Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 191-201
| DOI: 10.1515/aee-2016-0013

Słowa kluczowe:
fractional
positive
electrical circuits
minimum energy control
bounded
inputs
procedure

Minimum energy control problem for the fractional positive electrical circuits is formulated and solved. Sufficient conditions for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by an example of fractional positive electrical circuit.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 203-220
| DOI: 10.1515/aee-2016-0014

Słowa kluczowe:
Flower Pollination Algorithm
data structure
loss minimization
voltage improvement
capacitor placement

The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA). To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 221-234
| DOI: 10.1515/aee-2016-0015

Słowa kluczowe:
power quality
active power filter
power surge compensation

The paper presents a concept of an active filter with energy storage. This solution can be used for the compensation of momentary one phase high power loads with discontinued power consumption (e.g. spot welding machines). Apart from the typical filtering capabilities, the system’s task is also the continuity of the input power from the feeder line and limiting its fluctuation. The proposed by the author’s solution can produce measurable economic benefits by reducing the rated power necessary to energize periodically operating loads and improving the indicators of electrical energy quality. The developed method of active power surges compensation enables a flexible approach to requirements concerning the rated power of the point to which the periodically operating loads with high peak current value are connected. The tests were conducted on a simulation model specially developed in Matlab & Simulink environment, proving high effectiveness of the presented solution.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 235-248
| DOI: 10.1515/aee-2016-0016

Słowa kluczowe:
current source rectifiers (CSR)
current source inverters (CSI)
current source multilevel inverter (CSMLI)
space vector pulse width modulation (SVPWM)

Current source inverters (CSI) is one of the widely used converter topology in medium voltage drive applications due to its simplicity, motor friendly waveforms and reliable short circuit protection. The current source inverters are usually fed by controlled current source rectifiers (CSR) with a large inductor to provide a constant supply current. A generalized control applicable for both CSI and CSR and their extension namely current source multilevel inverters (CSMLI) are dealt in this paper. As space vector pulse width modulation (SVPWM) features the advantages of flexible control, faster dynamic response, better DC utilization and easy digital implementation it is considered for this work. This paper generalizes SVPWM that could be applied for CSI, CSR and CSMLI. The intense computation involved in framing a generalized space vector control are discussed in detail. The algorithm includes determination of band, region, subregions and vectors. The algorithm is validated by simulation using MATLAB /SIMULINK for CSR 5, 7, 13 level CSMLI and for CSR fed CSI.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 249-261
| DOI: 10.1515/aee-2016-0017

Słowa kluczowe:
end-winding
permanent magnet motor
eddy-currents losses
proximity losses

This paper presents a finite element investigation into the proximity losses in a high-speed permanent magnet (PM) machine for traction applications. A three-dimensional (3D) finite element analysis (FEA) is employed to evaluate and identify the endwinding contribution into the overall winding power loss generated. The study is focused on the end-winding effects that have not been widely reported in the literature. The calculated results confirm that the end-winding copper loss can significantly affect the eddycurrent loss within copper and it should be taken into account to provide reasonable prediction of total losses. Several structures of the end-winding are analyzed and compared in respect to the loss and AC resistance. The results clearly demonstrate that the size of the end-winding has a significant impact on the power loss. The calculated results are validated experimentally on the high-speed permanent magnet synchronous machine (PMSM) prototype for selected various winding arrangements.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 263-272
| DOI: 10.1515/aee-2016-0018

Słowa kluczowe:
finite differences
Schwarz-Christoffel
static fields

Refined Schwarz-Christoffel (SC) conformal transformations allow us to perform reliable quantitative evaluation of the accuracy of local computation of electric and magnetic fields with limited effort, which can be useful to complement well known comparisons of global results. In this paper some examples are presented for mesh point potentials obtained by means of finite difference (FD) methods, but it is possible that similar considerations will be useful in the case of finite element methods (FEM) or meshless computations too.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 273-283
| DOI: 10.1515/aee-2016-0019

Słowa kluczowe:
electrical impedance tomography
inverse problem
finite element method
level set method

This paper presents a new, nondestructive method of testing brick wall dampness in wall structures. The setup was used to determine the moisture in a specially built laboratory model. Topological methods and the gradient technique are used to optimize the approach. A forward model of a wall was constructed to solve the inverse problem resulting in moisture buildup inside the wall.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 285-294
| DOI: 10.1515/aee-2016-0020

Słowa kluczowe:
design optimisation
electric vehicle
genetic algorithm
multi-objective optimisation
permanent magnet disc motor

