Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 457
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the feasibility of utilizing sodium alginate biopolymer as animmobilization carrier for laccase in the removal of indigo carmine (IC), an anionic dye. The main goal of this work was to optimize the decolourization process by selecting the appropriate immobilized enzyme dose per 1 mg of dye, as well as the process temperature. The effective immobilization of laccase using sodium alginate as a carrier was confirmed by Raman spectroscopy. An analysis of the size and geometric parameters of the alginate beads was also carried out. Tests of IC decolourization using alginate-laccase beads were conducted. Applying the most effective dose of the enzyme (320 mg of enzyme/1 mg of IC) made it possible to remove 92.5% of the dye over 40 days. The optimal temperature for the IC decolourization process, using laccase immobilized on sodium alginate, was established at 30-40ºC. The obtained results indicate that laccase from Trametes versicolor immobilized on sodium alginate was capable of decolourizing the tested dye primarily based on mechanism of biocatalysis.
Go to article

Bibliography

  1. Achieng, G.O., Kowenje, Ch.O., Lalah, J.O. & Ojwach S.O. (2019). Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions, Water Science & Technology, 80, 11, pp. 2218-2231. DOI:10.2166/wst.2020.040.
  2. Ahlawat, A., Jaswal, A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 3, 105424. DOI:10.1016/j.ibiod.2022.105424.
  3. Almulaiky, Y.Q. & Al Harbi, S.A. (2022). Preparation of a calcium alginate coated polypyrrole/silver nanocomposite for site specific immobilization of polygalacturonase with high reusability and enhanced stability, Catalysis Letters, 152, pp. 28-42. DOI:10.1007/s10562-021-03631-7.
  4. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review, International Journal of Biological Macromolecules, 181, pp. 683–696. DOI:10.1016/j.ijbiomac.2021.03.175.
  5. Bhowmik, S., Chakraborty, V. & Das, P. (2021). Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology, Results in Surfaces and Interfaces, 3, 100011. DOI:10.1016/j.rsurfi.2021.100011.
  6. Bilal, M., Rasheed, T., Nabeel, F. & Iqbal, H.M.N. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A review, Journal of Environmental Management, 234, pp. 253-264. DOI:10.1016/j.jenvman.2019.01.001.
  7. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773.
  8. Daâssi, D., Mechichi, T., Nasri, M. & Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, Journal of Environmental Management, 129, pp. 324-332. DOI:10.1016/j.jenvman.2013.07.026.
  9. Deska, M. & Kończak, B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. DOI:10.15199/62.2020.3.22. (in Polish)
  10. Deska, M. & Kończak, B. (2022a). Support materials for laccase immobilization for decolourization processes, Przemysł Chemiczny, 101, 2, pp. 135-139. DOI:10.15199/62.2022.2.9. (in Polish)
  11. Deska, M. & Kończak, B. (2022b). Laccase Immobilization on Biopolymer Carriers – Preliminary Studies, Journal of Ecological Engineering, 23, 3, pp. 235–249. DOI:10.12911/22998993/146611.
  12. Deska, M. & Kończak, B., (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024.
  13. Deska, M. & Zawadzki, P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667. DOI:10.15199/62.2021.7.5 (in Polish).
  14. Hevira, L., Rahmayeni, Z., Ighalo, J.O. & Zein R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, Journal of Environmental Chemical Engineering, 8, 104290. DOI:10.1016/j.jece.2020.104290.
  15. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. & Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182, pp. 351–366. DOI:10.1016/j.jenvman.2016.07.090.
  16. Hurtado, A., Aljabali, A.A.A., Mishra, V.; Tambuwala, M.M. & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 23, 4486, DOI:10.3390/ijms23094486.
  17. Kandelbauer, A., Kessler, W. & Kessler, R.W. (2008). Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation, Analytical and Bioanalytical Chemistry, 390, 5, pp. 1303–1315. DOI:10.1007/s00216-007-1791-0.
  18. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI:10.1016/j.jece.2020.105012.
  19. Klis, M., Maicka, E., Michota, A., Bukowska, J., Sek, S., Rogalski, J. & Bilewicz R. (2007). Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes, Electrochimica Acta, 52, 18, pp. 5591–5598. DOI:10.1016/j.electacta.2007.02.008.
  20. Krzyczmonik, P., Klisowska, M., Leniart, A., Ranoszek-Soliwoda, K., Surmacki, J., Beton-Mysur, K. & Brożek-Płuska. B. (2023). The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols, Materials, 16, 14, pp. 5113. DOI:10.3390/ma16145113.
  21. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  22. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82, DOI:10.24425/aep.2022.140546.
  23. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, Bioresource Technology, 271, pp. 360-367. DOI:10.1016/j.biortech.2018.09.129.
  24. Leonties, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov, L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654.
  25. Mohan, Ch., Yadav, S., Uniyal, V., Takaeva, N. & Kumari, N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081.
  26. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach - A Review, Water, 14, 24, 4068. DOI:10.3390/w14244068.
  27. Niladevi, K. & Prema, P. (2007). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x.
  28. Olajuyigbe, F.M., Adetuyi, O.Y. & Fatokun, C.O. (2018). Characterization of free and immobilized laccase from Cyberlindera fabianii and application in degradation of bisfenol A, International Journal of Biological Macromolecules, 125, pp. 856-864. DOI:10.1016/j.ijbiomac.2018.12.106.
  29. Rane, A. & Joshi, S.J. (2021). Biodecolorization and Biodegradation of Dyes: A Review, The Open Biotechnology Journal, 15, Suppl-1, M4, pp. 97-108. DOI:10.2174/1874070702115010097.
  30. Rodriguez-Couto, S. & Herrera, J.L.T. (2006). Industrial and biotechnological applications of laccases: a review, Biotechnology Advances, 24, 5, pp. 500-513. DOI:10.1016/j.biotechadv.2006.04.003.
  31. Saoudi, O. & Ghaouar, N. (2019). Biocatylytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone, International Journal of Biological Macromolecules, 128, pp.681-691. DOI:10.1016/j.ijbiomac.2019.01.199.
  32. Shokri, Z., Seidi, F., Karami, S., Li, Ch., Saeb, M.R. & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation, Carbohydrate Polymers, 262, 117963. DOI:10.1016/j.carbpol.2021.117963.
  33. Teerapatsakul, Ch., Parra, R., Keshavarz, T. & Chitradon, L. (2017). Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate, International Biodeterioration & Biodegradation, 120, pp. 52-57. DOI:10.1016/j.ibiod.2017.02.001.
  34. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2021) Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  35. Vautier, M., Guillard, C. & Herrmann, J.M. (2001). Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, Journal of Catalysis, 201, pp. 46-59. DOI:10.1006/jcat.2001.3232.
  36. Wang, J.; Lu, L. & Feng, F. (2017). Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis, Catalysts, 7, 275. DOI:10.3390/catal7090275.
  37. Zdarta, J., Meyer, A.S., Jesionowski, T. & Pinelo, M. (2018). Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Advances in Colloid and Interface Science, 258, pp.1-20. DOI:10.1016/j.cis.2018.07.004.
  38. Zein, R., Hevira, L., Zilfa, Rahmayeni, Fauzia, S. & Ighalo J.O. (2022). The Improvement of Indigo Carmine Dye Adsorption by Terminalia catappa Shell Modified with Broiler Egg White, Biomass Conversion and Biorefinery, 13, pp. 13795-13812. DOI:10.1007/s13399-021-02290-3.
  39. Zhou, W., Zhang, W. & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI:10.1016/j.cej.2020.126272.
Go to article

Authors and Affiliations

Małgorzata Białowąs
1
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2
Magdalena Cempa
1
ORCID: ORCID

  1. Central Mining Institute – National Research Institute, Katowice, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland

Authors and Affiliations

Tomasz Janik
1
Wojciech Czuba
2

  1. Institute of Geophysics, Polish Avcademy of Sciences
  2. Institute of Geophysics, Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

Significant increasing trends in the air temperature were found both in the surface station of Svalbard Lufthavn and in the low-tropospheric temperature field over the Atlantic Arctic. The variability in temperature, as well as the multiannual trend, is at least three times bigger in the winter months than in summer. An attempt was made to explain the high day-to-day variability in the winter air temperature by the daily variability in the regional pressure field and circulation conditions. Six regional-scale circulation patterns were found by applying the principal component analysis to the mean daily sea level pressure (SLP) reanalysis data and their impact on the low-tropospheric air temperature variability was determined. A bipolar pattern, with a positive center over Greenland and a negative center over the White Sea, dominates in the region and strongly influences the air temperature field at 850 hPa geopotential height (correlation coefficients up to –0.65). The second pattern that impacts the temperature field in the Atlantic Arctic is the one with a center of action over Svalbard (mostly a low-pressure center in winter), strongly influencing the air temperature over the Barents Sea. The remaining circulation types, explaining only 5–8% of the total variance of the SLP field each, do not modify significantly the air temperature at 850 hPa geopotential level over the Atlantic Arctic, and none of the circulation types seems to influence the multiannual temperature trends.
Go to article

Authors and Affiliations

Ewa Bednorz
1
ORCID: ORCID
Arkadiusz M. Tomczyk
1
ORCID: ORCID
Bartosz Czernecki
1
ORCID: ORCID
Miłosz Piękny
1

  1. Department of Meteorology and Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61–680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Although Svalbard archipelago is considered as a natural laboratory for the environmental studies in the High Arctic, the knowledge on the transport and diversity of bioaerosols (aeroplankton) in the atmosphere is poorly recognized. To improve our knowledge about the aeroplankton over the Svalbard, we conducted a short-term study in the central part of the archipelago with a special focus on two important, but understudied in this region, airborne components: pollen grains and invertebrates. Aerobiological traps, three impact-type samplers and 12 pitfall-type water traps, were operated for a week of July 2022 at three sites located near Longyearbyen, the largest settlement of Svalbard. These sites, that is, Platåfjellet, Longyearbreen Glacier, and glacier valley, varied in the local sources of biological material and altitude. In total, 11 pollen taxa were isolated from pollen impactors. Most of them (68%) belonged to non-native plants, for example, Alnus sp., Betula sp., Picea abies, or Pinus sylvestris-type pollen. In pitfall-type water traps, we found invertebrates representing Acari (Prostigmata, Endeostigmata and Oribatida), Collembola ( Agrenia bidenticulata), Tardigrada (Eutardigrada) and Rotifera (Bdelloidea). The most taxa-rich site, both for pollen and invertebrates, was Platåfjellet, characterized by open landscape dominated by small cryptogams, mainly lichens and mosses, and sparse patches of vascular plants. Even though our sampling was short-term, we found diverse taxa belonged to native and alien species, indicating that both local and long-range transport shape aeroplankton composition and seeding of Arctic habitats. Long-term aerobiological monitoring in diverse ecosystems of Svalbard is needed to understand spatio-temporal influence of aeroplankton on ecosystems.
Go to article

Authors and Affiliations

Łukasz Grewling
1
ORCID: ORCID
Ronald Laniecki
1
Mikołaj Jastrzębski
1
Julia Borkowska
1
Zofia Marek
1
Katarzyna Kondrat
1
Zofia Nowak
1
Michał Zacharyasiewicz
1
Marcelina Małecka
1
Barbara Valle
2 3
ORCID: ORCID
Beata Messyasz
1
ORCID: ORCID
Krzysztof Zawierucha
1
ORCID: ORCID

  1. Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
  2. Department of Life Sciences, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
  3. NBFC, National Biodiversity Future Center, Palermo, Italy
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the potential of combining satellite radar data and neural networks for quasi-automatic detection of glacier grounding lines. The conducted research covered five years and was carried out in the area of the Amery Ice Shelf. It has a very complex shoreline, so its grounding-line location is uncertain. Thus, it has always been the subject of much research. The main objective of our work was to find out if Synthetic Aperture Radar data combined with a deep learning implementation would enable rapid detection of ice shelf grounding lines over large areas. For this purpose, 290 radar images from the Sentinel-1 satellite covering 46 000 km2 were used. Processed by the Differential Interferometry of Synthetic Aperture Radar four-pass method, the images formed a time-consistent series between 2017 and 2021. As a result of performed calculations, a total length of 1280 km of grounding line was determined. They were validated by comparing with other independent data sources based on manual measurements. It has been demonstrated that the combination of satellite radar data and automated data processing allows for obtaining high-precision results continuously in a very short time. Such an approach allows monitoring of grounding line position in the long term with intervals of less than one week. It enables analysis of the dynamics changes with unprecedented frequency and the identification of patterns.
Go to article

Authors and Affiliations

Michał Tympalski
1
ORCID: ORCID
Marek Sompolski
1
ORCID: ORCID
Anna Kopeć
1
ORCID: ORCID
Wojciech Milczarek
1
ORCID: ORCID

  1. Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Proteases play a key role in cell defense mechanisms to cold-induced oxidative stress. Data on the relationship between cold stress, growth phase, and temperature preferences of the fungal strains isolated from different habitats are very scarce. Here, we report changes in the intra- and extracellular protease activity of three fungal Penicillium strains (two Antarctic and one temperate) under transient temperature downshift during exponential- and stationary growth phases. The results indicated enhanced enzyme levels in both growth phases depending on the degree of stress and strain thermal class. In order to explain the obtained data, we compared them with our previous results on the protein carbonyl content, accumulation of oxidative-stress biomarkers, and antioxidant enzyme defense in the same three fungal strains. The cell response was affected by the temperature preference of the strain, but not by the climatic distance between the locations of isolation.
Go to article

Authors and Affiliations

Jeny Miteva-Staleva
1
ORCID: ORCID
Ekaterina Krumova
1
ORCID: ORCID
Boryana Spasova
1
ORCID: ORCID
Maria Angelova
1
ORCID: ORCID

  1. Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev str. 26, 1113 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

The continuous process of urbanization and climate change has led to severe urban heat island (UHI) effects. Constructing parks with cooling capabilities is considered an effective measure to alleviate UHI effects. However, most studies only quantify the cooling effect from a maximum value perspective, lacking a measure of temperature diffusion in space. This study combines the perspectives of maximum value and accumulation to define a cold island index, quantifying the cooling effect of 40 urban parks in the main urban area of Xi'an city. The results show that, on average, urban parks can reduce the surrounding environment by approximately 2.3℃, with a cooling range of about 127.1ha, which is three times the park area. Different factors drive the measurement of the cooling effect using different cold island indexes, but all indexes are highly correlated with green space area. There are significant differences in the cooling effect among different types of parks, and overall, ecological parks have the best cooling effect. The directional spread of internal cold islands in parks is most related to park shape, while external spread is related to surrounding green spaces. The research results have practical value in the construction of parks with cooling effects and the sustainable development of cities in urban planning processes..
Go to article

