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Abstract: In the field of power and drive systems, electrical AC machines are mostly 
modeled using a set of explicit ordinary differential equations in a state space represen-
tation. It is shown, that by using other equation types for simulation, algebraic constraints 
arising from aggregating several machines to a more complex system can directly be 
considered. The effects of different model variants on numerical ODE/DAE solvers are 
investigated in the focus of this work in order perform efficient simulations of larger 
systems possessing electrical AC machines. 
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1. Introduction 
 
 State space models of electrical single- and multiphase machines are widely used in the 
analysis, design and control of power and drive systems. Following standard textbooks like  
[1-3] among many others, the derivation of such simulation models follows similar proce-
dures, even though the resulting model equations may differ with respect to their form and 
structure. These differences in various model representations for one and the same machine 
gave rise to the question, if the choice of a specific representation can be advantageous over 
others for the numerical simulation. 
 Starting with a short exposure of the general modeling principles of electrical machines, 
the model equations of an induction machine are derived and simulated numerically for an 
example parameter set. Thereafter, several variants of this model representation are derived 
systematically with respect to the basic structure of the resulting differential equations, the set 
of state variables, the underlying coordinate system as well as the coupling between the elec-
trical and the mechanical subsystem. In order to find the most appropriate model represen-
tation, each variant had been simulated with several numerical solvers for ordinary differential 
equations (ODE) and differential algebraic equations (DAE) in the problem solving environ-
ment MATLAB [4, 5]. Based on the structural properties of these models numerical aspects 
will be discussed in detail aiming towards an optimized combination of model and numerical 
solver in order to reduce the computational effort for simulation. 
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2. General machine modeling 
 
 The behavior of any electrical machine can completely be described by the following three 
equations [3]: 
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 Therein, the components of the vectors u, i and Ψ  represent the voltages, currents and 
flux linkages per phase, respectively. The self- and mutual magnetic coupling of the phase 
windings in the case of linear magnetic materials is expressed by the inductance matrix L(2), 
which is in general dependent from the rotor position angle 2. The mechanical subsystem of 
the rotor is described by (3), in which J is the moment of inertia, D is the mechanical damping 
constant, me is the external driving torque and mi is the torque developed by the machines’ 
electromagnetic subsystem. 
 In order to model a specific type of electrical machine, i.e. a synchronous or an induction 
machine, the matrices R and L(2) have to be determined under a given set of assumptions 
under which the derived model shall be valid. Such an assumption could be the restriction to 
consider only the spatial fundamental of the magnetic field in the air gap of the modeled 
machine. The question how to calculate the self- and mutual inductances contained in L(2 ) 
under such an assumption is covered in detail in most of the standard textbooks, i.e.  [1, 2], 
and is not subject of this paper. Here these inductances are treated as known parameters of the 
system under examination. It has also to be mentioned, that when specializing the matrices 
in (1) - (3) in the sense mentioned above, the question of the underlying coordinate system, in 
which the quantities summarized in the vectors u, i andΨ  are expressed, arises. This aspect 
and its influence on the numerical efficiency is covered in detail in section 5.  
 Even though (1) - (3) can be directly used for numerical simulation purposes by utilizing 
an adequate solver for systems of semi-explicit differential-algebraic equations (DAE), the 
further degrees of freedom concerning the basic equation structure itself as well as the selec-
tion of possible state variables as mentioned in the introduction have to be considered. In the 
following all these aspects are discussed in detail based on an example simulation scenario 
which is interpreted with respect to an efficient numerical simulation. 
 
 

3. Induction machine model 
 
 The general machine Equations (1) - (3) are specialized in this section in order to model  
a wound rotor induction machine following the basic principles in [1, 2]. As mentioned above, 
the task is to find appropriate matrices R and L(2 ) based on the machines cross-section in  
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Fig. 1. Cross section of a wound rotor induction machine 

 
 Fig. 1. It is convenient to exploit the natural partitioning of the complete machine in 
subsystems, e.g. the stator subsystem (index 1) and the rotor subsystem (index 2). R and L(2 ) 
then read as follows: 
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with 0 denoting the zero matrix of appropriate dimension and )(diag ii R=R , }{ 2,1∈i , ex-
pressing, that for each phase only the wire resistance of the coil itself causes an ohmic voltage 
drop with respect to (1). The inductance submatrices Lii, }{ 2,1∈i , describe the self- and 
mutual inductive coupling of the phases within the subsystem denoted by the index i and are 
independent from the rotor position angle 2 . Defining the phase’s self-inductance as Lli and 
the mutual phase-to-phase inductance as Lmi, Lii reads 
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 The angular dependent submatrix L12(θ) expresses the magnetic coupling between rotor 
and stator. Using Fig. 1, 
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can directly be read off with Lm12 as maximal stator-rotor coupling inductance. Having deter-
mined all block matrices of L(θ) the coupling between the electromagnetic subsystems with 
the mechanics of the rotor in (3) can be formulated. One efficient way in doing so is based on 
the change of magnetic energy or co-energy, respectively, stored in the air gap of the modeled 
machine and which is converted from (generator operation) or to (motor operation) mecha-
nical energy [3]. Using the co-energy approach, 