The analysed permanent magnet disc motor (PMDM) is used for direct wheel drive in an electric vehicle. Therefore there are several objectives that could be tackled in the design procedure, such as an increased efficiency, reduced iron weight, reduced copper weight or reduced weight of the permanent magnets (reduced rotor weight). In this paper the optimal design of PMDM using a multi-objective genetic algorithm optimisation procedure is performed. A comparative analysis of the optimal motor solution and its parameters in relation to the prototype is presented.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 295-304
| DOI: 10.1515/aee-2016-0021

Słowa kluczowe:
distributed generation
electric field
magnetic field
power line

The development of a distributed generation will influence the structure of the power transmission and distribution network. Distributed sources have lower power and therefore the lines of lower voltage are used. Therefore, the electric field intensity near such lines is lower. On the other hand magnetic field intensity may prove essential. The main aim of the paper is to present a method estimating the “ballast” of the natural environment at 50 Hz electric and magnetic fields in the power system, with distributed and centralized generation in real operating conditions.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 305-314
| DOI: 10.1515/aee-2016-0022

Słowa kluczowe:
constraint satisfaction
hull consistency
interval methods
nonlinear circuits

Hull consistency is a known technique to improve the efficiency of iterative interval methods for solving nonlinear systems describing steady-states in various circuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each equation of the nonlinear system with respect to a single variable. In the present poster, a new more general approach to implementing hull consistency is suggested which consists in treating simultaneously several equations with respect to the same number of variables.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 315-326
| DOI: 10.1515/aee-2016-0023

Słowa kluczowe:
State Space Modeling
AC Machines
ODE and DAE Solvers
MATLAB

In the field of power and drive systems, electrical AC machines are mostly modeled using a set of explicit ordinary differential equations in a state space representation. It is shown, that by using other equation types for simulation, algebraic constraints arising from aggregating several machines to a more complex system can directly be considered. The effects of different model variants on numerical ODE/DAE solvers are investigated in the focus of this work in order perform efficient simulations of larger systems possessing electrical AC machines.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 327-336
| DOI: 10.1515/aee-2016-0024

Słowa kluczowe:
boundary conditions
eddy current testing
finite element method
magnetic
induction tomography

In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT) forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics) and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 337-347
| DOI: 10.1515/aee-2016-0025

Słowa kluczowe:
Andronov-Hopf
bifurcation
nonlinear amplifier
ambiguities

Since the so-called Hopf-type amplifier has become an established element in the modeling of the mammalian hearing organ, it also gets attention in the design of nonlinear amplifiers for technical applications. Due to its pure sinusoidal response to a sinusoidal input signal, the amplifier based on the normal form of the Andronov-Hopf bifurcation is a peculiar exception of nonlinear amplifiers. This feature allows an exact mathematical formulation of the input-output characteristic and thus deeper insights of the nonlinear behavior. Aside from the Hopf-type amplifier we investigate an extension of the Hopf system with focus on ambiguities, especially the separation of solution sets, and double hysteresis behavior in the input-output characteristic. Our results are validated by a DSP implementation.

14
The influence of impurities on the operation of selected fuel ignition systems in combustion engines

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 349-360
| DOI: 10.1515/aee-2016-0026

Słowa kluczowe:
electrode burning
fuel mixture impurities
ignition system
spark plugs

The paper attempts to determine the impact of fuel impurities on the spark discharge energy and the wear of the spark plug electrode. Spark plugs were analyzed in two typical configurations of the ignition system. A number of tests were conducted to determine the wear of the spark plug electrode exposed to different types of impurities. The spark discharge energy for new and worn spark plugs was determined through calculation.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 361-370
| DOI: 10.1515/aee-2016-0027

Słowa kluczowe:
Bézier curves
genetic algorithms
magnetic field synthesis
nonlinear inverse
problems

Electromagnetic arrangements which create a magnetic field of required distribution and magnitude are widely used in electrical engineering. Development of new accurate designing methods is still a valid topic of technical investigations. From the theoretical point of view the problem belongs to magnetic fields synthesis theory. This paper discusses a problem of designing a shape of a solenoid which produces a uniform magnetic field on its axis. The method of finding an optimal shape is based on a genetic algorithm (GA) coupled with Bézier curves.