Bibliography

  1. Algretawee, H., Rayburg, S. & Neave, M. (2019). Estimating the effect of park proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecological Engineering, 138, pp. 374-390. DOI:10.1016/j.ecoleng.2019.07.034
  2. Anjos, M. & Lopes, A. (2017). Urban heat island and park Cool island intensities in the coastal city of Aracaju, north-eastern Brazil. Sustainability, 9, 8, pp. 1379. DOI:10.3390/su9081379
  3. Chatterjee, R., Singh, N., Thapa, S., Sharma, D. & Kumar, D. (2017). Retrieval of land surface temperature (LST) from Landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. International Journal of Applied Earth Observation and Geoinformation, 58, pp. 264-277. DOI:10.1016/j.jag.2017.02.017
  4. Chen, M., Jia, W., Yan, L., Du, C. & Wang, K. (2022). Quantification and mapping cooling effect and its accessibility of urban parks in an extreme heat event in a megacity. Journal of Cleaner Production, 334, pp. 130252. DOI:10.1016/j.jclepro.2021.130252
  5. Gao, M., Chen, F., Shen, H. & Li, H. (2020). A tale of two cities: Different urban heat mitigation efficacy with the same strategies. Theoretical and Applied Climatology, 142, pp. 1625-1640. DOI:10.1007/s00704-020-03390-2
  6. Gao, Z., Zaitchik, B.F., Hou, Y. & Chen, W. (2022). Toward park design optimization to mitigate the urban heat Island: Assessment of the cooling effect in five US cities. Sustainable Cities and Society, 81, pp. 103870. DOI:10.1016/j.scs.2022.103870
  7. Hong, C., Wang, Y., Gu, Z. & Yu, W. C. (2022). Cool facades to mitigate urban heat island effects. Indoor and Built Environment, 31, 10, pp. 2373-2377. DOI:10.1177/1420326x221115369
  8. Huang, M., Cui, P. & He, X. (2018). Study of the cooling effects of urban green space in Harbin in terms of reducing the heat island effect. Sustainability, 10, 4, pp. 1101. DOI:10.3390/su10041101
  9. Huang, X. & Wang, Y. (2019). Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS Journal of Photogrammetry and Remote Sensing, 152, pp. 119-131. DOI:10.1016/j.isprsjprs.2019.04.010
  10. Li, H., Zhou, Y., Jia, G., Zhao, K. & Dong, J. (2022). Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geoscience Frontiers, 13, 1, 101141. DOI: 10.1016/j.gsf.2021.101141
  11. Liao, W., Guldmann, J.-M., Hu, L., Cao, Q., Gan, D. & Li, X. (2023). Linking urban park cool island effects to the landscape patterns inside and outside the park: A simultaneous equation modeling approach. Landscape and Urban Planning, 232, pp. 104681. DOI:10.1016/j.landurbplan.2022.104681
  12. Malakar, N. K., Hulley, G. C., Hook, S.J., Laraby, K., Cook, M. & Schott, J.R. (2018). An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Transactions on Geoscience and Remote Sensing, 56, 10, pp. 5717-5735. DOI:10.1109/tgrs.2018.2824828
  13. Mandeli, K. (2019). Public space and the challenge of urban transformation in cities of emerging economies: Jeddah case study. Cities, 95, pp. 102409. DOI:10.1016/j.cities.2019.102409
  14. Mashu & Puzhi (2020). Research on surface temperature inversion algorithm based on Landsat8 data: A case study of Urumqi. Computer and Digital Engineering, 48, 10, pp. 2316-2320. DOI:10.1088/1755-1315/450/1/012031
  15. Ozgeldinova, Z., Zhanguzhina, A. & Ulykpanova, M. (2023). Spatial and temporal analysis of landscape dynamics in the Kostanay region under an-thropogenic impacts. Archives of Environmental Protection, 49, pp.80-94. DOI:10.24425/aep.2023.148687
  16. Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J. & Wu, J. (2021). How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sensing of Environment, 252, 112135. DOI:10.1016/j.rse.2020.112135
  17. Qian, W. & Li, X. (2023). A cold island connectivity and network perspective to mitigate the urban heat island effect. Sustainable Cities and Society, 94, 104525. DOI:10.1016/j.scs.2023.104525
  18. Qiu, J., Li, X. &Qian, W. (2023). Optimizing the spatial pattern of the cold island to mitigate the urban heat island effect. Ecological Indicators, 154, pp. 110550. DOI:10.1016/j.ecolind.2023.110550
  19. Ruochen, Y., Jia, X., Dan, Z.& Yang, H. (2022). Measuring the Cooling Benefits of Urban Parks and Climate Adaptation Design Strategies. Chinese Landscape Architecture, 6, pp. 121. DOI:10.3390/ani12172251
  20. Saaroni, H., Amorim, J. H., Hiemstra, J.& Pearlmutter, D. (2018). Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban climate, 24, pp. 94-110. DOI:10.1016/j.uclim.2018.02.001
  21. Sun, C., Wang, Y. & Zhu, Z. (2023). Urbanization and residents’ health: from the perspective of environmental pollution. Environmental Science and Pollution Research, 30, 25, pp.1-19. DOI:10.1007/s11356-023-26979-2
  22. Toparlar, Y., Blocken, B., v. Maiheu, B. & Van Heijst, G. (2018). The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium. International Journal of Climatology, 38, pp. e303-e322. DOI:10.1002/joc.5371
  23. Wang, W., Liu, K., Tang, R. & Wang, S. (2019). Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Physics and Chemistry of the Earth, Parts a/b/c, 110, pp. 168-175. DOI:10.1016/j.pce.2019.01.002
  24. Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M. & La Rosa, D. (2019). Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694, 133742. DOI:10.1016/j.scitotenv.2019.133742
  25. Wu, P., Zhong, K., Wang, L., Xu, J., Liang, Y., Hu, H., Wang, Y. & Le, J. (2022). Influence of underlying surface change caused by urban renewal on land surface temperatures in Central Guangzhou. Building and Environment, 215, 108985. DOI:10.1016/j.buildenv.2022.108985
  26. Xiao, X. D., Dong, L., Yan, H., Yang, N. & Xiong, Y. (2018). The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40, pp. 428-439. DOI:10.1016/j.scs.2018.04.002
  27. Yao, X., Yu, K., Zeng, X., Lin, Y., Ye, B., Shen, X & Liu, J. (2022). How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. Journal of Cleaner Production, 330, 129852. DOI:10.1016/j.jclepro.2021.129852
  28. Zhou, Y., Zhao, H., Mao, S., Zhang, G., Jin, Y., Luo, Y., Huo, W., Pan, Z., An, P. & Lun, F. (2022). Studies on urban park cooling effects and their driving factors in China: Considering 276 cities under different climate zones. Building and Environment, 222, 109441. DOI:10.1016/j.buildenv.2022.109441
  29. Zhu, X., Wang, X., Yan, D., Liu, Z. & Zhou, Y. (2019). Analysis of remotely-sensed ecological indexes' influence on urban thermal environment dynamic using an integrated ecological index: a case study of Xi’an, China. International journal of remote sensing, 40, 9, pp. 3421-3447. DOI:10.1080/01431161.2018.1547448
Go to article

Authors and Affiliations

Yao Zhang
1
Qian Wang
1
Yaqian Kong
1
Jing Quan
1
Yuxin Zhang
1
Yongjian Zhang
1

  1. Shaanxi University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The waste production is closely related with human activity. Various approaches have been applied to manage and reduce its increasing volume (Paranjpe et al. 2023). One of the possibilities that comply with the assumptions of circular economy is utilization of wastes in anaerobic digestion (AD) process. This technology is common worldwide and it is recognized as the cost-effective methods of energy generation that also allow for nutrient recovery, as well as effective waste management (Alharbi et al. 2023). The biogas generated within this process is considered as a multifunctional renewable source that might be a promising alternative to the depleting traditional fuels. It finds various applications such as heat and power generation, fuel in automobiles, and substrate in chemical industry (Shitophyta et al. 2022, Pradeshwaran 2024). Typically, biogas contains 50–70% of CH4, 30–50% of CO2, and 1–10% of other trace gases like H2, H2S, CO, N2. Its composition mainly depends on the feedstock characteristics, operational conditions, and adopted technology (Gani et al. 2023, Archana et al. 2024). Considering further application, the priority action should be increasing its volume and methane content. There are several strategies to achieve these goals, including implementing codigestion strategy, adding additional component to the main substrate, introducing trace elements essential in AD, pretreatment strategies, and introducing enzymes and microbial strains to digesters (Zhang et al. 2019). Each method has limits related to the implementation costs, changes in the adopted technology, operator training needs, and additional energy input, which might negatively influence the energy balance of wastewater treatment plants (WWTPs) (Meng et al. 2022). Therefore, recent scientific attention has focused on combining various strategies to achieve intended goals. Moreover, such combinations might allow for an effective utilization of various wastes, the earlier use of which in AD was difficult. Orange waste could be an example of such a substrate. The previous studies indicated that its application in AD resulted in poor process efficiency, mainly due to the presence of limonene, recognized as the main inhibitor of biological activity (Calabro et al. 2020, Bouaita et al. 2022). In this study, the novel concept of implementing solidified carbon dioxide (SCO2) in the anaerobic co-digestion of municipal sewage sludge (SS) and orange peel waste (OPW) has been proposed. This approach may help overcome the disadvantages of the two-component AD of these wastes. Importantly, such studies have not been conducted thus far. However, the recent studies indicated that application of SCO2 to aerobic granular sludge improved biogas and methane yields and also enhanced the kinetics of biogas production (Kazimierowicz et al. 2023 a,b). Importantly, SCO2 might be generated in biogas upgrading technologies (Yousef 2019). Such solution is consistent with the principles of the circular economy and contributes to reducing the carbon footprint of WWTPs.
Go to article

Bibliography

  1. Alharbi, M., Alseroury, F. & Alkthami, B. (2023). Biogas Production from Manure of Camel and Sheep Using Tomato and Rumen as Co-Substrate. Journal of Ecological Engineering, 24(11), pp. 54–61. DOI:10.12911/22998993/170984
  2. Archana, K., Visckram, A., Senthil Kuma, P., Manikandan, S., Saravanan, A. & Natrayan, L. (2024). A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel, 358, 130298. DOI:10.1016/j.fuel.2023.130298
  3. Awasthi, M.K., Lukitawesa, L., Duan, Y., Taherzadeh, M.J. & Zhang, Z. (2022). Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors. Fuel, 319, 123812. DOI:10.1016/j.fuel.2022.123812
  4. Bouaita, R., Derbal, K., Panico, A., Iasimone, F., Pontoni, L., Fabbricino, M. & Pirozzi, F. (2022). Methane production from anaerobic co-digestion of orange peel waste and organic fraction of municipal solid waste in batch and semi-continuous reactors. Biomass and Bioenergy, 160, Volume 160, 106421. DOI:10.1016/j.biombioe.2022.106421
  5. Calabrò, P.S., Fazzino, F., Sidari, R. & Zema, D.A. (2020). Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renewable Energy, 154, pp. 849–862. DOI:10.1016/j.renene.2020.03.047
  6. Fisher, K. & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology, 19, pp. 156–164. DOI:10.1016/j.renene.2020.03.047
  7. Gani, A., Mamat, R., Sudhakar, K., Rosdi, S.M., & Husin, H. (2023). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, pp. 57–69. DOI: 10.24425/aep.2022.142690
  8. González-Mas, M.C., Rambla, J.L., López-Gresa, M.P., Blázquez, M.A. & Granell, A. (2019). Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Frontiers in Plant Science, 10, 12. DOI: 10.3389/fpls.2019.00012.
  9. Grübel, K. & Machnicka, A. (2020) The Use of Hybrid Disintegration of Activated Sludge to Improve Anaerobic Stabilization Process. Ecological Engineering & Environmental Technology, 21, pp. 1–8. DOI:10.12912/23920629/119104.
  10. Hakimi, M., Manogaran, M., Shamsuddin, R.B., Mohd Johari, S.A., Abdalla, M., Hassan, M. & Soehartanto, T. (2023). Co-anaerobic digestion of sawdust and chicken manure with plant herbs: Biogas generation and kinetic study. Heliyon, 9(6), 17096. DOI:10.1016/j.heliyon.2023.e17096.
  11. Howel, G., Bennett, C.J. & Materić, D. (2019). A comparison of methods for early prediction of anaerobic biogas potential on biologically treated municipal solid waste. Journal of Environmental Management, 232, pp. 887–894. DOI:10.1016/j.jenvman.2018.11.137.
  12. Hu, K., Jiang, J., Zhao, Q., Lee, D., Wang, K. & Qiu, W. (2011). Conditioning of wastewater sludge using freezing and thawing: role of curing. Water research, 45 18, pp. 5969–5976. DOI: 10.1016/j.watres.2011.08.064.
  13. Kazimierowicz, J., Dębowski, M. & Zieliński, M. (2023a). Long-Term Pre-Treatment of Municipal Sewage Sludge with Solidified Carbon Dioxide (SCO2)—Effect on Anaerobic Digestion Efficiency. Applied Sciences, 13, 3075. DOI:10.3390/app13053075.
  14. Kazimierowicz, J., Dębowski, M., Zieliński, M., Bartkowska, I., Wasilewski, A., Łapiński, D. & Ofman, P. (2023b). The Use of Solidified Carbon Dioxide in the Aerobic Granular Sludge Pre-Treatment before Thermophilic Anaerobic Digestion. Applied Sciences, 13, 7864. DOI: 10.3390/app13137864.
  15. Meng, Y., Li, Y., Chen, L. & Han, R. (2022). Application of response surface methodology
  16. to improve methane production from jerusalem artichoke straw. Archives of Environmental Protection, 48, pp. 70–79. DOI: 10.24425/aep.2022.142691.
  17. Millati, R., Wikandari, R., Ariyanto, T., Putri, R.U. & Taherzadeh, M.J. (2020). Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresource Technology, 122998. DOI:10.1016/j.biortech.2020.122998.
  18. Montusiewicz, A., Lebiocka, M., Rożej, A., Zacharska, E. & Pawłowski, L. (2010). Freezing/thawing effects on anaerobic digestion of mixed sewage sludge. Bioresource Technology, 101 10, pp. 3466–3473. DOI:10.1016/j.biortech.2009.12.125.
  19. Nazari, L., Yuan, Z., Santoro, D., Sarathy, S.R., Ho, D., Batstone D.J., Xu C.C. & Ray, M.B. (2017). Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water research, 113, pp. 111–123. DOI: 10.1016/j.watres.2016.11.055.
  20. Paranjpe, A., Saxena, S. & Jain, P. (2023). A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge. Journal of Environmental Management, 338, 117733. DOI:10.1016/j.jenvman.2023.117733.
  21. Phalakornkule, C., Nuchdang, S., Khemkhao, M., Mhuantong, W., Wongwilaiwalin, S., Tangphatsornruang, S., Champreda V., Kitsuwan, J. & Vatanyoopaisarn, S. (2017). Effect of freeze-thaw process on physical properties, microbial activities and population structures of anaerobic sludge. Journal of Bioscience and Bioengineering, 123 , pp. 474–481. DOI:10.1016/j.jbiosc.2016.11.005.
  22. Pradeshwaran, V., Chen, W., Saravanakumar, A., Suriyaprakash, R. & Selvarajoo, A. (2024). Biocatalyst enhanced biogas production from food and fruit waste through anaerobic digestion. Biocatalysis and Agricultural Biotechnology, 55, 102975. DOI:10.1016/j.bcab.2023.102975.
  23. Purandare, A., Verbruggen, W. & Vanapalli, S. (2023). Experimental and Theoretical Investigation of the Dry Ice Sublimation Temperature for Varying Far-Field Pressure and CO2 Concentration. International Communications in Heat and Mass Transfer, 148, 107042. DOI:10.1016/j.icheatmasstransfer.2023.107042
  24. Rokaya, B., Kerroum, D., Hayat, Z., Panico, A., Ouafa, A., & Pirozzi, F. (2019). Biogas production by an anaerobic digestion process from orange peel waste and its improvement by limonene leaching: Investigation of H2O2 pre-treatment effect. Energy Sources Part A-recovery Utilization and Environmental Effects, pp. 1–9. DOI:10.1080/15567036.2019.1692975.
  25. Ruiz, B. & Flotats, X. (2014). Citrus essential oils and their influence on the anaerobic 721 digestion process: an overview. Waste Management, 34(11), pp. 2063–2079. DOI:10.1016/j.wasman.2014.06.026.
  26. Serrano, A., Siles López, J. A., Chica, A. F., Martín, M. A., Karouach, F., Mesfioui, A. & El Bari, H. (2014). Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environmental Technology, 35(5-8), pp. 898–906. DOI:10.1080/09593330.2013.855822.
  27. Shitophyta, L. M., Padya, S. A., Zufar, A. F. & Rahmawati, N. (2022). The Impact of Alkali Pretreatment and Organic Solvent Pretreatment on Biogas Production from Anaerobic Digestion of Food Waste. Journal of Ecological Engineering, 23(12), pp. 179–188. DOI:10.12911/22998993/155022.
  28. Szaja, A, Golianek, P. & Kamiński, M. (2022a). Process Performance of Thermophilic Anaerobic Co-Digestion of Municipal Sewage Sludge and Orange Peel. Journal of Ecological Engineering, 23(8), pp. 66–76. DOI:10.12911/22998993/150613
  29. Szaja, A., Montusiewicz, A., Pasieczna-Patkowska, S. & Lebiocka, M. (2022b.) Technological and Energetic Aspects of Multi-Component Co-Digestion of the Beverage Industry Wastes and Municipal Sewage Sludge. Energies, 15, 5395. DOI:10.3390/en15155395.
  30. Wu, D., Li, L., Peng, Y., Yang, P., Peng, X., Sun, Y. & Wang, X. (2021). State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis. Renewable & Sustainable Energy Reviews, 148, 111260. DOI:10.1016/J.RSER.2021.111260.
  31. Yousef, A.M., El-Maghlany, W.M., Eldrainy, Y.A. & Attia, A. (2019). Upgrading Biogas to Biomethane and Liquid CO2: A Novel Cryogenic Process. Fuel, 251, pp. 611–628. DOI:10.1016/J.FUEL.2019.03.127.
  32. Zawieja, I.E. (2019). The Course of the Methane Fermentation Process of Dry Ice Modified Excess Sludge. Archives of Environmental Protection, 45, pp. 50–58. DOI:10.24425/aep.2019.126421.
  33. Zhang, L., Loh, K.C. & Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports, 5, pp. 280–296. DOI:10.1016/j.biteb.2018.07.005.
Go to article

Authors and Affiliations

Aleksandra Szaja
1
ORCID: ORCID
Izabela Bartkowska
2

  1. Lublin University of Technology, Faculty of Environmental Engineering, Lublin, Poland
  2. Bialystok University of Technology, Department of Water Supply and Sewage Systems,Faculty of Civil Engineering and Environmental Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to the widespread presence and harmfulness of heavy metals in the environment, scholars around the world have evaluated the exposure characteristics and health risks of heavy metals. To understand the status, hotspots, and development treads of heavy metal health risk assessment research, we used bibliometric analysis tools to conduct scientometric analysis of the literature related to the health risk assessment of heavy metals in the Web of Science database from 2000 to 2022. The analysis results indicate that research related to heavy metal health risk assessment is rapidly developing in both developed and developing countries. China’s significant international influence in this field is worth noting, as there are many publications and highly cited documents related to China. France and other developed countries also play an important role in this field due to their high centrality and strong bursts. The results of co-citation cluster analysis and keyword co-occurrence analysis indicate that in the past two decades, the primary research domains and hotspots of heavy metal health risk assessment have been the study of heavy metals in soil, dust, drinking water, vegetables, fish, and sediment. There is a specific focus on bioaccumulation, bioavailability, source apportionment, and spatial distribution of heavy metals. The main types of heavy metals studied are lead, cadmium, mercury, and zinc. The results of the bursts keywords analysis suggest that future research trends may focus more on the health risks of heavy metals in different functional areas of cities.
Go to article