  iLi
θ
θ

d
)(dT=im  (8) 

can be derived and the energy approach gives  
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as an alternative expression for the so called inner torque of the modeled machine. 
 After selecting one of the various possible model representations, the simulation can be 
performed. Fig. 2 and 3 show the simulation results of the fly-wheel start-up of an 2,2 kW 
(3 hp) induction machine operated as asynchronous motor which is supplied by an ideal three-
phase symmetric voltage source. 
 

 
Fig. 2. Transient torque over rotor speed during fly wheel start-up of the example machine 

 

 
Fig. 3. Stator and rotor currents during fly wheel start-up of the example machine 
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 The parameters of this benchmark example used throughout this paper are taken from [1]. 
The resulting dynamic torque-speed characteristic is shown in Fig. 2 and the corresponding 
current waveforms are depicted in Fig. 3. 
 
 

4. State variables and electromechanical coupling 
 
 Introducing a state vector x, which collects the electrical and mechanical state variables of 
a machine, its electrical subvectors can be partitioned so, that they are compatible to the block 
partitioning of the matrices R and L(2 ): 
 x1: stator related currents or flux-linkages, respectively; 
 x2: rotor related currents or flux-linkages, respectively; 
 xm: mechanical state variables (2  and T). 
 With the definition above, one of the following four combinations of electrical state 
variables T

2,1 )( xxx =e  can be used to formulate simulation models: 
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 First order ODE model variants with the state variable sets in (10) can be derived from the 
DAE description given in (1) - (3) by substituting either i or Ψ in the voltage Equation (1) by 
using the relation given in the flux linkage Equation (2), provided that the inverse inductance 
matrix )(1 θ−L exists, which is fulfilled for the induction machine model considered here. 
Written in explicit form, this yields 
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or with currents i as state vector 
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respectively. Model variants with the hybrid state vector configurations in (11) can be derived 
by substituting either i in (13) or Ψ  in (12) with one of the following transformation relation-
ships. 
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 Even though the transformation relationships (14-17) are derived from the flux linkage 
Equation (2), all variants result in different models with different properties concerning the 
numerical solution process, as seen below. Furthermore, it has to be mentioned, that additional 
transformation relationships can be derived in a similar way to that in (14-17) wherein the 
electrical state vector takes the form ( )T

11,Ψi  or ( )T
22 ,Ψi  respectively. In these cases, the 

state vector would only carry the information of either the stator or the rotor subsystem, which 
contradicts the modeling of the whole machine. For the induction machine 

  ( ( )) 0det 12 =θL , (18) 

for all values of 2  can be found. This relationship prohibits the existence of such state vector 
variants as stated above, because the corresponding transformation matrices would contain the 
inverse of )(12 θL  which does not exist. 
 

 
Fig. 4. Solver statistics for different simulation runs of the example machine represented as explicit ODE 
and solved with MATLAB’s ode45 for different sets of state variables (I: currents as state variables, PSI: 

flux linkages as state variables, H1i, H1p, H2i, H2p: hybrid state vectors as defined in (14) - (17)) and 
electromechanical coupling variants (m1: co-energy based formulation (8), m2: energy based 

formulation (9)) 
 
 Changing the set of state variables in the differential equations of the electromagnetic sub-
system, the same change of variables has also to be applied to the equation of the mechanical 
subsystem; especially to the term describing the inner torque. Referring to section 3, the two 
variants of the electromechanical coupling term result in 
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wherein T denotes the corresponding transformation matrix from (14-17). 
 In order to compare the influence of different choices of state vector variants as well as 
electromechanical coupling terms on the time it takes to simulate the benchmark example 
introduced in section 3 the twelve resulting combinations had been computed with the same 
ODE solver (MATLAB’s ode45). The results of this study are shown in Fig. 4 in form of  
a graphical representation of the solver statistics. Three main results can be found by inter-
preting Fig. 4. First, the choice of the electromechanical coupling term, either the co-energy 
based formulation (8), (19) or the energy based formulation (9), (20), does not have any in-
fluence on the simulation performance. Both variants, which are marked with “m1” and “m2” 
in Fig. 4, need exactly the same number of time steps for each state vector variant. Second, the 
model variants with flux linkages Ψ  as electrical state variables (marked with “PSI” in Fig. 4) 
need nearly one order of magnitude less time steps than the variant with currents i in (13) 
during the numerical solving process. As reason for these remarkable differences, the term  