Archives of Electrical Engineering | 2016 | vol. 65 | No 2 June
| 371-382
| DOI: 10.1515/aee-2016-0028

Słowa kluczowe:
solenoid valve
eccentricity
armature
sleeve

Most studies on solenoid valves (SVs) assumed that the armature is concentrically positioned in the sleeve. Under this assumption the transversal component of the magnetic force is equal zero. The article presents an analytical calculation model for the estimation of the armature eccentricity. Using this model the eccentricity was calculated as a function of the sleeve thickness and the hydraulic clearance between the armature and the sleeve. After finding the eccentricity also the permeance of the radial air gap was calculated. This permeance has a direct influence on the drop of the magnetomotive force in the magnetic circuit and finally influences also the axial component of the magnetic force. In the article a calculation of both transversal and axial components of the magnetic force was carried out and presented in the appendix to the article.

**ARCHIVES OF ELECTRICAL ENGINEERING (AEE)** (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

**Manuscript submission: **

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the *Archives of Electrical Engineering* is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.

**Template: **

Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

**The reviewing process:**

Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:

a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE

b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place

c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected

d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.

The papers are published on average within 3 months after acceptance.

**Requirements for preparation of manuscripts:**

The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

__Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures. __

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

**Text: **

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.

**Math: **

Please use the *MathML *editor as well as *MathType* editor to build an equation in your manuscript.

**Equations: **

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use *italic fonts*. Symbols of **vectors** and **matrices** should be written in **bold** **fonts**. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.

**Unit Symbols, Abbreviations: **

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength *H* is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."

__Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the__ IEEE standard

**Tables, figures (illustrations) and captions: **

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.

Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.

**Conclusions: **

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.

**References: **

References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.

Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.

__You can use the rules presented on the site:__ IEEE standard.

__Examples of the ways in which references should be cited are given below:__

**Journal manuscript**

[1] Author1 A., Author2 A., *Title of paper*, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).

*example*

[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., *Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines*, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).

[2] Idziak P., *Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor*, Electrical Review (in Polish), to be published.

[3] Cardwell W., *Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor*, submitted for publication in IEEE Transactions on Magnetics.

**Conference manuscript**

[4] Author A., *Title of conference paper*, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).

*example*

[4] Popescu M., Staton D.A., *Thermal aspects in power traction motors with permanent magnets*, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).

*Book, book chapter and manual*

[5] Author1 A., Author2 A.B., *Title of book*, Name of the publisher (YEAR).

*example*

[5] Zienkiewicz O., Taylor R.L., *Finite Element method*, McGraw-Hill Book Company (2000).

**Patent **

[6] Author1 A., Author2 A., *Title of patent*, European Patent, EP xxx xxx (YEAR).

*example*

[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).

**Thesis**

[7] Author A., *Title of thesis*, PhD Thesis, Department, University, City of Univ. (YEAR).

*example*

[7] Driesen J., *Coupled electromagnetic-thermal problems in electrical energy transducers*, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).

**For on electronic forms**

[8] Author A.,* Title of article*, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].

*example*

[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., *Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,*in IEE*E* Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259

**Website**

[9] http://www.aee.put.poznan.pl, accessed April 2010.

**Proofs**:

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.

**Fees for printing the papers in Archives of Electrical Engineering: **

AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.

__The fee for the publication of an article in the AEE journal is 200 Euro. __

**Abstracting & Indexing: **

Archives of Electrical Engineering is covered by the following services:

- Arianta
- Baidu Scholar
- BazTech
- Celdes
- CNKI Scholar (China National Knowledge Infrastucture)
- CNPIEC
- DOAJ
- EBSCO - TOC Premie
- EBSCO (relevant databases)
- EBSCO Discovery Service
- Elsevier - Compendex
- Elsevier - Engineering Village
- Elsevier - SCOPUS
- Genamics JournalSeek
- Google Scholar
- ICI Journals Master List
- Inspec
- J-Gate
- Naviga (Softweco)
- POL-Index
- Primo Central (ExLibris)
- ProQuest - Advanced Technologies Database with Aerospace
- ProQuest - Electronics and Communications Abstracts
- ProQuest - Engineering Journals
- ProQuest - High Tech Research Database
- ProQuest - Illustrata: Technology
- ProQuest - SciTech Journals
- ProQuest - Technology Journals
- ProQuest - Technology Research Database
- SCImago (SJR)
- Summon (Serials Solutions/ProQuest)
- TDOne (TDNet)
- TEMA Technik und Management
- Thomson Reuters - Emerging Sources Citation Index
- Ulrich's Periodicals Directory/ulrichsweb
- WorldCat (OCLC)

Preparation of manuscript for Archives of Electrical Engineering (AEE)