Bibliography

  1. Alam, A., Chaudhry, M. N., Ahmad, S. R., Batool, A., Mahmood, A. & Al-Ghamdi, H. A. (2021). Application of EASEWASTE model for assessing environmental impacts from solid waste landfilling. Archives of Environmental Protection. 47(4), pp. 84–92, DOI:10.24425/aep.2021.139504
  2. Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 6730305. DOI: 10.1155/2019/6730305
  3. Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Laing, G. D. & Rinklebe, J. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, pp. 192–200. DOI: 10.1016/j.jenvman.2016.04.036
  4. Aoshima, K. (2012). Itai-itai disease: cadmium-induced renal tubular osteomalacia-current situations and future perspectives. Japanese Journal of Hygiene, 67, pp. 455–463. DOI: 10.1265/jjh.67.455
  5. Börner, K., Chen, C. & Boyack K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, pp. 179–255. DOI:10.1002/aris.1440370106
  6. Cai, M., An, C. & Guy, C. (2021). A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental impliations. Renewable and Sustainable Energy Reviews, 149, 111317. DOI:10.1016/j.rser.2021.111317
  7. Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Sun, C., He, B. & Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, pp. 1001–1009. DOI:10.1016/j.scitotenv.2013.11.124
  8. Chen, C. (2005). The centrality of pivotal points in the evolution of scientific networks. In Proceedings of the 10th international conference on Intelligent user interfaces (IUI '05). Association for Computing Machinery, New York, USA, pp. 98–105. DOI:10.1145/1040830.1040859
  9. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359–377. DOI:10.1002/asi.20317
  10. Chen, C., Ibekwe-SanJuan F. & Hou J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), pp. 1386–1409. DOI:10.1002/asi.21309
  11. Chen, C., Hu, Z., Liu, S. & Tseng, H. (2012). Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), pp. 593–608. DOI:10.1517/14712598.2012.674507
  12. Chen, C., Dubin, R. & Kim, M. C. (2014). Orphan drugs and rare diseases: a scientometric review (2000–2014). Expert Opinion on Orphan Drugs, 2(7), pp. 709–724. DOI:10.1517/21678707.2014.920251
  13. Chen, H., Zheng, C., Tu, C. & Zhu, Y. (1999). Heavy metal pollution in soils in China: status and countermeasures. Ambio, 28(2), pp. 130–134. DOI:10.1080/027868299304679
  14. Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, pp. 143–153. DOI:10.1016/j.scitotenv.2015.01.025
  15. Chen, X., Li, F., Zhang, J., Liu, S., Ou, C., Yan, J. & Sun, T. (2021). Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: a systematic review. Science of the Total Environment, 785, 147180. DOI:10.1016/j.scitotenv.2021.147180
  16. Cui, Y., Mou, J. & Liu, Y. (2018). Knowledge mapping of social commerce research: a visual analysis using CiteSpace. Electronic Commerce Research, 18, pp. 837–868. DOI:10.1007/s10660-018-9288-9
  17. De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A. & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, pp. 505–513. DOI: 0.1016/j.chemosphere.2006.05.065
  18. De Rosa, E., Montuori, P., Sarnacchiaro, P., Di Duca, F., Giovinetti, M. C., Provvisiero, D. P., Cavicchia, C. & Triassi, M. (2022). Spatiotemporal estimation of heavy metals pollution in the Mediterranean Sea from Volturno River, southern Italy: distribution, risk assessment and loads. Chemistry and Ecology, 38(4), pp. 327-355. DOI:10.1080/02757540.2022.2047950
  19. Dhital, S., Rupakheti, D., Rupakheti, M., Yin, X., Liu, Y., Mafiana, J. J., Alareqi, M. M., Mohamednour, H. & Zhang, B. (2022). A scientometric analysis of indoor air pollution research during 1990–2019. Journal of Environmental Management, 320, 115736. DOI:10.1016/j.jenvman.2022.115736
  20. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69, pp. 131–152. DOI:10.1007/s11192-006-0144-7
  21. Ellegaard, O. & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, pp. 1809–1831. DOI:10.1007/s11192-015-1645-z
  22. Eslami, H., Esmaeili, A., Razaeian, M., Salari, M., Hosseini, A. N., Mobini, M. & Barani, A. (2022). Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geoscience Frontiers, 13, 101276. DOI:10.1016/j.gsf.2021.101276
  23. European Parliament and Council of the European Union (2003). Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, pp. 19–23.
  24. Fakhri, Y., Daraei, H., Hoseinvandtabar, S., Mehri, F., Mahmudiono, T. & Khaneghah, A. M. (2022). The concentration of the potentially toxic element (PTEs) in black tea (Camellia sinensis) consumed in Iran: a systematic review, meta-analysis, and probabilistic risk assessment study. International Journal of Environmental Analytical Chemistry, DOI:10.1080/03067319.2022.2118596.
  25. Fan, P., Lu, X., Yu, B., Fan, X., Wang, L., Lei, K., Yang, Y., Zuo, L. & Rinklebe, J. (2022). Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust. Environment International, 160, 107073. DOI:10.1016/j.envint.2021.107073
  26. Fathabad, A. E., Shariatifar, N., Moazzen, M., Nazmara, S., Fakhri, Y., Alimohammadi, M., Azari, A. & Khaneghah, A. M. (2018). Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food and Chemical Toxicology, 115, pp. 436–446. DOI:10.1016/j.fct.2018.03.044
  27. Fei, X., Lou, Z., Xiao, R., Lv, X. & Christakos, G. (2023). Contamination and health risk assessment of heavy metal pollution in soils developed from different soil parent materials. Exposure and Health, 15, pp. 395–408. DOI:10.1007/s12403-022-00498-w
  28. Ferreira-Baptista, L. & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, pp. 4501–4512. DOI:10.1016/j.atmosenv.2005.03.026
  29. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), pp. 35–41. DOI: 10.2307/3033543
  30. Geng, Y., Zhu, R. & Maimaituerxun, M. (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, pp. 76668–76686. DOI:10.1007/s11356-022-23283-3
  31. Gong, Y., Zhao, D. & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, pp. 440–460. DOI:10.1016/j.watres.2018.10.024
  32. Grochowska, J. K., Tandyrak, R., Augustyniak, R., Łopata, M., Popielarczyk, D. & Templin, T. (2021). How we can disrupt ecosystem of urban lakes – pollutants of bottom sediment in two shallow water bodies. Archives of Environmental Protection, 47(4), pp. 40–54, DOI:10.24425/aep.2021.139501
  33. Guo, K., Liu, Y.F., Zeng, C., Chen, Y.Y. & Wei, X.J. (2014). Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 64(5), pp. 377–391. DOI:10.1080/09064710.2014.913679
  34. Håkanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, pp. 975–1001. DOI:10.1016/0043-1354(80)90143-8
  35. Han, M., Yang, F. & Sun, H. (2021). A bibliometric and visualized analysis of research progress and frontiers on health effects caused by PM2.5. Environmental Science and Pollution Research, 28, pp. 30595–30612. DOI:10.1007/s11356-021-14086-z
  36. Hossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei N. & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29, pp. 70686–70705. DOI:10.1007/s11356-022-22705-6
  37. Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y. & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, pp. 146–152. DOI:10.1016/j.atmosenv.2012.04.056
  38. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H. & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, pp. 1215–1221. DOI:10.1016/j.envpol.2011.01.037
  39. Huang, J., Guo, S., Zeng, G., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W. & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, pp. 49–58. DOI:10.1016/j.envpol.2018.08.038
  40. Ivaneev, A. I., Brzhezinskiy, A. S., Karandashev, V. K., Ermolin, M. S. & Fedotov, P. S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere, 321, 138142. DOI:10.1016/j.chemosphere.2023.138142
  41. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), pp. 60–72. DOI:10.2478/intox-2014-0009
  42. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, pp. 167–182. DOI:10.1093/bmb/ldg032
  43. Ji, A., Wang, F., Luo, W., Yang, R., Chen, J. & Cai, T. (2011). Lead poisoning in China: a nightmare from industrialisation. Lancet, 377(9776), pp. 1474–1476. DOI:10.1016/S0140-6736(10)60623-X
  44. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A. & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, pp. 1658–1668. DOI:10.1016/j.chemosphere.2016.11.088
  45. Khan, D. A., Qayyum, S., Saleem, S., Ansari, W. M. & Khan, F. A. (2010). Lead exposure and its adverse health effects among occupational worker's children. Toxicology and Industrial Health, 26(8), pp. 497 –504. DOI:10.1177/0748233710373085
  46. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, pp. 686–692. DOI:10.1016/j.envpol.2007.06.056
  47. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7, pp. 373–397. DOI:10.1023/A:1024940629314
  48. Komárek, M., Ettler, V., Chrastný, V. & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, pp. 562–577. DOI:10.1016/j.envint.2007.10.005
  49. Kumari, M. & Bhattacharya, T. (2023). A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environmental Development, 46, 100859. DOI:10.1016/j.envdev.2023.100859
  50. Li, F., Yan, J., Wei, Y., Zeng, J., Wang, X., Chen, X., Zhang, C., Li, W., Chen, M. & Lv, G. (2020). PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. Journal of Cleaner Production, 286, 124967. DOI:10.1016/j.jclepro.2020.124967
  51. Li, M., Wang, Y., Xue, H., Wu, L., Wang, Y., Wang, C., Gao, X., Li, Z., Zhang, X., Hasan, M., Alruqi, M., Bokhari, A. & Han, N. (2022). Scientometric analysis and scientific trends on microplastics research. Chemosphere, 304, 135337. DOI:10.1016/j.chemosphere.2022.135337
  52. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z. & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, pp. 843–853. DOI:10.1016/j.scitotenv.2013.08.090
  53. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F. & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of the Total Environment, 463–464, pp. 530–540. DOI:10.1016/j.scitotenv.2013.06.064
  54. Liu, Z., Yin, Y., Liu, W. & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics, 103, pp. 135–158. DOI:10.1007/s11192-014-1517-y
  55. López, L. A., Arce, G., Kronenberg, T. & Rodrigues, J. F. D. (2018). Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. Journal of Cleaner Production, 175, pp. 599–611. DOI:10.1016/j.jclepro.2017.12.056
  56. Lu, X., Zhang, X., Li, L.Y. & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, pp. 27–34. DOI:10.1016/j.envres.2013.11.007
  57. Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E. & Zhang, J. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878. DOI:10.1016/j.jhazmat.2021.126878
  58. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  59. Mahmudiono, T., Fakhri, Y., Adiban, M., Sarafraz, M. & Mohamadi, S. (2023). Concentration of potential toxic elements in canned tuna fish: systematic review and health risk assessment. International Journal of Environmental Health Research, DOI:10.1080/09603123.2023.2264205
  60. Masri, S., LeBrón, A. M. W., Logue, M. D., Valencia, E., Ruiz, A., Reyes, A. & Wu, J. (2021). Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: implications for health and environmental justice. Environmental Science: Processes & Impacts, 23, pp. 812–830. DOI:10.1039/d1em00007a
  61. Men, C., Liu, R., Xu, F., Wang, Q., Guo, L. & Shen, Z. (2018). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, pp. 138–147. DOI:10.1016/j.scitotenv.2017.08.123
  62. Merigó, J. M. & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, pp. 37–48. DOI:10.1016/j.omega.2016.12.004
  63. Muhammad, S., Shah, M.T. & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, pp. 334–343. DOI:10.1016/j.microc.2011.03.003
  64. Peng, J., Zhang, S., Han, Y., Bate, B., Ke, H. & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632. DOI:10.1016/j.scitotenv.2021.151632
  65. Qin, F., Li, J., Zhang, C., Zeng, G., Huang, D., Tan, X., Qin, D. & Tan, H. (2022). Biochar in the 21st century: a data-driven visualization of collaboration, frontier identification, and future trend. Science of the Total Environment, 818, 151774. DOI:10.1016/j.scitotenv.2021.151774
  66. Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, pp. 365–385. DOI:10.1016/j.envint.2019.01.067
  67. Sabe, M., Pillinger, T., Kaiser, S., Chen, C., Taipale, H., Tanskanen, A., Tiihonen, J., Leucht, S., Correll, C. U. & Solmi, M. (2022). Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neuroscience and Biobehavioral Reviews, 136, 104608. DOI:10.1016/j.neubiorev.2022.104608
  68. Saha, K. C. (2003). Review of arsenicosis in West Bengal, India—a clinical perspective. Critical Reviews in Environmental Science and Technology, 33(2), pp. 127–163. DOI:10.1080/10643380390814514
  69. Shahab, A., Hui, Z., Rad, S., Xiao, H., Siddique, J., Huang, L. L., Ullah, H., Rashid, A., Taha, M. R. & Zada, N. (2023). A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environmental Geochemistry and Health, 45, pp. 585–606. DOI:10.1007/s10653-022-01255-3
  70. Shaheen, N., Irfan, N. M., Khan, I. N., Islam, S., Islam, M. S. & Ahmed, M. K. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere, 152, pp. 431–438. DOI:10.1016/j.chemosphere.2016.02.060
  71. Shen, Z., Wu, H., Chen, Z., Hu, J., Pan, J., Kong, J. & Lin, T. (2022). The global research of artificial intelligence on prostate cancer: A 22-year bibliometric analysis. Frontiers in Oncology, 12, 843735. DOI:10.3389/fonc.2022.843735
  72. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society and Information Science, 24, pp. 265–269. DOI:10.1002/asi.4630240406
  73. Smith, A. H., Lingas, E. O. & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78, pp. 1093–1103. DOI:10.1146/annurev.publhealth.21.1.659
  74. Sultana, Z., Rehman, M. Y. A., Khan, H. K. & Malik, R. N. (2023). Health risk assessment associated with heavy metals through fractioned dust from coal and chromite mines in Pakistan. Environmental Geochemistry and Health, 45, pp. 1617–1633. DOI:10.1007/s10653-022-01285-x
  75. Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C. & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, pp. 636–642. DOI:10.1016/j.scitotenv.2016.02.101
  76. Urbano, T., Verzelloni, P., Malavolti, M., Sucato, S., Polledri, E., Agnoli, C., Sieri, S., Natalini, N., Marchesi, C., Fustinoni, S., Vinceti, M. & Filippini, T. (2023). Influence of dietary patterns on urinary excretion of cadmium in an Italian population: A cross-sectional study. Journal of Trace Elements in Medicine and Biology, 80, 127298. DOI:10.1016/j.jtemb.2023.127298
  77. USEPA (United States Environmental protection Agency). (1989). Risk Assessment Guidance for Superfund (RAGS): Volume I. Human Health Evaluation Manual (HHEM)–Part A, Baseline Risk Assessment. Office of Emergency and Remedial Response, Washington DC [EPA/540/1-89/002].
  78. USEPA (2008). Overview: Office of pollution prevention and Toxics laws and programs.
  79. Wang, J., Cai, Y., Yang, J. & Zhao, X. (2021). Research trends and frontiers on source appointment of soil heavy metal: a scientometric review (2000–2020). Environmental Science and Pollution Research, 28, pp. 52764–52779. DOI:10.1007/s11356-021-16151-z
  80. Wei, X., Gao, B., Wang, P., Zhou, H. & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, pp. 186–192. DOI:10.1016/j.ecoenv.2014.11.005
  81. WHO (2011). Guidelines for Drinking-water Quality, fourth ed. World Health Organization, Geneva.
  82. Wu, Q., Hu, W., Wang, H., Liu, P., Wang, X. & Huang, B. (2021). Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of the Total Environment, 780, 146557. DOI:10.1016/j.scitotenv.2021.146557
  83. Xiao, F., Li, C., Sun, J. & Zhang, L. (2017). Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on CiteSpace analysis. Frontiers in Chemistry, 5, 67. DOI:10.3389/fchem.2017.00067
  84. Xiao, Q., Zong, Y. & Lu, S. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, pp. 377–385. DOI:10.1016/j.ecoenv.2015.06.019
  85. Yan, J., Qu, Z., Li, F. & Li, H. (2021). Heavy metals in the water environment of Yangtze River Economic Belt: status, fuzzy environmental risk assessment and management. Urban Climate, 40, 100981. DOI:10.1016/j.uclim.2021.100981
  86. Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L. & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, pp. 690–700. DOI:10.1016/j.scitotenv.2018.06.068
  87. Yang, Y. & Meng, G. (2019). A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint research hotspots and frontiers since 2000. Ecological Indicators, 102, pp. 650–665. DOI:10.1016/j.ecolind.2019.03.031
  88. Yi, Y., Yang, Z. & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159, pp. 2575–2585. DOI:10.1016/j.envpol.2011.06.011
  89. Zhang, J., Jiang, L., Liu, Z., Li, Y., Liu, K., Fang, R., Li, H., Qu, Z., Liu, C. & Li, F. (2021). A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions. Journal of Cleaner Production, 300, 126824. DOI:10.1016/j.jclepro.2021.126824
  90. Zheng, N., Liu, J., Wang, Q. & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, pp. 726–733. DOI:10.1016/j.scitotenv.2009.10.075
  91. Zhong, W., Zhang, Y., Wu, Z., Yang, R., Chen, X., Yang, J. & Zhu, L. (2018). Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicology and Environmental Safety, 157, pp. 343–349. DOI:10.1016/j.ecoenv.2018.03.048
Go to article

