High-performance induction motor drive based on adaptive super-twisting sliding mode control approach

Journal title

Archives of Electrical Engineering




vol. 71


No 1


Farhi, Salah Eddine : Laboratory of Electrical Engineering and Automatic, LGEA, Larbi Ben M’hidi University, Oum El Bouaghi, Algeria ; Sakri, Djamel : Laboratory of Electrical Engineering and Automatic, LGEA, Larbi Ben M’hidi University, Oum El Bouaghi, Algeria ; Golèa, Noureddine : Laboratory of Electrical Engineering and Automatic, LGEA, Larbi Ben M’hidi University, Oum El Bouaghi, Algeria



barrier function ; chattering ; gains adaptation ; induction motor drive ; slidingmode control ; super twisting

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


[1] Senthilnathan N., Comparative analysis of line-start permanent magnet synchronous motor and squirrel cage induction motor under customary power quality indices, Electrical Engineering, vol. 102, no. 3, pp. 1339–1349 (2020), DOI: 10.1007/s00202-020-00955-2.

[2] Morfin O.A., Miranda U., Valenzuela R.R., Valenzuela F.A., Tellez F.O., Acosta J.C., State-feedback linearization using a robust differentiator combined with SOSM super-twisting for controlling the induction motor velocity, 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, México, pp. 1–6 (2018), DOI: 10.1109/ROPEC.2018.8661477.

[3] Acikgoz H., Real-time adaptive speed control of vector-controlled induction motor drive based on online-trained Type-2 Fuzzy Neural Network Controller, International Transactions on Electrical En- ergy Systems (2021), DOI: 10.1002/2050-7038.12678.

[4] Chen C., Wu H., Lin Y., Stator flux oriented multiple sliding-mode speed control design of induction motor drives, Advances in Mechanical Engineering, vol. 13, no. 5, pp. 1–10 (2021), DOI: 10.1177/16878140211021734.

[5] Steinberger M., Horn M., Fridman L., Variable-Structure Systems and Sliding-Mode Control: From Theory to Practice, Springer International Publishing (2020).

[6] Bartolini G., Levant A., Pisano A., Usai E., Adaptive second-order sliding mode control with uncer- tainty compensation, International journal of Control, vol. 89, no. 9 (2016), DOI: 10.1080/00207179.2016.1142616.

[7] Siddique N., Rehman F.U., Hybrid synchronization and parameter estimation of a complex chaotic network of permanent magnet synchronous motors using adaptive integral sliding mode control, Archives of Electrical Engineering, pp. 137056–137056 (2021), DOI: 10.24425/bpasts.2021.137056.

[8] Quintero-Manriquez E., Sánchez E., Felix R., Induction motor torque control via discrete-time sliding mode, World Autom. Congr., WAC, pp. 1–5 (2016), DOI: 10.1109/WAC.2016.7582984.

[9] Martínez-Fuentes C.A., Ventura U.P., Fridman L., Chattering analysis of Lipschitz continuous sliding-mode controllers, ArXiv200400819 Cs Eess (2020).

[10] Utkin V., Poznyak A., Orlov Y.V., Polyakov A., Chattering Problem in Road Map for Sliding Mode Control Design, Springer International Publishing, pp. 73–82 (2020), DOI: 10.1007/978-3-030- 41709-3.

[11] Chaabane H., Djalal Eddine K., Salim C., Sensorless back stepping control using a Luenberger observer for double-star induction motor, Archives of Electrical Engineering, vol. 69, no. 1, (2020), DOI: 10.24425/aee.2020.131761.

[12] Swikir A., Utkin V., Chattering analysis of conventional and super twisting sliding mode control algorithm, in 2016 14th International Workshop on Variable Structure Systems (VSS), pp. 98–102 (2016), DOI: 10.1109/VSS.2016.7506898.

[13] Utkin V., Hoon Lee, Chattering Problem in Sliding Mode Control Systems, in International Workshop on Variable Structure Systems (VSS’06), Alghero, Italy, pp. 346–350 (2006), DOI: 10.1109/VSS. 2006.1644542.

[14] Sun X., Cao J., Lei G., Zhu J., A Composite Sliding Mode Control for SPMSM Drives Based on a New Hybrid Reaching Law With Disturbance Compensation, IEEE Transactions on Transportation Electrification, vol. 7, no. 3, pp. 1427–1436 (2021), DOI: 10.1109/TTE.2021.3052986.

[15] Jin Z., Sun X., Lei G., Zhu J., Sliding Mode Direct Torque Control of SPMSMs Based on a Hybrid Wolf Optimization Algorithm, IEEE Transactions on Industrial Electronics (2021), DOI: 10.1109/ TIE.2021.3080220.

[16] Pérez-Ventura U., Fridman L., Design of super-twisting control gains: A describing function based methodology, Automatica, vol. 99, pp. 175–180 (2019), DOI: 10.1016/j.automatica.2018.10.023.

[17] Lascu C., Argeseanu A., Blaabjerg F., Super twisting Sliding-Mode Direct Torque and Flux Control of Induction Machine Drives, IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 5057–5065 (2020), DOI: 10.1109/TPEL.2019.2944124.

[18] Krim S., Gdaim S., Mimouni M.F., Robust Direct Torque Control with Super-Twisting Sliding Mode Control for an Induction Motor Drive, Complexity (2019), DOI: 10.1155/2019/7274353.

