Details

Title

The Use of 3D Printed Sand Molds and Cores in the Castings Production

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 1

Affiliation

Halejcio, Dawid : AGH University of Krakow, Faculty of Foundry Engineering Department of Moulding Materials, Mould Technology and Non-ferrous Metals al. A. Mickiewicza 30, 30-059 Krakow ; Major-Gabryś, Katarzyna : AGH University of Krakow, Faculty of Foundry Engineering Department of Moulding Materials, Mould Technology and Non-ferrous Metals al. A. Mickiewicza 30, 30-059 Krakow

Authors

Keywords

Additive technologies ; Molding and core sands ; 3D printing ; Mold technology ; Castings quality

Divisions of PAS

Nauki Techniczne

Coverage

32-39

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A. & Ul Haq, M.I. (2022). 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 3, 33-42. DOI: 0.1016/j.susoc.2021.09.004.
[2] Shi, Y., Znang, J., Wen, S., Song, B., Yan, C., Wei, Q., Wu, J., Yin, Y., Zhou, J., Chen, R., Wei, Z., Jia, H., Yang, H & Nan, H. (2021). Additive manufacturing and foundry innovation. China Foundry. 18(4), 286-295. DOI: 10.1007/s41230-021-1008-8.
[3] Gawronová, M., Lichý, P., Kroupová, I., Obzina, T., Beňo, Nguyenová, I., Merta, V., Jezierski, J. & Radkovský, F. (2022). Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness. Heliyon. 8(10), 1-10. DOI: 10.1016/j.heliyon.2022.e10751.
[4] Shangguan, H., Kang, J., Deng, C., Hu, Y. & Huang, T. (2017). 3D-printed shell-truss sand mold for aluminum castings. Journal of Material Processing Technology. 250, 247-253. DOI: 10.1016/j.jmatprotec.2017.05.010.
[5] Hawaldar, N. & Zhang, J. (2018) A comparative study of fabrication of sand casting mold using additive manufacturing and conventional proces. International Journal of Advanced Manufacturing Technology. 97(1-4), 1037-1045. DOI: 10.1007/s00170-018-2020-z.
[6] Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017). 3D printing for rapid sand casting - A review. Journal of Manufacturing Processes. 29, 211-220. DOI: 10.1016/j.jmapro.2017.07.017.
[7] Zhang, Z., Wang, L., Zhang, L., Ma, P., Lu, B. & Du, C. (2021). Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength. China Foundry. 18(4), 335-343. DOI: 10.1007/s41230-021-1057-z.
[8] Thiel, J., Ravi, S. & Bryan,t N. (2017). Advancements in materials for three-dimensional printing of molds and cores. International Journal of Metalcasting. 11(1), 3-13. DOI: 10.1007/s40962-016-0082-y.
[9] Mitra, S., Rodríguez de Castro A. & el Mansori, M. (2018). The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. International Journal of Advanced Manufacturing Technology. 97(1-4), 1241-1251, DOI: 10.1007/s00170-018-2024-8.
[10] Major-Gabryś, K., Hosadyna–Kondracka, M., Polkowska A., Warmuzek M. (2022). Effect of the biodegradable component addition to the molding sand on the microstructure and properties of ductile iron castings. Materials. 15(4), 1-14, DOI: 10.3390/ma15041552.
[11] Major-Gabryś, K. (2019) Environmentally friendly foundry molding and core sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911, DOI: 10.1007/s11664-019-03947-x.
[12] Puzio, S., Kamińska, J., Major-Gabryś, K., Angrecki, M. & Hosadyna-Kondracka, M. (2019). Microwave-hardened moulding sands with hydrated sodium silicate for modified ablation casting. Archives of Foundry Engineering. 19(2), 91-96,
[13] Major-Gabryś, K., Grabarczyk, A. & Dobosz, St.M., (2018). Modification of foundry binders by biodegradable material. Archives of Foundry Engineering. 18(2), 31-44, DOI: 10.24425/122498.
[14] Major-Gabryś, K., Grabarczyk, A., Dobosz, St.M. & Jakubski, J. (2016). New bicomponent binders for foundry moulding sands composed of phenol-furfuryl resin and polycaprolactone. Metalurgija. 55(3), 385-387.
[15] Major-Gabryś, K. (2016). Odlewnicze masy formierskie i rdzeniowe przyjazne dla środowiska. Katowice-Gliwice: Archives of Foundry Engineering. (in Polish)
[16] Major-Gabryś, K., Stachurek, I. & Hosadyna-Kondracka, M. (2022). The influence of biomaterial in a binder composition on biodegradation of waste from furan moulding sands. Archives of Foundry Engineering. 22(2), 17-24, DOI: 10.24425/afe.2022.140.222