Authors and Affiliations

Yingsen Zhang
1
Xinwei Lu
1
Sijia Deng
1
Tong Zhu
1
Bo Yu
1

  1. School of Geography and Tourism, Shaanxi Normal University, China
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to develop a mathematical model using equations of fluid mechanics that describe the dynamics of air flow in a part of the compost aerating system integrated with a stationary reactor. The results of the simulation show that adjusting the flow resistance along the entire length of the compost aerating duct, depending on the distance from the connection of the duct with the fan's pressure conduit pipe through gradually increasing the air outflow area by increasing the number of repeatable gaps, yields a uniform pressure distribution above the grate. The process parameters used for computation were relevant to composting a subscreen fraction separated from mixed municipal waste using 80 mm mesh screen (Fr<80 mm) under real conditions. Microsoft EXCEL 2010 software and STATISTICA version 13.3 by StatSoft were used for numerical and statistical analysis of the test results. The research results are presented in four tables and five figures and discussed in the text of the article. During tests performed in real conditions, various variants were tested for reactor filling level and air outflow active surfaces in subsequent grate parts (Fc (i)). It was found that the target waste layer thickness i.e. 3.0 m and Fc (i) changes, in accordance with the values of the developed model, result in a stable pressure distribution pd, amounting to 1506 Pa and 1495 Pa at the grate front and end part.
Go to article

Bibliography

  1. Bernat, K., Kulikowska D., Wojnowska-Baryła, I. & Kamińska A. (2022). Can the biological stage of a mechanical biological treatment plant that is designed for mixed municipal solid waste be successfully utilized for effective composting of selectively collected biowaste, Waste Management, 149, pp. 291-301. DOI:10.1016/j.wasman.2022.06.025
  2. Cui, C., Zhang, X. & Cai W. (2020). An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model, Appl. Energy, 264, 11473. DOI:10.1016/j.apenergy.2020.114734
  3. Frederickson, J., Boardman, C.P., Gladding, T.L., Simpson, A.E., Howell G. & Sgouridis, F. (2013). Biofilter performance and operation as related to commercial composting. US Environment Agency 2013.
  4. Gałwa-Widera, M. & Kwarciak-Kozłowska, A. (2016). Methods for elimination of odor in the composting process, Rocznik Ochrona Środowiska, 18, pp. 850-860.
  5. Guohui, G. (2017). Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings, Renewable Energy, 103, pp. 361-371. DOI:10.1016/j.renene.2016.11.052
  6. https://www.horstmann.pl
  7. https://www.aknova.pl
  8. https://www.sutco.pl
  9. Jędrczak, A. & Den Boer, E. (2015). Final report of the 3rd stage of an expert opinion aimed at conducting waste tests in 20 installations for mechanical-biological waste treatment. https://sdr.gdos.gov.pl/Documents/GO/Ekspertyzy.
  10. Kisielewska, M., Dębowski, M. & Zieliński, M. (2020). Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups. Archives of Environmental Protection, vol. 46, pp. 33-40. DOI:10.24425/aep.2020.132523
  11. Klimek, A., Rolbiecki, S. & Rolbiecki R. (2018). Effects of mulching with forest litter and compost made of sewage sludge on the presence of oribatida as bioindicators of soil revitalization in larch and pine in-ground forest nurseries, Rocznik Ochrona Środowiska, 20, pp. 681-696.
  12. Lanzerstorfer, Ch., Neder, F. & Schmied, R. (2016). Constant design air flow industrial ventilation systems with regenerative dust filters: Economic comparison of fan speed-controlled air damper controlled and uncontrolled operation, Energy and Buildings, 128, pp. 503–510. DOI:10.1016/j.enbuild.2016.07.032
  13. Lubczyńska, U. (2017). Applied hydraulic in environmental engineering. Publishing House, Kielce University of Technology, 2017.
  14. Nguyen, T.P., Koyama, M. & Nakasaki, K. (2022). Effects of oxygen supply rate on organic matter decomposition and microbial communities during composting in a controlled lab-scale composting system, Waste Management, Vol. 153, pp. 275-282. DOI:10.1016/j.wasman.2022.09.004
  15. Nogueira Da Silva Vilela, R., Amorim Orrico, C.A., Previdelli Orrico Junior, M.A., Aspilcueta Borquis, R.R., Dias de Oliveira, M.T.J., De Avila M. R., Torres dos Santos, F. & Viana Leite, B.K. (2022). Effects of aeration and season on the composting of slaughter house waste, Environmental Technol. & Innov, 27, 102505. DOI:10.1016/j.eti.2022.102505
  16. Pączka, G., Garczyńska, M., Mazur-Pączka, A., Podolak, A., Szura, R., Skoczko, I. & Kostecka, J. (2018). Vermicomposting of sugar beet pulps using Eisenia Fetida (sav.) earthworms, Rocznik Ochrona Środowiska, 20, pp. 588-601.
  17. Ross, H. (1995). Hydraulik der wasserheizung Oldenbourg, Verlag GmbH, Monachium 1995. Rudnik E. (2019). Chapter 5 - Composting methods and legislation, Compostable Polymer Materials 2.nd Edition, pp. 127-161. DOI:10.1016/b978-0-08-099438-3.00005-7
  18. Sadeghi, S., Nikaeen, M., Mohammadi, F., Nafez, A.H., Gholipour, S., Shamsizadeh, Z. & Hadi, M. (2022). Microbial characteristics of municipal solid waste compost: Occupational and public health risks from surface applied compost, Waste Management, 144, pp.98-105. DOI:10.1016/j.wasman.2022.03.012
  19. Sidełko, R., Janowska, B., Szymański, K., Mostowik, N. & Głowacka, A. (2019). Advanced methods to calculation of pressure drop during aeration in composting process, Science of the Total Environment, 674, pp. 19-25. DOI:10.1016/j.scitotenv.2019.04.155
  20. Sidełko, R., Seweryn, K. & Walendzik, B. (2011). Optimization of Composting Process in Real Conditions, Rocznik Ochrona Środowiska, 13, pp. 681-691.
  21. Sidełko, R. & Chmielinska-Bernacka, A. (2013). Application of Compact Reactor for Methane Fermentation of Municipal Waste, Rocznik Ochrona Środowiska, 15, pp. 683-693.
  22. Singley, M.E., Higgins, A.J. & Frumkin-Rosengaus, M. (1982). Sludge composting and utilization- A design and operating manual, New Jersy Arg. Expt. Sta., Rutgers Utility, 1982.
  23. Sundberg, C. & Jönsson, H. (2008). Higher pH and faster decomposition in biowaste composting by increased aeration, Waste Management, Vol. 28, pp. 518-526. DOI:10.1016/j.wasman.2007.01.011
  24. Szymański, K., Janowska, B., Sidełko, R. & Siebielska, I. (2007). Monitoring of waste landfills, VIII National Polish Scientific Conference on Complex and Detailed Problems of Environmental Engineering, Issue 23, pp. 75-133.
  25. Vaverkova, M.D., Elbl, J., Voberkova, S., Koda, E., Adamcova, D., Gusiatin, Z.M., Abd, Al Rahman, Radziemska, M. & Mazur, Z. (2020). Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity, Waste Management, 106, pp. 173-183. DOI:10.1016/j.wasman.2020.03.030
  26. Yi, W., Ran, G. Li, A., Zhiguo, G., Ni, Q., Yang, Y., Liu, B. & Du, Y. (2022). Air balancing method of multibranch ventilation systems under the condition of nonfully developed Flow, Boulding and Environment, 223. DOI:10.1016/j.buildenv.2022.109468
  27. Wang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., Hu, Ch. & Ma, L. (2018). Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential, J. of Cleaner Production, 195 (10), pp. 448-557. DOI:10.1016/j.jclepro.2018.05.146
  28. Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F.C., Liu, T., Zhang, Z. & Awasthi, K.M. (2022). Recent trends and advances in composting and vermicomposting technologies: A review, Bioresources Technology, 360, 127591. DOI:10.1016/j.biortech.2022.127591
Go to article

Authors and Affiliations

Robert Sidełko
1
Dariusz Boruszko
2
ORCID: ORCID

  1. Koszalin University of Technology, Poland
  2. Bialystok University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The amount of solid organic waste is constantly growing. This is caused by the growth of industrial and agricultural capacities, and the inefficiency of existing waste processing technologies. Biotechnologies can provide effective environmentally friendly solutions for waste treatment. Therefore, the goal of our work was to compare the efficiency of strictly anaerobic fermentation of multi-component solid organic waste with hydrogen synthesis and waste treatment with pulsed air access in batch bioreactors.During fermentation, the following parameters were controlled: pH, redox potential (Eh), concentration of dissolved organics, and the content of H2, O2, and CO2 in the gas phase. The efficiency was evaluated via the process duration, calculation of the ratio of the initial and final weight of waste (Кd), and the yield of molecular hydrogen. Obtained results revealed high efficiency of organic waste degradation in both variants. The weight of waste 83-fold and 86-fold decreased, respectively. The time required for fermentation in strictly anaerobic conditions was 4 days, whereas 7 days were required for the mode with pulsed air access. The first variant provided a 2.8-fold higher hydrogen yield (54±4,1 L/kg of waste), and the second one provided a decrease in the concentration of dissolved organic compounds in the fermentation fluid. Fermentation is the effective approach for accelerated degradation of solid organic waste. Strictly anaerobic fermentation appeared to be useful in the need to accelerate the process. The mode with the pulsed air access can provide not only degradation of solid waste but also purification of the fermentation fluid.
Go to article

Bibliography

  1. Akhlaghi, N. & Najafpour-Darzi, Gh. (2020). A Comprehensive Review on Biological Hydrogen Production, International Journal of Hydrogen Energy, 45(43), pp. 22492–22512. DOI:10.1016/j.ijhydene.2020.06.182.
  2. Alwaeli, M., Alshawaf, M. & Klasik, M., (2022). Recycling of Selected Fraction of Municipal Solid Waste as Artificial Soil Substrate in Support of the Circular Economy, Archives of Environmental Protection, 48(4), pp. 68–77. DOI:10.24425/aep.2022.143710.
  3. Bakkaloglu, S., Lowry, D., Fisher, R.E., France, J.L., Brunner, D., Chen, H. & Nisbet, E.G. (2021). Quantification of Methane Emissions from UK Biogas Plants, Waste Management, 124, pp. 82–93. DOI:10.1016/j.wasman.2021.01.011.
  4. Berezkin, V.G. (1983). Chemical Methods in Gas Chromatography. Elsevier, The Netherlands 1983.
  5. Bernstad, A.K., Cánovas, A. & Valle, R. (2017). Consideration of Food Wastage along the Supply Chain in Lifecycle Assessments: A Mini-Review Based on the Case of Tomatoes, Waste Management & Research, 35(1), pp. 29–39. DOI:10.1177/0734242X16666945.
  6. Chaijak, P. & Sola, P. (2023). ‘The New Report of Domestic Wastewater Treatment and Bioelectricity Generation Using Dieffenbachia Seguine Constructed Wetland Coupling Microbial Fuel Cell (CW-MFC)’. Archives of Environmental Protection; 2023; 49(1), pp. 57-62. DOI:10.24425/aep.2023.144737.
  7. Chen, T., Zhang, Sh. & Yuan, Z. (2020). Adoption of Solid Organic Waste Composting Products: A Critical Review, Journal of Cleaner Production, 272, 122712. DOI:10.1016/j.jclepro.2020.122712.
  8. El Bari, H., Lahboubi, N., Habchi, S., Rachidi, S., Bayssi O., Nabil N., Mortezaei Y. & Villa, R. (2022). Biohydrogen Production from Fermentation of Organic Waste, Storage and Applications, Cleaner Waste Systems, 3, 100043. DOI:10.1016/j.clwas.2022.100043.
  9. Erdiwansyah, E., Gani, A., Mamat, R., Mahidin, M., Sudhakar, K., Rosdi, S.M. & Husin H. (2022). Biomass and Wind Energy as Sources of Renewable Energy for a More Sustainable Environment in Indonesia: A Review, Archives of Environmental Protection, 48(3), pp. 57–69. DOI:10.24425/aep.2022.142690.
  10. Erses, A.S., Onay, T.T. & Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills, Bioresource technology, 99(13), pp. 5418–5426. DOI:10.1016/j.biortech.2007.11.008.
  11. Gill, S.S., Jana, A.M. & Shrivastav, A. (2014). Aerobic bacterial degradation of kitchen waste: A review, Journal of microbiology, biotechnology and food sciences, 3(6), pp. 477–483. https://office2.jmbfs.org/index.php/JMBFS/article/view/7661.
  12. Havryliuk, O., Hovorukha, V., Bida, I., Gladka G., Tymoshenko, A., Kyrylov, S., Mariychuk, R. & Tashyrev O. (2023). Anaerobic Degradation of the Invasive Weed Solidago canadensis L. (Goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria, Plants, 12(1), pp. 198–213. DOI:10.3390/plants12010198.
  13. Hovorukha, V., Tashyrev, O., Matvieieva, N., Tashyreva, H., Havryliuk, O., Bielikova O. & Sioma, I. (2019). Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate, Environmental Research, Engineering and Management, 74(4), pp. 31–42. |DOI:10.5755/j01.erem.74.4.20723.
  14. Hovorukha, V., Tashyrev, O., Havryliuk, O. & Iastremska, L. (2020). High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-Industrial Anaerobic Batch Reactor, The Open Agriculture Journal, 14(1), pp. 174–186. DOI:10.2174/1874331502014010174.
  15. Katinas, V., Marčiukaitis, M., Perednis, E. & Dzenajavičienė, E.F. (2019). Analysis of Biodegradable Waste Use for Energy Generation in Lithuania, Renewable and Sustainable Energy Reviews, 101, pp. 559–567. DOI:10.1016/j.rser.2018.11.022.
  16. Khan, M.A., Ngo H.H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S.W., Nguyen, D.D. & Wang, J. (2018). Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy, Renewable Energy, 1st International Conference on Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability, 129, pp. 754–768. DOI:10.1016/j.renene.2017.04.029.
  17. Lim, J.X., Zhou, Y. & Vadivelu, V.M. (2020). Enhanced Volatile Fatty Acid Production and Microbial Population Analysis in Anaerobic Treatment of High Strength Wastewater, Journal of Water Process Engineering, 33, 101058. DOI:10.1016/j.jwpe.2019.101058.
  18. Marone, A., Izzo, G., Mentuccia, L., Massini, G., Paganin, P., Rosa, S., Varrone, C. & Signorini, A. (2014). Vegetable Waste as Substrate and Source of Suitable Microflora for Bio-Hydrogen Production, Renewable Energy, 68, pp. 6–13. DOI:10.1016/j.renene.2014.01.013.
  19. Mata-Alvarez, J., Macé, S. & Llabrés P. (2000). Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives, Bioresource Technology, 74(1), pp. 3–16. DOI:10.1016/S0960-8524(00)00023-7.
  20. Meegoda, J.N., Li, B., Patel, K. & Wang, L.B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion, International Journal of Environmental Research and Public Health, 15(10), 2224. DOI:10.3390/ijerph15102224.
  21. Parthiba Karthikeyan, O., Trably, E., Mehariya, S., Bernet, N., Wong, J.W.C. & Carrere, H. (2018). Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review, Bioresource Technology, 249, pp. 1025–1039. DOI:10.1016/j.biortech.2017.09.105.
  22. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka I. (2022). Preliminary Analysis of the State of Municipal Waste Management Technology in Poland along with the Identification of Waste Treatment Processes in Terms of Odor Emissions, Archives of Environmental Protection, 48(3), pp. 3–20. DOI:10.24425/aep.2022.142685.
  23. Rubežius, M., Venslauskas, K., Navickas, K. & Bleizgys R. (2020). Influence of Aerobic Pretreatment of Poultry Manure on the Biogas Production Process, Processes, 8(9), 1109. DOI:10.3390/pr8091109.
  24. Scarlat, N., Dallemand J.-F. & Fahl F. (2018). Biogas: Developments and Perspectives in Europe, Renewable Energy, 129, pp. 457–472. DOI:10.1016/j.renene.2018.03.006.
  25. Shimizu, S., Fujisawa, A., Mizuno, O., Kameda, T. & Yoshioka, T. (2008). Fermentative Hydrogen Production From Food Waste Without Inocula, AIP Conference Proceedings, 987(1), pp. 171–174. DOI:10.1063/1.2896968.
  26. Suslova, O., Govorukha, V., Brovarskaya, O., Matveeva, N., Tashyreva, H. & Tashyrev O. (2014). Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration, International Journal Bioautomation, 18(1), pp. 45–52. https://biomed.bas.bg/bioautomation/2014/vol_18.1/files/18.1_05.pdf
  27. Tashyrev, O., Hovorukha, V., Havryliuk, O., Sioma, I., Gladka, G., Kalinichenko, O., Włodarczyk, P., Suszanowicz, D., Zhuk, H. & Ivanov, Y. (2022). Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane, Energies, 15(3), 911. DOI:10.3390/en15030911.
  28. Wang, X. & Zhao Y.-C. (2009). A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process, International Journal of Hydrogen Energy, 34(1), pp. 245–254. DOI:10.1016/j.ijhydene.2008.09.100.
  29. Wu, X., Zhu, J., Dong, C., Miller, C., Li Y., Wang, L. & Yao, W. (2009). Continuous Biohydrogen Production from Liquid Swine Manure Supplemented with Glucose Using an Anaerobic Sequencing Batch Reactor, International Journal of Hydrogen Energy, 4th Dubrovnik Conference, 34(16), pp. 6636–6645. DOI:10.1016/j.ijhydene.2009.06.058.
  30. Xiao, M. & Wu, F. (2014). A Review of Environmental Characteristics and Effects of Low-Molecular Weight Organic Acids in the Surface Ecosystem, Journal of Environmental Sciences, 26(5), pp. 935–954. DOI:10.1016/S1001-0742(13)60570-7.
  31. Xue, S., Song, J., Wang, X., Shang, Z., Sheng, C., Li, C., Zhu, Y. & Liu, J. (2020). A Systematic Comparison of Biogas Development and Related Policies between China and Europe and Corresponding Insights, Renewable and Sustainable Energy Reviews, 117, 109474. DOI:10.1016/j.rser.2019.109474.
  32. Zhang, J., Kan, X., Shen, Y., Loh, K.-C., Wang, C.-H., Dai, Y. & Tong, Y.W. (2018). A Hybrid Biological and Thermal Waste-to-Energy System with Heat Energy Recovery and Utilization for Solid Organic Waste Treatment, Energy, 152, pp. 214–222. DOI:10.1016/j.energy.2018.03.143.
Go to article