[19] Zhang L., Laghrouche S., Harmouche M., Cirrincione M., Super twisting control of linear induction motor considering end effects with unknown load torque, in 2017 American Control Conference (ACC), Seattle, USA, pp. 911–916 (2017), DOI: 10.23919/ACC.2017.7963069.

[20] Utkin V.I., Poznyak A.S., Ordaz P., Adaptive super-twist control with minimal chattering effect, in 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 7009–7014 (2011), DOI: 10.1109/CDC.2011.6160720.

[21] Gonzalez T., Moreno J.A., Fridman L., Variable Gain Super-Twisting Sliding Mode Control, IEEE Transactions on Automatic Control, vol. 57, no. 8, pp. 2100–2105 (2012), DOI: 10.1109/TAC.2011. 2179878.

[22] Obeid H., Laghrouche S., Fridman L., Chitour Y., Harmouche M., Barrier Function-Based Adaptive Super-Twisting Controller, IEEE Transaction on Automatic Control, vol. 65, no. 11, pp. 4928–4933 (2020), DOI: 10.1109/TAC.2020.2974390.

[23] Obeid H., Fridman L.M., Laghrouche S., Harmouche M., Barrier function-based adaptive sliding mode control, Automatica, vol. 93, pp. 540–544 (2018), DOI: 10.1016/j.automatica.2018.03.078.

[24] Obeid H., Fridman L., Laghrouche S., Harmouche M., Barrier Function-Based Adaptive Twisting Controller, in 2018 15th International Workshop on Variable Structure Systems (VSS), Graz, Austria, pp. 198–202 (2018), DOI: 10.1109/VSS.2018.8460272.

[25] Svečko R., Gleich D., Sarjaš A., The Effective Chattering Suppression Technique with Adaptive Super- Twisted Sliding Mode Controller Based on the Quasi-Barrier Function; An Experimentation Setup, Applied Sciences, vol. 10, no. 2 (2020), DOI: 10.3390/app10020595.

[26] Horch M., Boumédiène A., Baghli L., Sensorless high-order sliding modes vector control for induction motor drive with a new adaptive speed observer using super-twisting strategy, Int. J. Computer Application in Technology, vol. 60, no. 2, pp. 144–153 (2019), DOI: 10.1504/IJCAT.2019.100131.

[27] Morfin O.A., Valenzuela F.A., Betancour R.R., CastañEda C.E, Ruíz-Cruz R., Valderrabano-Gonzalez A., Real-Time SOSM Super-Twisting Combined with Block Control for Regulating Induction Motor Velocity, IEEE Access, vol. 6, pp. 25898–25907 (2018), DOI: 10.1109/ACCESS.2018.2812187.

[28] Listwan J., Application of Super-Twisting Sliding Mode Controllers in Direct Field-Oriented Control System of Six-Phase Induction Motor: Experimental Studies, Power Electronics and Drives, vol. 3, no. 1, pp. 23–34 (2018), DOI: 10.2478/pead-2018-0013.

[29] Lascu C., Blaabjerg F., Super-twisting sliding mode direct torque contol of induction machine drives, in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5116–5122 (2014), DOI: 10.1109/ECCE.2014.6954103.

[30] Rao S., Buss M., Utkin V., Simultaneous State and Parameter Estimation in Induction Motors Using First- and Second-Order Sliding Modes, IEEE Transactions on Transportation Electrification, vol. 56, no. 9, pp. 3369–3376 (2009), DOI: 10.1109/TIE.2009.2022071.

[31] Aurora C., Ferrara A., A sliding mode observer for sensorless induction motor speed regulation, International Journal of Systems Science, vol. 38, no. 11, pp. 913–929 (2007), DOI: 10.1080/00207720701620043.

[32] Sun X., Cao J., Lei G., Guo Y., Zhu J., A Robust Deadbeat Predictive Controller With Delay Com- pensation Based on Composite Sliding-Mode Observer for PMSMs, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10742–10752 (2021), DOI: 10.1109/TPEL.2021.3063226.

[33] Riaz Ahamed S., Chandra Sekhar J.N., Dinakara Prasad Reddy P., Speed Control of Induction Motor by Using Intelligence Techniques, Journal of Engineering Research and Applications, vol. 5, no. 1, pp. 130–135(2015).

[34] Dávila A., Moreno J.A., Fridman L., Optimal Lyapunov function selection for reaching time estimation of Super Twisting algorithm, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, Shanghai, China, pp. 8405–8410 (2009), DOI: 10.1109/CDC.2009.5400466.

[35] Tee K.P., Ge S.S., Tay E.H., Barrier Lyapunov Functions for the control of output-constrained nonlinear systems, Automatica, pp. 918–927 (2009), DOI: 10.1016/j.automatica.2008.11.017.

[36] Obeid H., Fridman L., Laghrouche S., Harmouche M., Golkani M.A., Adaptation of Levant’s differen- tiator based on barrier function, International Journal of Control, vol. 91, no. 9, pp. 2019–2027(2018), DOI: 10.1080/00207179.2017.1406149.

[37] Rolek J., Utrata G., Kaplon A., Robust speed estimation of an induction motor under the conditions of rotor time constant variability due to the rotor deep-bar effect, Archives of Electrical Engineering, vol. 69, no. 2, pp. 319–333 (2020), DOI: 10.24425/aee.2020.133028.

[38] Kiani B., Mozafari B., Soleymani S., Mohammad Nezhad Shourkaei H., Predictive torque control of induction motor drive with reduction of torque and flux ripple, Archives of Electrical Engineering (2021), DOI: 10.24425/bpasts.2021.137727.






DOI: 10.24425/aee.2022.140208