[17] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M. & Stachurek, I. (2022). The influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands. Archives of Civil Engineering. 68(4), 163-177, DOI: 10.2445/ace.2022.143032.
[18] Major-Gabryś, K., Stachurek, I., Hosadyna-Kondracka, M. & Homa, M. (2022). The influence of polycaprolactone on structural changes of dusts from molding sands with resin-based binder before and after the biodegradation process. Polymers. 14(13), 1-16. DOI: 10.3390/polym14132605.
[19] Snelling, D., Williams, C. & Druschitz, A. (2014). A comparison of binder burnout and mechanical characteristics of printed and chemically sand molds. In 2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
[20] Dana, H.R. & el Mansori, M. (2020). Mechanical characterisation of anisotropic silica sand/furan resin compound induced by binder jet 3D additive manufacturing technology. Ceramics International. 46(11), 17867-17880, DOI: 10.1016/j.ceramint.2020.04.093.
[21] Coniglio, N., Sivarupan, T. & el Mansori, M. (2018). Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. International Journal of Advanced Manufacturing Technology. 94(5-8), 2175-2185. DOI: 10.1007/s00170-017-0861-5.
[22] Sivarupan, T., el Mansori, M., Daly, K., Mavrogordato, M.N. & Pierron, F. (2019) Characterisation of 3D printed sand moulds using micro-focus X-ray computed tomography. Rapid Prototyping Journal. 25(2), 404-416. DOI: 10.1108/RPJ-04-2018-0091.
[23] Cheng, Y., Li, Y., Yang, Y., Tang, K., Jhuang, F., L,i K. & Lu, C. (2022). Greyscale printing and characterization of the binder migration pattern during 3D sand mold printing. Additive Manufacturing. 56, 102929. DOI: 10.1016/j.addma.2022.102929.
[24] Vaezi, M. & Chua, C.K. (2011). Effects of layer thickness and binder saturation level parameters on 3D printing proces. International Journal of Advanced Manufacturing Technology. 53(1-4), 275-284. DOI: 10.1007/s00170-010-2821-1.
[25] Bryant, N., Frush, T., Thiel, J., MacDonald, E. & Walker, J. (2021). Influence of machine parameters on the physical characteristics of 3D-printed sand molds for metal casting. International Journal of Metalcasting. 15(2), 361-372. DOI: 10.1007/s40962-020-00486-3.
[26] Hackney, P.M. & Wooldridge, R. (2017). Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototypin Journal. 23(1), 7-15. DOI: 10.1108/RPJ-08-2014-0101.
[27] Wang, Y., long Yu, R., kui Yin, S., Tan, R. & chun Lou, Y. (2021). Effect of gel time of 3D sand printing binder system on quality of sand mold/core. China Foundry. 18(6), 581-586. DOI: 10.1007/s41230-021-1085-8.
[28] Sama, S.R., Badamo, T. & Manogharan, G. (2020). Case studies on integrating 3D sand-printing technology into the production portfolio of a sand-casting foundry. International Journal of Metalcasting. 14(1), 12-24. DOI: 10.1007/s40962-019-00340-1.
[29] Triantaphyllou, A., Giusca, C., Macaulay, G., Reorig, F., Hoebel, M., Leach, R., Tomita, B. & Milne, K. (2015). Surface texture measurement for additive manufacturing. Surfdace Topografy: Metrology and Properties. 3(2), 024002. DOI: 10.1088/2051-672X/3/2/024002.
[30] Hartmann, C., van den Bosch, L., Spiegel, J., Rumschöttel, D. & Günther, D. (2022). Removal of stair-step effects in binder jetting additive manufacturing using grayscale and dithering-based droplet distribution. Materials. 15(11), 1-17. DOI: 10.3390/ma15113798.
[31] Deng, C., Kang, J., Shangguan, H., Huang, T., Zhang, X., Hu, Y. & Huang, T. (2018). Insulation effect of air cavity in sand mold using 3D printing technology. China Foundry. 15(1), 37-43. DOI: 10.1007/s41230-018-7243-y.
[32] Shangguan, H., Kang, J., Yi, J., Zhang, X., Wang, X., Wang, H. & Huang, T. (2018). The design of 3D-printed lattice-reinforced thickness-varying shell molds for castings. Materials. 11(4), 1-10. DOI: 10.3390/ma11040535.