Authors and Affiliations

Vira Hovorukha
1 2
ORCID: ORCID

  1. Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  2. Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiologyand Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the study was to assess the feasibility of using biopolymers of different viscosities (high, medium and low viscosity) as immobilization carriers for laccase in synthetic dye removal. The following dye solutions were decolorized: indigo carmine (IC, anionic dye), methylene blue (MB, cationic dye), and their mixture in a molar mass ratio MB/IC=0.69, using biopolymers of different viscosities as laccase immobilization carriers. Toxicity tests were also carried out to assess the toxicity of the post-decolorization samples. Decolorization tests showed that the main decolorization mechanism depends on the dye class. The removal of IC (max. total removal efficiency 72.15%) was mainly by biocatalysis. The mechanism of the MB decolorization process was mainly by sorption on alginate beads, and the efficiency of enzymatic removal was low. However, the highest efficiency of MB decolorization (45.80%) was obtained for beads prepared using the high viscosity alginate when decolorization occurred by both sorption and biocatalysis. The results of mixture decolorization tests differ from the results obtained for single dyes.The results showed differences in the efficiency of the dye sorption process depending on the alginate used for immobilization. Moreover, the varying mechanisms of dye removal from the dye mixture were confirmed by toxicity tests. The occurrence of both biocatalysis and sorption promotes reduced toxicity
Go to article

Bibliography

  1. Abka-Khajouei, R., Tounsi, L., Shahabi, N., Patel, A.K., Abdelkafi, S. & Michaud, P. (2022). Structures, Properties and Applications of Alginates, Marine Drugs, 29, 20, 6, 664. DOI:10.3390/md20060364
  2. Ahlawat, A., Jaswal A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 105424. DOI:10.1016/j.ibiod.2022.105424
  3. Ahmad, R. & Kumar, R. (2010). Adsorption studies of hazardous malachite green onto treated ginger waste, Journal of Environmental Management, 91, 4, pp. 1032–1038. DOI:10.1016/j.jenvman.2009.12.016
  4. Ahmed, M.A., Brick, A.A. & Mohamed, A.A. (2017). An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route, Chemosphere, 174, pp. 280-288. DOI:10.1016/j.chemosphere.2017.01.147
  5. Al-Tohamy, R., Ali, S.S. Li, F., Okasha, K.M., Mahmoud, Y.A-G., Elsamahy T., Jiao, H., Fu, Y. & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicology and Environmental Safety, 232, 113160. DOI:10.1016/j.ecoenv.2021.113160
  6. Arenas, C.N., Vasco, A., Betancur, M. & Martinez, J.D. (2017). Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA), Process Safety and Environmental Protection, 106, pp. 224-238. DOI:10.1016/j.psep.2017.01.013
  7. Behera, M., Nayak, J., Banerjee, S., Chakrabortty, S. & Tripathy, S.K. (2021). A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach, Journal of Environmental Chemical Engineering, 9, 4, 105277. DOI:10.1016/j.jece.2021.105277
  8. Bennacef, C., Desobry-Banon, S., Probst, L. & Desobry, S (2021). Advances on Alginate Use for Spherification to Encapsulate Biomolecules, Food Hydrocolloids, 118, 106782. DOI:10.1016/j.foodhyd.2021.106782
  9. Bilal, M., Rasheed, T., Nabeel, F., Iqbal, H.M.N. & Zhao, Y. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A rewiev, Journal of Environmental Management, pp. 234. 253-264. DOI:10.1016/j.jenvman.2019.01.001
  10. Brugnari, T., Braga, D.M., dos Santos, C.S.A., Czelusniak Torres, B.H., Modkovski, T.A., Haminiuk C.W.I. & Maciel, G.M. (2021). Laccases as green and versatile biocatalysts: from lab to enzyme market—an overview, Bioresources and Bioprocessing, 8, 131. DOI:10.1186/s40643-021-00484-1
  11. Chee, S.Y., Wong, P.K. & Wong, C.L. (2011). Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia, Journal of Applied Phycology, 23, pp. 191-196. DOI:10.1007/s10811-010-9533-7
  12. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773
  13. Choi, K.Y. (2021). Discoloration of indigo dyes by eco-friendly biocatalysts, Dyes and Pigments, 184, 108749. DOI:10.1016/j.dyepig.2020.108749
  14. Daâssi, D., Rodríguez-Couto S., Nasri M. & Mechichi T. (2014). Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads, International Biodeterioration & Biodegradation, 90, pp. 71-78. DOI:10.1016/j.ibiod.2014.02.006
  15. Dalginli K.Y. & Atakisi O. (2023). Immobilization with Ca–Alg@gelatin hydrogel beads enhances the activity and stability of recombinant thermoalkalophilic lipase, Chemical and Process Engineering: New Frontiers, 2023, 44(1), e2. DOI: 10.24425/cpe.2023.14229
  16. Deska, M. & Kończak, B. (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024
  17. Deska, M. & Kończak B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. (in Polish). DOI:10.15199/62.2020.3.22
  18. Deska, M. & Zawadzki P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667 (in Polish). DOI:10.15199/62.2021.7.5
  19. Deska, M. and Kończak, B. (2022), Laccase Immobilization on Biopolymer Carriers– Preliminary Studies, Journal of Ecological Engineering, 23, 4, pp. 235–249. DOI: 10.12911/22998993/146611
  20. Diorio, L.A., Salvatierra Frechou, D.M. & Levin, L.N. (2021). Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system, Revista Argentina de Microbiología, 53, 1, pp. 3-10. DOI:10.1016/j.ram.2020.04.007
  21. Drzymała, J. & Kalka, J. (2020). Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Allvibrio fischeri, Chemosphere, 248, 126085. DOI:10.1016/j.chemosphere.2020.126085
  22. Edwin, D.S.S., Manjunatha, J.G., Raril, C., Girish, T., Ravishankar, D.K. & Arpitha, H.J. (2021). Electrochemical analysis of indigo carmine using polyarginine modified carbon paste electrode, Journal of Electrochemical Science and Engineering, 11, 2, pp. 87-96. DOI:10.5599/jese.953
  23. Enayatzamir, K., Alikhani, H.A., Yakhchali, B., Tabandeh, F. & Rodríguez-Couto, S. (2010). Decolouration of azo dyes by Phanerochaete chrysosporium immobilized into alginate beads, Environmental Science and Pollution Research, 17, 1, pp. 145-153. DOI:10.1007/s11356-009-0109-5
  24. Eswaran, S.G., Afridi, P.S. & Vasimalai, N. (2022). Effective multi toxic dyes degradation using bio-fabricated silver nanoparticles as a green catalyst, Applied Biochemistry and Biotechnology, 195, pp. 3872–3887. DOI:10.1007/s12010-022-03902-y.
  25. Ezike, T.C., Ezugwu, A.L., Udeh, J.O., Eze, S.O.O. & Chilaka, F.C. (2020). Purification and characterisation of new laccase from Trametes polyzona WRF03, Biotechnology Reports, 28, e00566. DOI:10.1016/j.btre.2020.e00566.
  26. Fernandes, A., Pinto, B., Bonardo, L., Royo, B., Robalo, M.P. & Martins, L.O. (2021). Wasteful Azo dyes as a source of biologically active building blocks, Frontiers in Bioengineering and Biotechnology, 9, 672436. DOI:10.3389/fbioe.2021.672436.
  27. Fertah, M., Belfkira, A., Dahmane, E.M., Taourirte, M. & Brouillette F. (2017). Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed, Arabian Journal of Chemistry, 10, 2, pp. 3707-3714. DOI:10.1016/j.arabjc.2014.05.003
  28. Genázio Pereira, P.C., Reimão, R.V., Pavesi, T., Saggioro, E.M., Moreira, J.C. & Veríssimo Correia, F. (2017). Lethal and sub-lethal evaluation of Indigo Carmine dye and by products after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms. Ecotoxicology and Environmental Safety, 143, pp. 275-282. DOI: 10.1016/j.ecoenv.2017.05.043
  29. George, J., Sri Rajendran, D., Kumar, P.S., Anand, S.S., Kumar, V.V. & Rangasamy, G. (2023). Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase. Chemosphere, 313, 137612. DOI:10.1016/j.chemosphere.2022.137612
  30. Gonçalves, M.C.P., Kieckbusch, T.G., Perna, R.F., Fujimoto, J.T., Morales, S.A.V. & Romanelli, J.P. (2019). Trends on enzyme immobilization researches based on bibliometric analysis, Process Biochemistry, 76, pp. 95-110. DOI:10.1016/j.procbio.2018.09.016
  31. Hamad, H.N. & Idrus, S. (2022). Recent Developments In The Application Of Bio-Waste-Derived Adsorbents For The Removal Of Methylene Blue From Wastewater: A Review, Polymers (Basel), 14, 4, 783. DOI:10.3390/polym14040783
  32. Hurtado, A., Aljabali, A.A.A., Mishra, V., Tambuwala, M.M. & Serrano-Aroca, A. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 19, 23, 9, 4486. DOI:10.3390/ijms23094486
  33. Islam, A., Teo, S.H., Taufiq-Yap, Y.H., Ng C.H., Vo, D-V.N, Ibrahim M.L., Hasan, Md. M, Khan M.A.R., Nur A.S.M. & Awual, Md.R. (2021). Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review, Resources, Conservation and Recycling, 175, 105849. DOI:10.1016/j.resconrec.2021.105849
  34. Kalyana, C.M., Ramakrishna, K. & Subba Rao, P.V. (2017). Kinetics and mechanism of oxidation of indigo carmine with potassium bromate: effect of CTAB and SDS micelles, International Journal of Chemical Sciences, 15, 4, 220.
  35. Katheresan V., Kansedo, J. & Lau, S.Y. (2018). Efficiency of Various Recent Wastewater Dye Removal Methods: A Review, Journal of Environmental Chemical Engineering, 6, 4, pp. 4676-4697. DOI:10.1016/j.jece.2018.06.060
  36. Khan, I., Saeed, K., Zekker, I., Zhang,B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T. & Khan, I. (2022) Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation, Water, 14, 2, 242. DOI:10.3390/w14020242
  37. Kishor, R., Bharagava, R.N. & Saxena, G. (2018) Industrial wastewaters: the major sources of dye contamination in the environment, ecotoxicological effects, and bioremediation approaches, in: R.N. Bharagava (Ed.), Recent Advances in Environmental Management 13, CRC Press Taylor & Francis
  38. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI: 10.1016/j.jece.2020.105012
  39. Kofidis, T., Strüber, M., Wilhelmi, M., Anssar, M., Simon, A., Harringer, W. & Haverich A. (2001). Reversal of severe vasoplegia with single-dose methylene blue after heart transplantation, The Journal of Thoracic and Cardiovascular Surgery, 122, 4, pp. 823-824. DOI:10.1067/mtc.2001.115153
  40. Kumar, A., Sharma, G., Naushad, M., Ala’a, H., García-Penas, A., Mola, G.T., Si, C. & Stadler, F.J. (2020). Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review, Chemical Engineering Journal, 382, 122937. DOI:10.1016/j.cej.2019.122937
  41. Kumar, V.V., Venkataraman, S., Kumar, P.S., George, J., Sri Rajendran, D., Shaji A., Lawrence, N. Saikia, K. & Rathankumar, A.K. (2022). Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater, Environmental Pollution, 309, 119729. DOI:10.1016/j.envpol.2022.119729
  42. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56. DOI:10.24425/aep.2023.144736
  43. Lee, K.Y. & Mooney, D.J. (2012). Alginate: properties and biomedical applications, Progress in Polymer Science, 37, pp. 106–126. DOI:10.1016/j.progpolymsci.2011.06.003
  44. Leontieș, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654
  45. Li, S., Cui, Y., Wen, M. & Ji G. (2023). Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. Toxics, 11, 7, 594. DOI: 10.3390/toxics11070594
  46. Łabowska, M., Izabela, M. & Jerzy, D. (2019). Methods of Extraction, Physicochemical Properties of Alginates and Their Applications in Biomedical Field–a Review, Open Chemistry, 17, 1, pp. 738–762. DOI:10.1515/chem-2019-0077
  47. Ma, J., Lin, Y., Chen, X., Zhao, B. & Zhang, J. (2014). Flow Behavior, Thixotropy and Dynamical Viscoelasticity of Sodium Alginate Aqueous Solutions, Food Hydrocolloids, 38, pp. 119–128. DOI:10.1016/j.foodhyd.2013.11.016
  48. Malinowski, S., Wardak C., Jaroszyńska-Wolińska J., Herbert P.A.F. & Pietrzak K. (2020) New electrochemical laccase-based biosensor for dihydroxybenzene isomers determination in real water samples, Journal of Water Process Engineering, 34, 101150. DOI: 10.1016/j.jwpe.2020.101150
  49. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48,1 pp. 75-82. DOI: 10.24425/aep.2022.140546
  50. Martínez-Cano, B., Mendoza-Meneses, C.J., García-Trejo, J.F., Macías-Bobadilla, G., Aguirre-Becerra, H., Soto-Zarazúa, G.M. & Feregrino-Pérez, A.A. (2022). Review and Perspectives of the Use of Alginate as a Polymer Matrix for Microorganisms Applied in Agro-Industry, Molecules, 27, 13, 4248. DOI:10.3390/molecules27134248
  51. Micheletti, D.H., da Silva Andrade, J.G., Porto C.E., Alves, B.H.M, de Carvalho F.R., Sakai O.A. & Batistela V.R. (2023) A review of adsorbents for removal of yellow tartrazine dye from water and wastewater, Bioresource Technology Reports, 24, 101598. DOI: 10.1016/j.biteb.2023.101598
  52. Mohan, C, Yadav S., Uniyal, V, Taskaeva, N. & Kumari N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081
  53. Moon, S., Ryu J., Hwang, J. & Lee, C.G. (2023). Efficient removal of dyes from aqueous solutions using short-length bimodal mesoporous carbon adsorbents, Chemosphere, 313, 137448. DOI:10.1016/j.chemosphere.2022.137448
  54. Moorthy, A.K., Rathi, B.G., Shukla S.P., Kumar K. & Bharti, V.S. (2021). Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae, Environmental Toxicology Pharmacology, 82, 103552. DOI: 10.1016/j.etap.2020.103552
  55. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review, Water, 14, 24, 4068. DOI: 10.3390/w14244068
  56. Niladevi, K.N. & Prema P. (2008). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x
  57. Oladoye, P.O., Ajiboye, T.O., Omotola, E.O. & Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater, Results in Engineering, 16, 100678. DOI:10.1016/j.rineng.2022.100678
  58. Oriol, R., Sirés, I., Brillas, E. & Andrade, A.R.D. (2019). A hybrid photoelectrocatalytic/photoelectro-Fenton treatment of Indigo Carmine in acidic aqueous solution using TiO2 nanotube arrays as photoanode. Journal of Electroanalytical Chemistry, 847, 113088. DOI:10.1016/j.jelechem.2019.04.048
  59. Palanisamy, S., Ramaraj, S.K., Chen S.-M., Yang T.C.K., Yi-Fan, P., Chen, T.-W., Velusamy V. & Selvam, S. (2017) A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol. Scientific Reports, 7, 41214. DOI: 10.1038/srep41214
  60. Park, C., Lee, M., Lee, B., Kim, S.-W., Chase, H.A., Lee, J. & Kim, S. (2007). Biodegradation and biosorption for decolourisation of synthetic dyes by Funalia trogii. Biochemical Engineering Journal, 36, 1, pp. 59-65. DOI:10.1016/j.bej.2006.06.007
  61. Peteiro C., 2018. Alginate production from marine macroalgae, with emphasis on kelp farming, in: Rehm, B.H.A., Moradali F. (Eds.), Alginates and Their Biomedical Applications, Springer Series in Biomaterials Science and Engineering, Springer, Singapore, pp. 27–66. DOI:10.1007/978-981-10-6910-9_2
  62. Pavithra, K.G. & Jaikumar, V. (2019). Removal of colorants from wastewater: a review on sources and treatment strategies, Journal of Industrial and Engineering Chemistry. 75, pp. 1–9. DOI: 10.1016/j.jiec.2019.02.011
  63. Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Lee, J. & Siengchin, S. (2022). Ecofriendly And Low-Cost Bio Adsorbent For Efficient Removal Of Methylene Blue From Aqueous Solution, Scientific Reports, 12, 20580. DOI:10.1038/s41598-022-22936-0
  64. Ramos, R.O., Albuquerque, M.V.C., Lopes, W.S., Sousa, J.T. & Leite, V.D. (2020). Degradation of indigo carmine by photo-Fenton, Fenton, H2O2/UV-C and direct UV-C: comparison of pathways, products and kinetics, Journal of Water Process Engineering, 37, 101535. DOI:10.1016/j.jwpe.2020.101535
  65. Rhein-Knudsen, N., Ale, M.T., Ajalloueian, F. & Meyer, A.S. (2017). Characterization of alginates from Ghanaian brown seaweeds: Sargassum spp. and Padina spp., Food Hydrocollois, 71, pp. 236-244. DOI:10.1016/j.foodhyd.2017.05.016
  66. Ristea, M.-E. & Zarnescu O. (2023). Review. Indigo Carmine: Between Necessity and Concern, Journal of xenobiotics, 13, pp.509-528. DOI:10.3390/jox13030033
  67. Saha, P.D., Bhattacharya, P., Sinha, K. & Chowdhury, S., (2013). Biosorption of Congo red and Indigo carmine by nonviable biomass of a new Dietzia strain isolated from the effluent of a textile industry, Desalination and Water Treatment, 51, pp. 28-30, pp. 5840-5847. DOI:10.1080/19443994.2012.762589
  68. Shah, S.S., Ramos, B. & Silva Costa Teixeira, A.C. (2022), Adsorptive Removal Of Methylene Blue Dye Using Biodegradable Superabsorbent Hydrogel Polymer Composite Incorporated With Activated Charcoal, Water, 14, 20, 3313. DOI:10.3390/w14203313
  69. Silva, T.H., Alves, A., Ferreira, B.M., Oliveira, J.M., Reys, L.L., Ferreira, R.J.F., Sousa, R.A., Silva, S.S., Mano, J.F. & Reis, R.L. (2012). Materials of marine origin: a review on polymers and ceramics of biomedical interest, International Materials Reviews, 57, 5, pp. 276-306. DOI:10.1179/1743280412Y.0000000002
  70. Siyal, A.A., Shamsuddin, M.R., Low, A., Rabat, N.E (2020) A review on recent developments in the adsorption of surfactants from wastewater, Journal of Environmental Management, 254, 109797. DOI:10.1016/j.jenvman.2019.109797
  71. Tabti, S., Benchettara A., Smaili F., Benchettara, A. & Berrabah S.E. (2022). Electrodeposition of lead dioxide on Fe electrode: application to the degradation of Indigo Carmine dye, Journal of Applied Electrochemistry, 52, pp. 1207–1217. DOI:10.1007/s10800-022-01709-7
  72. Thirumavalavan, M. (2023). Functionalized chitosan and sodium alginate for the effective removal of recalcitrant organic pollutants. Macromolecules, 234, 125276. DOI:10.1016/j.ijbiomac.2023.125276
  73. Tišma, M., , Žnidaršič-Plazl, P., Šelo G., Tolj, I., Šperanda M., Bucić-Kojić, A. & Planinić M. (2021). Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities, Bioresource Technology, 330, 124997. DOI:10.1016/j.biortech.2021.124997
  74. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2022). Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  75. Veeranna, K.D., Lakshamaiah, M.T. & Narayan R.T. (2014). Photocatalytic degradation of indigo carmine dye using calcium oxide, International Journal of Photochemistry, 530570. DOI:10.1155/2014/530570
  76. Waghmode, T.R., Kurade, M.B., Sapkal, R.T., Bhosale, C.H., Jeon, B.H., Govindwar, S.P. (2019) Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red, Journal of Hazardous Materials. 371, pp. 5115–5122. DOI:10.1016/j.jhazmat.2019.03.004
  77. Wardak, C., Paczosa-Bator, B., Malinowski, S. (2020) Application of cold plasma corona discharge in preparation of laccase-based biosensors for dopamine determination, Materials Science and Engineering: C, 116, 111199. DOI:10.1016/j.msec.2020.111199
  78. Wu, K., Shi, M., Pan X.,Zhang, J., Zhang, X., Shen, T. & Tian, Y. (2022). Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway, Enzyme and Microbial Technology, 156, 109999. DOI:10.1016/j.enzmictec.2022.109999
  79. Younes, S.B., Mechichi, T. & Sayadi, S. (2007). Purification and characterization of the laccase secreted by the white rot fungus Perenniporia tephropora and its role in the decolourization of synthetic dyes, Journal of Applied Microbiology, 102, pp. 1033-1042. DOI:10.1111/j.1365-2672.2006.03152.x
  80. Zaied, M., Chutet, E., Peulon, S., Bellakhal, N., Desmazières, B., Dachraoui, M. & Chaussé, A. (2011). Spontaneous oxidative degradation of indigo carmine by thin films of birnessite electrodeposited onto SnO2, Applied Catalysis B: Environmental, 107, pp. 42-51. DOI:10.1016/j.apcatb.2011.06.035
  81. Zawadzki, P. & Deska, M., Decolorization of methylene blue in the advanced oxidation processes with sulfate and hydroxyl radicals, Przemysł Chemiczny, 100, 3, pp. 286-288 (in Polish). DOI: 10.15199/62.2021.3.12
  82. Zhou, W., Zhang, W. & Cai Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI: 10.1016/j.cej.2020.126272
  83. Zhuo, R., Zhang, J. Yu, H., Ma F. & Zhang, X. (2019). The roles of Pleurotus ostreatus HAUCC 162 laccase isoenzymes in decolorization of synthetic dyes and the transformation pathways, Chemosphere 234, pp. 733–745. DOI:10.1016/j.chemosphere.2019.06.113
  84. Websites:
  85. https://www.brenda-enzymes.org/index.php
  86. https://www.sigmaaldrich.com
  87. https://www.wipo.int
Go to article

