = 19 samples gives a 1.9 s-ahead
prediction, enabling the controller to foresee the changes in the reference signal known a priori,
and to take all the necessary steps to alter the values of the control signal.
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In all the considered cases, the control amplitude constraint has been set at greater than the
value of the cut-off level (with value of approx. 0.4) enabling proper asymptotic tracking of the
rotational velocity.

As already remarked, for the triplet of points, performance of the system has been evaluated
on the basis of plots presented in Fig. 3, where one can see the evolution of the output signals as
functions of control actions applied to the system. It should be noted that as per optimization pro-
cedures running, the generated control signals in a specific horizon have been equal to constrained
control signals, since constraints have been taken into account while carrying on optimization
routines.

(a)

(b)

Fig. 3. (a) tracking performance; (b) control signal for model-in-the-loop tests
and amplitude-constrained system

Obviously, the control signal with highest peak value results in the best transition property
between positive and negative rotational velocities, taking full advantage of the prediction mech-
anism available in the system. This can be observed clearly as per full knowledge of the dynamic



Vol. 72 (2023) Deployment of a predictive-like optimal control law 1013

and static properties of the linear model of the servo drive, and gives a good insight into the
performance of the control loop in the real-world experiment.

As in the amplitude-constrained case, a similar campaign has been carried out in simulation-
in-the-loop fashion and MOSEK solver used for rate constraints. Figure 4 presents performance
index values, whereas Fig. 5 – tracking performance and control signals for selected configurations
of the prediction horizon and rate constraints.

Fig. 4. Performance index vs. prediction horizon and rate constraint (model-in-the-loop tests)

Since the profile of the control signals presented in Fig. 5(b) depicts the fact that rate constraints
are active actually twice during the evolution of each simulation, i.e., shortly after reference
velocity changes, it can be clearly seen that the value of rate constraints modifies the agility of

(a)
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(b)

Fig. 5. (a) tracking performance; (b) control signal for model-in-the-loop tests and rate-constrained system

the control process. Whenever the rate constraint value is large (far higher than 0), the prediction
strategy works fine, offering foreseeing feature of the reference primitive changes. In the opposite
case, the control signal is unable to exert sufficient changes at the output of the control loop.

In order to finally verify the performance of the real-world system, an experimental campaign
for a grid of 11 × 11 points over a 10-second experiment horizon has been carried out, with the
results concerning 121 values of the performance index have been presented in Fig. 6, originating
from single runs of the experiment. It is to be noted that sudden changes (appearing as local
minima or local maxima on the performance index surface) result from a tachogenerator output

Fig. 6. Performance index vs. prediction horizon and rate constraint (hardware-in-the-loop experiments)
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signal used to assess the value of the current rotational velocity. Due to the noise corrupting
this signal, meaning – due to imperfect measurements, the shape of the surface has been slightly
distorted, thought it still mimics the actual performance of the system, as expected on the basis
of simulation-in-the-loop stages.

Figure 7 depicts the tracking performance in the closed-loop system for a selection of input
parameters of the control system/solver. As can be clearly seen from the profiles of the control
signals, imperfect measurement of the rotational velocity results in oscillatory behaviour of the
control signal. This is definitely not due to the case of violation of real-time requirements, since
the optimization procedure finished usually after 0.004–0.005 s for current measurements fed to
the solver, what has been a neglectful fraction of the dominating time constant in the rotational
velocity control loop, as well a small fraction of the sampling period.

(a)

(b)

Fig. 7. (a) tracking performance; (b) control signal for hardware-in-the-loop experiments
and amplitude-constrained system
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6. Summary

The paper presents a predictive control-related strategy to ensure tracking of a rotational
velocity profile in a closed-loop system, with the control signal generated by means of optimiza-
tion, based on MOSEK solver [13] applied to a linear programming problem. Simulation- and
hardware-in-the-loop campaigns resulted in comparable results, enabling the authors to pursue
further research on the topic in next stages, taking various configurations of prediction horizons,
performance indices using penalty functions or weighed functions at future stages of this research.

The prepared software to interface MOSEK resulted in the use of C-mex S-function template
to handle the solver properly, and to enable expected deployment quality, and reliability of the
solution.

The presented optimization-based solution to tracking problem offers a computationally light
alternative to large computational off-line burden connected to modern genetic algorithm-related
of particle swarm optimization-based solutions, leading to full tractability of the obtained results,
and taking all the advantage of simplicity of the linear programming problem. What it more, it
offers an additional possibility to include constraints related to, e.g., expected interplay between
specific samples, adding penalties, etc., leaving the solution to the LP solver.
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