[33] Wei, X., Wan, Y. & Liang, X. (2022). Effect of hollow core on cooling temperature in 3D printing. Journal of Physics: Conference Series. Institute of Physics. 2396, 012037, 1-9. DOI: 10.1088/1742-6596/2396/1/012037.
[34] ben Saada, M. & el Mansori, M. (2021). Assessment of the effect of 3D printed sand mold thickness on solidification process of AlSi13 casting alloy. The International Journal of Advanced Manufacturing Technology. 114, 1753-1766. DOI: 10.1007/s00170-021-06999-3.
[35] Sama, S.R., Wang, J. & Manogharan, G. (2018). Non-conventional mold design for metal casting using 3D sand-printing. Journal of Manufacturing Processes. 34, 765-775. DOI: 10.1016/j.jmapro.2018.03.049.
[36] Sama, S.R., Badamo, T., Lynch, P. & Manogharan, G. (2019). Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing. 25, 563-578. DOI: 10.1016/j.addma.2018.12.009.
[37] Martinez, D., King, P., Sama, S.R., Sim, J., Toykoc, H. & Manogharan, G. (2023). Effect of freezing range on reducing casting defects through 3D sand-printed mold designs. International Journal of Advanced Manufacturing Technology. 126(1-2), 569-581. DOI: 10.1007/s00170-023-11112-x.
[38] Shuvo, M.M. & Manogharan, G. (2021). Novel riser designs via 3D sand printing to improve casting performance. Procedia Manufacturing. 53, 500-506. DOI: 10.1016/j.promfg.2021.06.052.
[39] Snelling, D., Williams, C. & Druschitz, A. (2019). Mechanical and material properties of castings produced via 3D printed mold. Additive Manufacturing. 27, 199-207, DOI: 10.1016/j.addma.2019.03.004.
[40] Hernández, F. & Fragoso, A. (2022). Fabrication of a stainless-steel pump impeller by integrated 3D sand printing and casting: mechanical characterization and performance study in a chemical plant. Applied Sciences (Switzerland). 12(7), 3539. DOI: 10.3390/app12073539.
[41] Szymański, P. & Borowiak, M. (2019). Evaluation of castings surface quality made in 3D printed sand moulds using 3DP technology. Lecture Notes in Mechanical Engineering. 201-212. DOI: 10.1007/978-3-030-16943-5_18.
[42] Skorulski, G. (2016). 3DP Technology for the manufacture of molds for pressure casting. Archives of Foundry Engineering. 16(3), 9-102. DOI: 10.1515/afe-2016-0058.
[43] Na, O., Kim, K. & Lee. H. (2021). Printability and setting time of csa cement with na2 sio3 and gypsum for binder jetting 3D printing. Materials. 14(11), 1-18. DOI: 10.3390/ma14112811.
[44] Zhang, L., Yang, X., Ran, S. Zhang, L., Hu, C. & Wang, H. (2023). Water-soluble sand core made by binder jetting printing with the binder of potassium carbonate solution. International Journal of Metalcasting. 1-12. DOI: 10.1007/s40962-022-00940-4.
[45] Goto, I., Kurosawa, K. & Matsuki, T. (2022). Effect of 3D-printed sand molds on the soundness of pure copper castings in the vicinity of as-cast surfaces. Journal of Manufacturing Processess. 77, 329-338. DOI: 10.1016/j.jmapro.2022.03.020.
[46] Castro-Sastre, M.Á., García-Cabezón, C., Fernández-Abia, A.I., Martín-Pedrosa, F. & Barreiro, J. (2021). Comparative study on microstructure and corrosion resistance of Al-Si alloy cast from sand mold and binder jetting mold. Metals (Basel). 11(9), 1421. DOI: 10.3390/met11091421.
[47] Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D., Schmidová, E. (2018). Role of chemical composition in corrosion of aluminum alloys. Metals. 8(8), 581. DOI: 10.3390/met8080581.
[48] Samuel, A.M., Doty, H.W., Valtierra, S. & Samuel, F.H. (2018). βAl5FeSi phase platelets-porosity formation relationship in A319.2 type alloys. International Journal of Metalcasting 12, 55-70. DOI: 10.1007/s40962-017-0136-9.
[49] Zheng, J., Chen, A., Yao, J., Ren, Y., Zheng, W., Lin, F., Shi, J., Guan, A. & Wang, W. (2022). Combination method of multiple molding technologies for reducing energy and carbon emission in the foundry industry. Sustainable Materials and Technologies. 34, e00522. DOI: 10.1016/j.susmat.2022.e00522.
[50] Kang, J. & Ma, Q. (2017). The role and impact of 3D printing technologies in casting. China Foundry. 14(3), 157-168. DOI: 10.1007/s41230-017-6109-z.

Date

01.03.2024

Type

Article accepted

Identifier

DOI: 10.24425/afe.2024.149249
×