Authors and Affiliations

Małgorzata Białowąs
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2

  1. Central Mining Institute – National Research Institute, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present work focuses on examining the batch removal of Fe (III) from water using powdered Peganum Harmala seeds, characterized as FT-IR. In this work, several parameters are measured, including contact time, pH, Fe (III) concentration, reaction temperature effect, and adsorbent dose effect. Fe (III) adsorption was assessed using a UV-vis spectrophotometer at a wavelength of 620 nm. The findings demonstrated a positive correlation between the dosage of adsorbent and Fe (III) ions removal, with an increase in the adsorbent dose corresponding to higher elimination of Fe (III) ions. Therefore, the Langmuir isotherm model yielded more accurate equilibrium data compared to the Frendulich model. The kinetic data were mostly analyzed using a pseudo-second-order model rather than a pseudo-first-order model. Thermodynamic parameters, including enthalpy (ΔH◦), entropy (ΔS◦), and free energy (ΔG◦), were calculated. The adsorption process was found to be exothermic. Overall, Peganum Harmala was a favorable adsorbent for removing Fe (III) from aqueous solutions.
Go to article

Bibliography

  1. Abdel-Ghani, N. T., Hefny, M. & El-Chaghaby, G. A. F. (2007). Removal of Lead from Aqueous Solution Using Low Cost Abundantly Available Adsorbents. International Journal of Environmental Science & Technology 4(1), pp. 67–73. DOI:10.1007/BF03325963.
  2. Aksu, Z. & Alper Işoǧlu, I. (2005). Removal of Copper(II) Ions from Aqueous Solution by Biosorption onto Agricultural Waste Sugar Beet Pulp. Process Biochemistry 40(9), pp. 3031–3044. DOI:10.1016/J.PROCBIO.2005.02.004.
  3. Aksu, Z. & Tülin, K. (1991). A Bioseparation Process for Removing Lead(II) Ions from Waste Water by Using C. Vulgaris. Journal of Chemical Technology & Biotechnology 52(1), pp. 109–118. DOI:https://doi.org/10.1002/jctb.280520108.
  4. Ang, X. W., Sethu, V. S. Andresen, J. M. & Sivakumar, M. (2013). Copper(II) Ion Removal from Aqueous Solutions Using Biosorption Technology: Thermodynamic and SEM–EDX Studies.” Clean Technologies and Environmental Policy 15(2), pp. 401–407. DOI:10.1007/s10098-012-0523-0.
  5. Annadurai, G., R., Juang, S. and Lee, D. J. (2003). Adsorption of Heavy Metals from Water Using Banana and Orange Peels. Water Science and Technology, 47(1), pp. 185–190. DOI:10.2166/wst.2003.0049.
  6. Aregawi, B.H. & Mengistie, A.A. (2013). Removal of Ni(II) from Aqueous Solution Using Leaf, Bark and Seed of Moringa Stenopetala Adsorbents. Bulletin of the Chemical Society of Ethiopia 27(1), pp. 35–47. DOI:10.4314/bcse.v27i1.4.
  7. Ayaz, T., Khan,S., Khan, A.Z., Lei, M. & Mehboob, A. (2020). Remediation of Industrial Wastewater Using Four Hydrophyte Species: A Comparison of Individual (Pot Experiments) and Mix Plants (Constructed Wetland). Journal of Environmental Management 255:109833. DOI:https://doi.org/10.1016/j.jenvman.2019.109833.
  8. Belay, K.T. & Hayelom, A. (2014). Removal of Methyl Orange from Aqueous Solutions Using Thermally Treated Egg Shell (Locally Available and Low Cost Biosorbent).” Chemistry and Materials Research 6, pp. 31–39.
  9. Bhatti, I., Qureshi, K., Kazi, R, & Ansari, Q. (2008). Preparation and Characterization of Chemically Activated Almond Shells by Optimization of Adsorption Parameter for the Removal of Cr (VI) from Aqueous Solution. International Journal of Chemical and Biomolecular Engineering 1, pp. 50–55.
  10. Bulut, Y. & Tez, Z. (2007). Adsorption Studies on Ground Shells of Hazelnut and Almond. Journal of Hazardous Materials, 149(1), pp. 35–41. DOI:10.1016/J.JHAZMAT.2007.03.044.
  11. Chakravarty, P., Sen Sarma,N. & Sarma, H. P. (2010). Removal of Lead(II) from Aqueous Solution Using Heartwood of Areca Catechu Powder.” Desalination 256(1–3), pp. 16–21. DOI:10.1016/J.DESAL.2010.02.029.
  12. El-Araby, H.A,, Abel M. Ibrahim, M. A., Mangood, A.H. & Abdel-Rahman, M. A. (2017). Sesame Husk as Adsorbent for Copper(II) Ions Removal from Aqueous Solution. Journal of Geoscience and Environment Protection 05(07), pp. 109–152. DOI:10.4236/gep.2017.57011.
  13. El-Ashtoukhy, E. S. Z., Amin, N. K. & Abdelwahab, O. (2008). Removal of Lead (II) and Copper (II) from Aqueous Solution Using Pomegranate Peel as a New Adsorbent. Desalination 223(1–3), pp. 162–173. DOI:10.1016/J.DESAL.2007.01.206.
  14. El-Geundi, M.S. (1991). Homogeneous Surface Diffusion Model for the Adsorption of Basic Dyestuffs onto Natural Clay in Batch Adsorbers. Adsorption Science & Technology 8(4), pp. 217–225. DOI:10.1177/026361749100800404.
  15. Freundlich, H. M. F. (1906). Over the Adsorption in Solution. J. Phys. Chem 57, pp. 385–471.
  16. Gładysz-Płaska, A., Majdan, M., Pikus, SD. & Sternik, D. (2012). Simultaneous Adsorption of Chromium(VI) and Phenol on Natural Red Clay Modified by HDTMA. Chemical Engineering Journal 179, pp. 140–150. DOI:10.1016/J.CEJ.2011.10.071.
  17. Hejna, M., Moscatelli, A., Stroppa, N., Onelli, E., Pilu, S., Baldi, A. & Rossi, L. (2020). Bioaccumulation of Heavy Metals from Wastewater through a Typha Latifolia and Thelypteris Palustris Phytoremediation System. Chemosphere 241, 125018. DOI:10.1016/J.CHEMOSPHERE.2019.125018.
  18. Hema, M. A., & Arivoli, S. (2010). Adsorption Kinetics and Thermodynamics of Malachite Green Dye unto Acid Activated Low Cost Carbon. Journal of Applied Sciences and Environmental Management 12(1), pp. 43-51.
  19. Ho, Y. S. &. McKay, G. (1998). Sorption of Dye from Aqueous Solution by Peat. Chemical Engineering Journal 70(2), pp. 115–24. DOI:10.1016/S0923-0467(98)00076-1.
  20. Hossain, M. A., Ngo, H. H., Guo, W. S. & Setiadi, T. (2012). Adsorption and Desorption of Copper(II) Ions onto Garden Grass. Bioresource Technology 121, pp. 386–395. DOI:10.1016/J.BIORTECH.2012.06.119.
  21. Imran, A. & Gupta, V. K. (2006). Adsorbents for Water Treatment: Development of Low-Cost Alternatives to Carbon. pp. 149–184 [in] Encyclopedia of Surface and Colloid Science, Taylor & Francis, New York,. Vol. 2nd Edition.
  22. Kučić, D., Simonič, M. & Furač, L. (2017). Batch Adsorption of Cr (VI) Ions on Zeolite and Agroindustrial Waste. Chemical and Biochemical Engineering Quarterly 31(4), pp. 497–507.
  23. Kumar, M.A., Chitra, R. & Mishra, G. K. (2010). REMOVAL OF HEAVY METAL IONS Removal of Heavy Metal Ions from Aqueous Solutions Using Chemically (Na 2 S) Treated Granular Activated Carbon as an Adsorbent. Vol. 69.
  24. Laghrib, F., Sana S., Lahrich, S. & El Mhammedi, M.A. (2021). Best of Advanced Remediation Process: Treatment of Heavy Metals in Water Using Phosphate Materials. International Journal of Environmental Analytical Chemistry 101(9), pp. 1192–1208. DOI:10.1080/03067319.2019.1678603.
  25. Langmuir, I. (1916). “THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS.” Journal of the American Chemical Society, 38(11), pp. 2221–2295. DOI:10.1021/ja02268a002.
  26. Lesley, J., Jun, B.M., Flora, J.R.V., Park, C.M. & Yoon, Y. (2019). Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 229, pp. 142–159. DOI:10.1016/J.CHEMOSPHERE.2019.04.198.
  27. Mamba, B. B., Dlamini, N. P. & Mulaba-Bafubiandi. A. F. (2009). Biosorptive Removal of Copper and Cobalt from Aqueous Solutions: Shewanella Spp. Put to the Test. Physics and Chemistry of the Earth, Parts A/B/C 34(13–16), pp. 841–849. DOI:10.1016/J.PCE.2009.07.009.
  28. Moussavi, G. & Khosravi, R. (2012). Preparation and Characterization of a Biochar from Pistachio Hull Biomass and Its Catalytic Potential for Ozonation of Water Recalcitrant Contaminants. Bioresource Technology 119, pp. 66–71. DOI:10.1016/J.BIORTECH.2012.05.101.
  29. Oo, C.-W., Osman, H., Fatinathan, S. & Akmar, Md. Zin.M. (2013). The Uptake of Copper(II) Ions by Chelating Schiff Base Derived from 4-Aminoantipyrine and 2-Methoxybenzaldehyde. International Journal of Nonferrous Metallurgy 02(01), pp. 1–9. DOI:10.4236/ijnm.2013.21001.
  30. Pandey, P., Sambi,S.S., Sharma, S. K. & Singh, S. (2009). Batch Adsorption Studies for the Removal of Cu (II) Ions by ZeoliteNaX from Aqueous Stream. edited by Proceedings of the World Congress on Engineering and Computer Science. San Francisco.
  31. Rasgele, P.G. (2021). The Use of Allium Cepa L. Assay as Bioindicator for the Investigation of Genotoxic Effects of Industrial Waste Water. Archives of Environmental Protection 47(4), pp. 3–8. DOI:10.24425/aep.2021.139497.
  32. Skwarek, E., Matysek-Nawrocka, M., Zarko, V. & Moiseevich, V. (2008). Adsorption of Heavy Metal Ions at the Al2O3-SiO2/NaClO4 Electrolyte Interface. Physicochemical Problems of Mineral Processing 42.
  33. Sud, D., Mahajan, G. & Kaur, M. P. (2008). Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions – A Review. Bioresource Technology, 99(14), pp, 6017–6027. DOI:10.1016/J.BIORTECH.2007.11.064.
  34. Tran, H.N., You, S.J. & Chao, H.P. (2016). Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. Journal of Environmental Chemical Engineering 4(3), pp. 2671–2682. DOI:10.1016/J.JECE.2016.05.009.
  35. Trus, I., Gomelya, M., Vorobyova, V. & Skіba, M. (2021). Promising Method of Ion Exchange Separation of Anions before Reverse Osmosis. Archives of Environmental Protection, 47(4), pp. 93–97. DOI:10.24425/aep.2021.139505.
  36. Tumin, N., Chuah, A.L., Zawani, Z. & Suraya, A. R. (2008). Adsorption of Copper from Aqueous Solution by Elais Guineensis Kernel Activated Carbon. Journal of Engineering Science and Technology 3(2), pp. 180-189.
  37. Veli, S. & Alyüz, B. (2007). Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay. Journal of Hazardous Materials 149(1), pp. 226–233. DOI:https://doi.org/10.1016/j.jhazmat.2007.04.109.
  38. Vijayaraghavan, K., Teo, T.T., Balasubramanian, R. & Joshi, U.M. (2009). Application of Sargassum Biomass to Remove Heavy Metal Ions from Synthetic Multi-Metal Solutions and Urban Storm Water Runoff. Journal of Hazardous Materials 164(2–3), pp. 1019–1023. DOI:10.1016/J.JHAZMAT.2008.08.105.
  39. Weber, T.W..& Chkravorti,R.K. (1974). Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE Journal, 20(2), pp. 228–238. DOI:10.1002/aic.690200204.
  40. Wu, H., Wu, Q., Zhang, J., Gu, Q., Wei, L., Guo, W. & He, M. (2019). Chromium Ion Removal from Raw Water by Magnetic Iron Composites and Shewanella Oneidensis MR-1. Scientific Reports, 9(1). DOI:10.1038/s41598-018-37470-1.
  41. Yao, Z. Y., Qi, J. H. & Wang, L. H. (2010). Equilibrium, Kinetic and Thermodynamic Studies on the Biosorption of Cu(II) onto Chestnut Shell. Journal of Hazardous Materials 174(1–3), pp. 137–143. DOI:10.1016/J.JHAZMAT.2009.09.027.
  42. Zendelska, A., Golomeova, M., Blazev, K., Krstev, B., Golomeov, B. & Krstev, A. (2015). Adsorption of Copper Ions from Aqueous Solutions on Natural Zeolite. Environment Protection Engineering, 41(4), pp. `,17–36. DOI:10.5277/epe150402.
Go to article

Authors and Affiliations

Raiedhah Alsaiari
1
Iman Shedaiwa
1
Fatima A. Al-Qadri
1
Esraa M. Musa
1 2
Huda Alqahtani
3
Faeza Alkorbi
1
Norah A. Alsaiari
1
Mervate M. Mohamed
1 4

  1. Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Saudi Arabia
  2. Veterinary Research Institute (VRI), P. O BOX 8067, AL Amarat, Khartoum, Sudan
  3. Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
  4. Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
Download PDF Download RIS Download Bibtex

Abstract

There are approximately 15 million users of system heat in Poland, but unfortunately nearly 70% of the fuel used in heat production is fossil fuel. Therefore, the CO2 emission reduction in the heat production industry is becoming one of the key challenges. City Heat Distribution Enterprise Ltd. in Nowy Sącz (Miejskie Przedsiębiorstwo Energetyki Cieplnej sp. z o.o.) has been conducting a self-financed research and development project entitled The use of algae as carbon dioxide absorbers at MPEC Nowy Sącz. The project deals with postcombustion CO2 capture using Chlorella vulgaris algae. As a result of tests conducted in a 1000 l hermetic container under optimal temperature and light conditions, the recovery of biomass can be performed in weekly cycles, yielding approximately 25 kilograms of biomass per year. Assuming that half of the dry mass of the algae is carbon, it can be said that 240 grams of carbon is bound in one cycle, which, converted to CO2, gives 880 grams of this gas. Our results showed that around 45.8 kilograms of CO2 per year was absorbed. Additionally, it is possible to use waste materials and by-products of technological processes as a nutrient medium for algae
Go to article

Bibliography

  1. Bordignon, M. & Gamannossi degl’Innocenti, D. (2023). Third Time’s a Charm? As-sessing the Impact of the Third Phase of the EU ETS on CO2 Emissions and Performance. Sustainability, 15(8), 6394. DOI:10.3390/su15086394
  2. Brożyna, J., Strielkowski, W. & Zpěvák, A. (2023). Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries. Energies, 16(6), 2764. DOI:10.3390/en16062764
  3. Chłopek, Z., Lasocki, J., Melka, K. & Szczepański, K. (2021). Equivalent Carbon Dioxide Emission in Useful Energy Generation in the Heat-generating Plant – Application of the Carbon Footprint Methodology. Journal of Ecological Engineering, 22(2), pp. 144–154. DOI:10.12911/22998993/130891
  4. Daliry, S., Hallajisani, A., Mohammadi Roshandeh, J., Nouri, H. & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management, 3(2), pp. 217–230. DOI:10.22034/gjesm.2017.03.02.010
  5. Dyachok, V., Mandryk, S., Huhlych, S. & Slyvka, M. (2020). Study of the Impact of Activators in the Presence of an Inhibitor on the Dynamics of Carbon Dioxide Absorption by Chlorophyll-Synthesizing Microalgae. Journal of Ecological Engineering, 21(5), pp. 189–196. DOI:10.12911/22998993/122674
  6. Dyachok, V., Mandryk, S., Katysheva, V. & Huhlych, S. (2019). Effect of Fuel Combustion Products on Carbon Dioxide Uptake Dynamics of Chlorophyll Synthesizing Microalgae. Journal of Ecological Engineering, 20(6), pp.18–24. DOI:10.12911/22998993/108695
  7. Dziosa, K. & Makowska, M. (2015). The influence of temperature on the growth of biomass of freshwater micro-algae grown in laboratory. Inżynieria i Aparatura Chemiczna, 54(4), pp.152–153. (in Polish)
  8. Erdiwansyah, E., Gani, A., Mamat, R., Mahidin, M., Sudhakar, K., Rosdi, S. M. & Husin, H. (2022). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, 48(3), pp. 57–69. DOI:10.24425/aep.2022.142690
  9. Faizal, M., Said, M., Nurisman, E. & Aprianti, N. (2021). Purification of Synthetic Gas from Fine Coal Waste Gasification as a Clean Fuel. Journal of Ecological Engineering, 22(5), pp. 114–120. DOI:10.12911/22998993/135862
  10. Fawzy, S., Osman, A. I., Mehta, N., Moran, D., Al-Muhtaseb, A. H. & Rooney, D. W. (2022). Atmospheric carbon removal via industrial biochar systems: A techno-economic-environmental study. Journal of Cleaner Production, 371, 133660. DOI:10.1016/j.jclepro.2022.133660
  11. Font-Palma, C., Cann, D. & Udemu, C. (2021). Review of cryogenic carbon capture innovations and their potential applications. C - Journal of Carbon Research, 7(3), 58. DOI:10.3390/c7030058
  12. Iglina, T., Iglin, P. & Pashchenko, D. (2022). Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability, 14(7), 3801. DOI:10.3390/su14073801
  13. International Energy Agency. (2023). CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022
  14. Izba Gospodarcza Ciepłownictwo Polskie. (2023). Transformacja i rozwój ciepłownictwa systemowego w Polsce. Raport 2023.
  15. Kammerer, S., Borho, I., Jung, J. & Schmidt, M. S. (2023). Review: CO2 capturing methods of the last two decades. International Journal of Environmental Science and Technology, 20(7), pp. 8087–8104. DOI:10.1007/s13762-022-04680-0
  16. Kozieł, W. & Włodarczyk, T. (2011). Algae – biomass production (a reviev). Acta Agrophysica, 17(1), pp. 105–116. http://www.acta-agrophysica.org/Algae-biomass-production-a-reviev,107203,0,2.html
  17. Kupczak, P. (2021). Energy transformation of medium-sized PECs. Energety-ka Cieplna i Zawodowa, 2, pp. 24–27. https://issuu.com/marfi1976/docs/2_2021_energetyka_issuu (in Polish)
  18. Kupczak, P. (2022). How to save energy resources in times of their shortage? Nowa Energia, 85(4), pp. 30–35. (in Polish)
  19. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibriumand thermodynamics. Archives of Environmental Protection, 47(3), pp. 28–36. DOI:10.24425/aep.2021.138461
  20. Madejski, P., Chmiel, K., Subramanian, N. & Kuś, T. (2022). Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies, 15(3), 887. DOI:10.3390/en15030887
  21. Matejczyk, M., Kondzior, P., Ofman, P., Juszczuk-Kubiak, E., Świsłocka, R., Łaska, G., Wiater, J. & Lewandowski, W. (2023). Atrazine toxicity in marine algae Chlorella vulgaris and in E. coli lux and gfp biosensor tests. Archives of Environmental Protection, 49(3), 87–99. DOI:10.24425/aep.2023.147331
  22. Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T. & Katsoulas, N. (2019). Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants, 9(1), 31. DOI:10.3390/plants9010031
  23. Nord, L. O. & Bolland, O. (2020). Carbon dioxide emission management in power generation. John Wiley & Sons.
  24. Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. (2021). Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 19(2), pp. 797–849. DOI:10.1007/s10311-020-01133-3
  25. Rogulj, I., Peretto, M., Oikonomou, V., Ebrahimigharehbaghi, S. & Tourkolias, C. (2023). Decarbonisation Policies in the Residential Sector and Energy Poverty: Mitigation Strategies and Impacts in Central and Southern Eastern Europe. Energies, 16(14), 5443. DOI:10.3390/en16145443
  26. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. H., Alhajeri, N. S. & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and car-bon sequestration: a review. Environmental Chemistry Letters, 20(5), pp. 2797–2851. DOI:10.1007/s10311-022-01458-1
  27. Schwister, K. & Leven, V. (2020). Verfahrenstechnik für Ingenieure: Ein Lehrund Übungsbuch (mit umfangreichem Zusatzmaterial). Carl Hanser Verlag GmbH Co KG.
  28. Sifat, N. S. & Haseli, Y. (2019). A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies, 12(21), 4143. DOI:10.3390/en12214143
  29. Skawińska, A., Lasek, J. & Adamczyk, M. (2014). Study of CO2 removal processes using microalgae. Inżynieria i Aparatura Chemiczna, 53(4), pp. 292–293. (in Polish)
  30. Skompski, S., Kozłowska, A., Kozłowski, W. & Łuczyńsko, P. (2023). Coexistence of algae and a graptolite-like problematical: a case study from the late Silurian of Podolia (Ukraine). Acta Geologica Polonica, 73(2), pp. 115–133. DOI:10.24425/agp.2022.143599
  31. Szatyłowicz, E., Patyna, A., Biłos, Ł., Płaczek, M. & Witczak, S. (2017). Productivity of microalgae Chlorella vulgaris in laboratory condition. Inżynieria Ekologiczna, 18(3), pp. 99–105. DOI:10.12912/23920629/70264
  32. Tleukeyeva, A., Pankiewicz, R., Issayeva, A., Alibayev, N. & Tleukeyev, Z. (2021). Green Algae as a Way to Utilize Phosphorus Waste. Journal of Ecological Engineering, 22(10), pp. 235–240. DOI:10.12911/22998993/142451
  33. Urbina-Suarez, N. A., Barajas-Solano, A. F., Garcia-Martinez, J. B., Lopez-Barrera, G. L. & Gonzalez-Delgado, A. D. (2021). Cultivation of Chlorella sp. for biodiesel production using two farming wastewaters in eastern Colombia. Journal of Water and Land Development, 50. DOI:10.24425/jwld.2021.138169
  34. Urbina-Suarez, N. A., Barajas-Solano, A. F., Garcia-Martinez, J. B., Lopez-Barrera, G. L. & Gonzalez-Delgado, A. D. (2022). Prospects for using wastewater from a farm for algae cultivation: The case of Eastern Colombia. Journal of Water and Land Development, 52, pp. 172–179. DOI:10.24425/jwld.2022.140387
  35. Urząd Regulacji Energetyki. (2022). Thermal energy in numbers. 2021. (in Polish)
  36. Valdovinos-García, E. M., Barajas-Fernández, J., Olán-Acosta, M. de los Á., Petriz-Prieto, M. A., Guzmán-López, A. & Bravo-Sánchez, M. G. (2020). Techno-Economic Study of CO2 Capture of a Thermoelectric Plant Using Microalgae (Chlorella vulgaris) for Production of Feedstock for Bioenergy. Energies, 13(2), 413. DOI:10.3390/en13020413
  37. Xie, K., Fu, Q., Qiao, G. G. & Webley, P. A. (2019). Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 572, pp. 38–60. DOI:10.1016/j.memsci.2018.10.049
  38. Yerizam, M., Jannah, A. & Aprianti, N. (2023). Bioethanol Production from Chlorella Pyrenoidosa by Using Enzymatic Hydrolysis and Fermentation Method. Journal of Ecological Engineering, 24(1), pp. 34–40. DOI:10.12911/22998993/156000
  39. Yu, Y., Fang, X., Li, L. & Xu, Y. (2023). Performance and mechanism of Carrousel oxidation ditch and water Spinach wetland combined process in treating water hyacinth (Pontederia crassipes) biogas slurry. Archives of Environmental Protection, 49(1), pp. 39–46. DOI:10.24425/aep.2023.144735
  40. Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., Li, K., Liu, J. & Ruan, R. (2017). Biomitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, pp. 1163–1175. DOI:10.1016/j.rser.2017.03.065
Go to article

Authors and Affiliations

Paweł Kupczak
1
ORCID: ORCID
Sylwester Kulig
1
ORCID: ORCID

  1. Miejskie Przedsiębiorstwo Energetyki Cieplnej sp. z o.o. w Nowym Sączu, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aquifers in the M’léta Plain are crucial for supplying drinking water and supporting industrial and agricultural water needs. However, they are facing a pollution risk and environmental degradation. The present study aims to assess the groundwater quality in the M’léta Plain, focusing on its physicochemical properties, statistics of the aquifer, pollution risks, and factors influencing the water mineralisation process. The analysis of 16 samples reveals that the water contains high levels of sulphates and chlorides, often accompanied by sodium, calcium, or magnesium. This suggests two distinct water types or facies: one characterised by sodium chloride or calcium chloride, and the other with calcic or sodic sulphate waters, sometimes including magnesium sulphate. These facies may be attributed to the influence of different formations at the outcrop. Statistical analyses reveal a strong correlation between electrical conductivity and the majority of chemical elements, indicating the impact of freshwater interacting with the underlying rock formations on mineralisation. Some results also show undersaturation of certain minerals. Furthermore, the study evaluates the water's suitability for irrigation in the M’léta Plain in accordance with Richards’ classification.
Go to article

Authors and Affiliations

Mohammed Khelifa
1
ORCID: ORCID
Abdelhamid Khedidja
1
ORCID: ORCID
Hamidi Mansour
2
Reghais Azzeddine
3

  1. University of Batna 2, Laboratory of Mobilization and Resources Management, 53, Road to Constantine, Fésdis, Batna, Algeria
  2. University of Oran 2, Laboratory of Georesources, Environment and Natural Hazards, BP 1524, Campus Pole Belgaid, Oran, Algeria
  3. University of Jijel, Laboratory of Geological Engineering, BP 98, Ouled Aissa, Jijel, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Strengthening the functioning of existing rural piped water supply systems is a critical strategy for ensuring household water security, particularly in water-scarce contexts. Improving operation and maintenance (O&M) of the systems is an important area of focus, commonly plagued by poor reliability and functionality over time. From an economic perspective, there is an opportunity to optimise O&M input efficiencies as a foundation for improved management. This paper presented challenges and opportunities to optimise O&M input efficiencies based on an analysis of water supply systems in Vietnam’s highland areas characterised by mountainous terrain and water scarcity. The analysis focused on state-based agencies for O&M given their mandate for restoring the inefficient systems and identified input norms for guidance on how to optimise O&M activities. We applied an input-oriented data envelopment analysis (DEA) model under constant returns to scale assumption to estimate technical, economic and allocative efficiencies. The results identified efficiency levels of 90%, 30% and 33% respectively. The study suggests a 10% reduction in general input amounts and identified efficient input target values reveal potential reduction rates for technical labour (12%), electricity (12%), as well as the technical and economic norms of technical labour (0.86 person- day∙(100 m3)–1 water sold) and electricity (0.53 kWh∙m–3 water sold). The policy implications for O&M state-based agencies include the adoption of input-based contracting mechanisms, while the government is encouraged to approve water tariffs and provide compensation based on input items to promote water service supply as a public good in water- scarce and challenging areas.
Go to article

Authors and Affiliations

Dao Van Dinh
1
ORCID: ORCID
Phong Tung Nguyen
2
ORCID: ORCID
Tan Tiep Nguyen
3
ORCID: ORCID
Naomi Carrard
4
ORCID: ORCID
Ngoc Minh Nguyen
5
ORCID: ORCID
Ton Nu Hai Au
6
ORCID: ORCID

  1. Institute for Water Resources Economics and Management, No 131, Chua Boc, 10000, Dong Da, Hanoi, Vietnam
  2. Ministry of Agriculture and Rural Development, Department of Water Resources, No 2, Ngoc Ha, 10000, Ba Dinh, Hanoi, Vietnam
  3. Vietnam Academy of Water Resources, No 17, Tay Son, Dong Da, 10000, Hanoi, Vietnam
  4. University of Technology Sydney-Institute for Sustainable Futures, Broadway 15-73, Ultimo, 2007, Sydney, Australia
  5. Hanoi Architectural University, km 10, Nguyen Trai, Thanh Xuan, 10000, Hanoi, Vietnam
  6. University of Economics, Hue University, 99 Ho Dac Di, 49000, Hue City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes soil organic carbon (SOC) content of in Poland from 2015 to 2021. The research aims to determine SOC levels and their dependence on soil agronomic categories and drought intensity. Soil samples from 1011 farms across 8 Polish voivodships were collected for analysis, all from the same agricultural plots. SOC determination was conducted using the Tiurin method. The results indicate a low SOC content nationwide (0.85-2.35%). Heavy soils exhibited higher SOC accumulation compared to light soils. Moreover, significant drought impact led to decreased SOC content in affected regions. Scientific evidence underscores a declining trend in organic carbon stock within agricultural soils, attributed to natural soil changes and unsustainable management practices. This decline is concerning given the crucial role of SOC in soil health, quality, and crop productivity. Therefore, it is imperative to monitor and address areas with low SOC levels to enhance SOC abundance. Furthermore, when used as a whole-cell biocatalyst in a low-cost upflow MFC, the Morganella morganii-rich SF11 consortium demonstrated the highest voltage and power density of 964.93±1.86 mV and 0.56±0.00 W/m3, respectively. These results suggest that the SF11 bacterial consortium has the potential for use in ceramic separator MFCs for the removal of penicillin and electricity generation.
Go to article

Bibliography

  1. Amoah-Antwi, C., Kwiatkowska-Malina, J., Szara, E., Fentona, O., Thornton, S.F. & Malina, G. (2022). Title of article, Assessing Factors Controlling Structural Changes of Humic Acids in Soils Amended with Organic Materials to Improve Soil Functionality, Agronomy, 12(2), pp. 1–17. DOI:10.3390/agronomy12020283.
  2. Breś, W., Golcz, A., Komosa, A., Kozik, E. & Tyksiński, W. (1997). Fertilization of garden plants. Edited by A.R. w Poznaniu. Poznań (1997).
  3. Castañeda-Gómez, L., Lajtha, K., Bowedena, R., Jauhar, F.N.M., Jai, J., Feng, X. & Simpson, M.J. (2023). Soil organic matter molecular composition with long-term detrital alterations is controlled by site-specific forest properties, Global Change Biology, 29(1), pp. 243–259. DOI:10.1111/gcb.16456.
  4. Communication from The Commission to The Council, The European Parliament, The European Economic and Social Committee and The Committee of The Regions - Thematic Strategy for Soil Protection (2006) Commission of The European Communities. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2006:0231:FIN:EN:PDF.
  5. Cotrufo, M.F. & Lavallee, J.M. (2022). Chapter One - Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration, Advances in Agronomy, 172, pp. 1–66.
  6. Dignac, M.F., Derrein, D., Barre, P., Barot, S., Cécillon, L., Chenu, C., Chevalier, T., Freschet, G.T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Laschermes, G., Maron, P.A., Nunan, N., Rumet, K. & Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review, Agronomy for Sustainable Development, 37(2). DOI:10.1007/s13593-017-0421-2.
  7. Dynarski, K.A., Bossio, D.A. & Scow, K.M. (2020). Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration, Frontiers in Environmental Science, 8. DOI:10.3389/fenvs.2020.514701.
  8. Francaviglia, R. Almagro, M. & Vicente-Vicente, J.L., (2023). Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options, Soil Systems, 7(17), pp. 1–35. DOI:10.3390/soilsystems7010017.
  9. Gerke, J. (2022). The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage, Soil Systems, 6(2). DOI:10.3390/soilsystems6020033.
  10. Giachin, G., Neprawiszta, R., Mandaliti, W., Melino, S., Morgan, A., Scaini, D., Mazzei, P., Piccalo, A., Lagname, G., Paci, M. & Leita, L. (2017). The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein, PLoS ONE, 12(11), pp. 1–16. DOI:10.1371/journal.pone.0188308.
  11. Gonet, S.S. &Markiewicz, M. (2007). The role of organic matter in the environment, PTSH, Wrocław 2007.
  12. Intergovernmental Panel on Climate Change (2022). Risk management and decision-making in relation to sustainable development, Climate Change and Land. DOI:10.1017/9781009157988.009.
  13. Kiryluk, A. & Kostecka, J. (2023). Sustainable development in rural areas in the perspective of a decade of ecosystem restoration, Ekonomia i Środowisko - Economics and Environment, 83(4). DOI:10.34659/eis.2022.83.4.535.
  14. Kuś, J. (2015). Soil organic matter - meaning, content and balancing, Studies and Reports IUNG-PIB, 45(19), pp. 27–53. DOI:10.26114/sir.iung.2015.45.02. (in Polish)
  15. Lal, R., Follertt, R.F., Stewart, B.A. & Kimble, J.M. (2007). Soil carbon sequestration to mitigate climate change and advance food security, Soil Science, 172(12), pp. 943–956. DOI:10.1097/ss.0b013e31815cc498.
  16. Lipiński, W., Lipińska, H., Kornas, R. & Watros, A.(2020). Selected agrochemical parameters of grassland soils in Poland, Agronomy Science, 75(2), pp. 5–23. DOI:10.24326/as.2020.2.1. (in Polish)
  17. Łądkiewicz, K., Wszȩdyrówny-Nast, M. & Jaskiewicz, K. (2017). Comparison of different methods for determination of organic matter content, Scientific Review Engineering and Environmental Sciences, 26(1), pp. 99–107. DOI:10.22630/PNIKS.2017.26.1.09.
  18. Myśleńska, E. (2001). Organic soils and laboratory methods of their research, I PWN, Warszawa 2021. (in Polish)
  19. Nachtergaele, F.O., Petri, M. & Biancalani, R. (2016). Land degradation, World Soil Resources and Food Security. DOI:10.4337/9781788974912.l.4.
  20. Nasiri, S., Andalibi,B., Tavakoli, A., Delavar, M.A., El-Keblawy, A., Van Zwieten, L. & Mastinu, A. (2023) The mineral biochar alters the biochemical and microbial properties of the soil and the grain yield of Hordeum vulgare L. under drought stress, Land, 12(3), pp. 1–16. DOI:10.3390/land12030559.
  21. Newton, P., Cyvita, N., Frankel-Goldwater, L., Bartel, K. & Johno, C. (2020). What is regenerative agriculture? A review of scholar and practitioner definitions based on processes and outcomes, Frontiers in Sustainable Food Systems, 4(October), pp. 1–11. DOI:10.3389/fsufs.2020.577723.
  22. Pietrzak, S. & Hołaj-Krzak, J. T. (2022). The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. Journal of Water and Land Development, 54, 68–76. https://doi.org/10.24425/jwld.2022.141556
  23. Pikuła, D. & Rutkowska, A. (2017). Fractional composition of humus as a characteristic of the quality of organic matter, Studies and Reports IUNG-PIB, 53(7), pp. 81–91. DOI:10.26114/sir.iung.2017.53.06.(in Polish)
  24. Robertson, A.D., Paustain, K., Ogle, S., Wallenstein M.D., Lugato, E. & Cotrufo, M.F. (2019). Unifying soil organic matter formation and persistence frameworks: The MEMS model, Biogeosciences, 16(6), pp. 1225–1248. DOI:10.5194/bg-16-1225-2019.
  25. Rusco, E., Jones, R. & Bidoglio, G. (2001). Organic Matter in the soils of Europe: Present status and future trends Institute for Environment and Sustainability European Soil Bureau, European Commission Joint Research Centre [Preprint], (October 2001).
  26. Ryżak, M., Bartmiński, P. & Biegaowski, A. (2009). Methods of determining the granulometric composition of mineral soils, Acta Agrophysica, 175(4), pp. 34-39. http://www.old.acta-agrophysica.org/artykuly/acta_agrophysica/ActaAgr_175_2009_4_1_1.pdf. (in Polish)
  27. Schmidt, M.W.I., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssen, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.AC., Nannipieri, P., Rasse, D., Weiner, S. & Trumbore, S.E. (2011). Persistence of soil organic matter as an ecosystem property, Nature, 478(7367), pp. 49–56. DOI:10.1038/nature10386.
  28. The European Green Deal (2019) European Commission [Preprint], (December), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN.
Go to article

Authors and Affiliations

Urszula Zimnoch
1 2
Paulina Bogusz
1 3
Marzena Sylwia Brodowska
1
Jacek Michalak
4

  1. Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Poland
  2. Complexor Fertilizer Group, Stawiski, Poland
  3. Fertilizers Research Group, Łukasiewicz Research Network–New Chemical Syntheses Institute, Puławy, Poland
  4. Regional Chemical and Agricultural Station in Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

We introduce the Sobolev-type multi-term μ-fractional evolution with generalized fractional orders with respect to another function. We make some applications of the generalized Laplace transform. In the sequel, we propose a novel type of Mittag-Leffler function generated by noncommutative linear bounded operators with respect to the given function and give a few of its properties. We look for the mild solution formula of the Sobolev-type evolution equation by building on the aforementioned Mittag-Leffler-type function with the aid of two different approaches. We share new special cases of the obtained findings.
Go to article

Authors and Affiliations

Mustafa Aydin
1
ORCID: ORCID
Nazim Mahmudov
2 3
ORCID: ORCID

  1. Department of Medical Services and Techniques, Muradiye Vocational School, Van Yuzuncu Yil University, Tu¸sba 65080 Van, Turkey
  2. Department of Mathematics, Eastern Mediterranean University, Famagusta 99628 T.R. North Cyprus, Turkey
  3. Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Istiqlaliyyat Str. 6, Baku 1001, Azerbaijan
Download PDF Download RIS Download Bibtex

Abstract

The article presents a methodology for determining the value of the expansion coefficient of a reconsolidated caving zone in the context of forecasting the rise in underground mine water levels and consequent surface subsidence caused by the process of flooding the closed coal mines. The paper also provides a brief characterisation of analytical predictive models regarding surface subsidence during the process of flooding coal mines. In order to describe the vertical deformation of the reconsolidated porous rock mass in the caving zone, a linear-elastic medium of Biot was utilised. The conducted theoretical calculations demonstrate a high agreement with the results obtained through the identification of the expansion coefficient parameter based on the analysis of in-situ subsidence measurements in Dutch and German mining areas. The proposed methodology was applied to a real case study involving the forecasting of the impact of the flooding process on the underground workings of the German Ibbenbüren mine. The article constitutes a significant contribution to the field of forecasting the rise in underground mine water levels and surface subsidence during the process of flooding closed coal mines. The presented methodology and obtained results can be valuable for researchers, engineers, and decision-makers involved in the planning and management of mining areas.
Go to article

Authors and Affiliations

Rafał Misa
1
ORCID: ORCID
Mateusz Dudek
1
ORCID: ORCID
Anton Sroka
1
ORCID: ORCID
Krzysztof Tajduś
2
ORCID: ORCID
Dawid Mrocheń
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Science, Krakow, Poland
  2. AGH University of Science and Technology, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Inter-turn short circuit (ITSC) is a frequent fault of interior permanent magnet synchronous motors (IPMSM). If ITSC faults are not promptly monitored, it may result in secondary faults or even cause extensive damage to the entire motor. To enhance the reliability of IPMSMs, this paper introduces a fault diagnosis method specifically designed for identifying ITSC faults in IPMSMs. The sparse coefficients of phase current and torque are solved by clustering shrinkage stage orthogonal matching tracking (CcStOMP) in the greedy tracking algorithm.The CcStOMP algorithm can extract multiple target atoms at one time, which greatly improves the iterative efficiency. The multiple features are utilized as input parameters for constructing the random forest classifier. The constructed random forest model is used to diagnose ITSC faults with the results showing that the random forest model has a diagnostic accuracy of 98.61% using all features, and the diagnostic accuracy of selecting three of the most important features is still as high as 97.91%. The random forest classification model has excellent robustness that maintains high classification accuracy despite the reduction of feature vectors, which is a great advantage compared to other classification algorithms. The combination of greedy tracing and the random forest is not only a fast diagnostic model but also a model with good generalisation and anti-interference capability. This non-invasive method is applicable to monitoring and detecting failures in industrial PMSMs.
Go to article

Authors and Affiliations

Jianping Wang
1
Jian Ma
1
ORCID: ORCID
Dean Meng
1
Xuan Zhao
1
Kai Zhang
1
Qiquan Liu
1
Kejie Xu
1

  1. School of Automobile, Chang’an University, Xi’an 710064, China
Download PDF Download RIS Download Bibtex

Abstract

The objective of the research was to develop the Attitude Control System algorithm to be implemented in the Earth Observation Satellite System composed of leader-follower formation. The main task of the developed Attitude Control System is to execute attitude change manoeuvres required to point the axis of the image acquisition sensor to the fixed target on the Earth’s surface, while the satellite is within the segment of an orbit, where image acquisition is possible. Otherwise, the satellite maintains a nadir orientation. The control strategy is realized by defining the high-level operational modes and control laws to manage the attitude control actuators: magnetorquers used for desaturation of the reaction wheels and reaction wheels used for agile attitude variation. A six-degree-of-freedom satellite model was used to verify whether the developed Attitude Control System based on PID controllers for actuators performs attitude control in line with the requirements of an Earth Observation System. The simulations done for a variety of combinations of orbital parameters and surface target positions proved that the designed Attitude Control System fulfils the mission requirements with sufficient accuracy This high-level architecture supplemented by a more detailed control system model allowed proving efficient functionalities performance.
Go to article

Authors and Affiliations

Janusz Narkiewicz
1
ORCID: ORCID
Szabolcs Grünvald
1
Mateusz Sochacki
1
ORCID: ORCID

  1. Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 24, 00-665, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article introduces a method for selecting the best clamping conditions to obtain vibration reduction during the milling of large-size workpieces. It is based on experimental modal analysis performed for a set of assumed, fixing conditions of a considered workpiece to identify frequency response functions (FRFs) for each tightening torque of the mounting screws. Simulated plots of periodically changing nominal cutting forces are then calculated. Subsequently, by multiplying FRF and spectra of cutting forces, a clamping selection function (CSF) is determined, and, thanks to this function, vibration root mean square (RMS) is calculated resulting in the clamping selection indicator (CSI) that indicates the best clamping of the workpiece. The effectiveness of the method was evidenced by assessing the RMS value of the vibration level observed in the time domain during the real-time face milling process of a large-sized exemplary item. The proposed approach may be useful for seeking the best conditions for fixing the workpiece on the table.
Go to article

Authors and Affiliations

Krzysztof J. Kaliński
1
ORCID: ORCID
Marek A. Galewski
1
ORCID: ORCID
Natalia Stawicka-Morawska
1
ORCID: ORCID
Krzysztof Jemielniak
2
ORCID: ORCID
Michał R. Mazur
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design,Gdansk, 80-233, Poland
  2. Warsaw University of Technology, Faculty of Mechanical and Industrial Engineering, Institute of Manufacturing Processes,Warsaw, 00-661, Poland
Download PDF Download RIS Download Bibtex

Abstract

With the advent of social media, the volume of photographs uploaded on the internet has increased exponentially. The task of efficiently recognizing and retrieving human facial images is inevitable and essential at this time. In this work, a feature selection approach for recognizing and retrieving human face images using hybrid cheetah optimization algorithm is proposed. The deep feature extraction from the images is done using deep convolutional neural networks. Hybrid cheetah optimization algorithm, an improvised version of cheetah optimization algorithm fused with genetic algorithm is used, to choose optimum features from the extracted deep features. The chosen features are used for finding the best-matching images from the image database. The image matching is performed by approximate nearest neighbor search for the query image over the image database and similar images are retrieved. By constructing a k-NN graph for the images, the efficiency of image retrieval is enhanced. The proposed system performance is evaluated against benchmark datasets such as LFW, MultiePie, ColorFERET, DigiFace-1M and CelebA. The evaluation results show that the proposed methodology is superior to various existing methodologies.
Go to article

Authors and Affiliations

C Balasubramanian
1
ORCID: ORCID
J Raja Sekar
1

  1. Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, India
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was to evaluate selected mechanical properties and structural characteristics of samples manufactured using composite filament fabrication (CFF) technology from Onyx material, whichwas filled with continuous glass fiber. Selected mechanical properties were correlated with the density of the resulting composite to determine the specific strength of the fabricated parts. The test specimens were manufactured on a Mark Two Enterprise machine (Markforged, USA) using composite filament fabrication (CFF) technology. The material used was polyamide 6.6 with a 20% short carbon fiber content with the trade name Onyx. Continuous glass fiber was used to reinforce the fabrication. The density of the manufactured samples was determined using a hydrostatic method. Methanol was used as the liquid. By determining the density of the samples, it was possible to estimate through appropriate calculations what specific strength and specific modulus the obtained composites would have. Determination of tensile and flexural strengths was carried out in accordance with ISO 527-1:2012 and ISO 178:2003. Determination of the impact tensile strength of the samples was carried out in accordance with ISO 8256, the beams were tested using the A method. Due to the high impact tensile strength, two 1 mm notches with an angle of 45°were made on the specimens. The image of the sample structure obtained by the CFF method was recorded using a CT scanner. A thermogravimetric test (TG) of the Onyx matrix material was carried out. The samples were tested approximately 72 hours after fabrication. Filling the samples with continuous glass fiber above 50% leads to a slight increase in impact resistance. The density of the composite increased by only 16% relative to the reference samples, resulting in a 389% increase in the maximum average flexural strength. Despite significant discontinuities in the structure of the produced composite, it was possible to record an increase in tensile strength and Young’s modulus by 606% and 370%, respectively.
Go to article

Authors and Affiliations

Dawid Marciniak
1
ORCID: ORCID
Dariusz Sykutera
1
ORCID: ORCID
Piotr Czyżewski
1

  1. Faculty of Mechanical Engineering, Department of Manufacturing Techniques, Bydgoszcz University of Science and Technology, Poland

This page uses 'cookies'. Learn more