  )(d
d θω θ L  

in (13) had been identified. The additional state dependency brought into the electrical equa-
tions in form of T makes it difficult for the step size controller to find an appropriate step size; 
especially in a highly transient operational state of the simulated machine like the startup used 
here intentionally as a benchmark. Third, Fig. 4 also reveals, that the model variant formulated 
with a state vector in hybrid form after (14) or (16), marked with “H1i” or “H1p”, respecti-
vely, indeed need more time steps for obtaining an solution, but less failed steps, in which the 
given standard tolerances for solving the ODEs could not be met. 
 
 
 

5. Reference frames 
 
 Besides the question, which set of state variables is used for simulation, further model 
variants arise when taking different reference frames (coordinate systems) into account in 
which these state variables are expressed. When reading off the machine’s describing matrices 
R and L(2 ) the submatrices of the stator are naturally described in a stationary planar three-
axis reference frame in which the axis a1, b1 and c1 correspond to the actual stator windings 
and its angular velocity equals zero; cf. Fig. 5. 
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Fig. 5. Coordinate systems and axis definitions for an induction machine 

 
 
 This reference frame will be denoted as (abc)0 in the following. The natural submatrices of 
the rotor are also described in a planar three-axis reference frame which is fixed to the rotor, 
and therefore rotating with the angular frequency T. It will be denoted as (abc)r in the fol-
lowing. For that reason, the resistances and inductances of the rotor itself appear independent 
from the rotor displacement angle 2 . Only the magnetic coupling described by the block 
matrix )(12 θL  becomes angular dependent in the choice of this natural reference frames. 
 It is common in the field of machine modeling and analysis to change the reference frames 
of the stator and the rotor and as a consequence of this of the coupling between both. Krause 
[1] gives an overview of common variants and their historical development. Staying with the 
nomenclature introduced above, each of both natural reference frames (abc)0 and (abc)r can be 
transformed into a orthogonal two-axis reference frame with an additional third axis covering 
unbalanced conditions. The most commonly used two-axis reference frames are: 
 (dq0)0: stationary two-axis frame, 
 (dq0)r: two-axis frame attached to the rotor, 
 (dq0)s: two-axis frame rotating at synchronous speed. 
 A change of the reference frame can be applied by making use of the relationships (21)-
(24) and their inverses: 

  ( ) abcT0dqabc0dq gTg θ→= , (21) 

with 

  dq0abcT θθθ −= , (22) 

  TT d
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t
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and g a vector containing arbitrary electrical or magnetic quantities. It has to be mentioned, 
that it is possible without restrictions to use different reference frames for the stator and the 
rotor. 
 In order to discover the effect of the choice of a specific coordinate system on the simula-
tion efficiency the benchmark example had been simulated with different coordinate system 
combinations. The results of this study are summarized in Fig. 6 in form of the resulting solver 
statistics of MATLAB’s ode45. Overall it can be seen that the differences in the computational 
effort for solving the benchmark problem are not as remarkable as when using different state 
variable sets as presented in section 4. Furthermore, it turns out that describing both electro-
mechanical subsystems in the rotor-fixed two phase reference frame, denoted with “(dq0)r/r” 
in Fig. 6, yields the lowest number of steps. A model described completely in the synchronous 
reference frame, denoted with “(dq0)s/s” in Fig. 6, needs a similar number of steps for being 
solved. However, the number of failed solver attempts increases by more than a factor of 15 
which indicates a minor suitability of the model variant for numerical treatment.  
 
 

 
Fig. 6. Solver statistics for different simulation runs of the example machine represented as explicit ODE 

and solved with MATLAB’s ode45 for different sets of state variables (PSI: flux linkages as state 
variables, H1p: hybrid state vector as defined in (16)) and coordinate systems ((abc): three phase 
coordinate system, (dq0): orthogonal two phase coordinate system; 0: stator fixed, r: rotor fixed,  

s: synchronous angular velocity with respect to stator/rotor quantities) 
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Fig. 7. Solver statistics for different simulation runs of the example machine with flux-linkages as state 
variables in different ODE representations (E: explicit, M: with mass matrix, I: implicit), ODE solvers 

(ode23t, ode15s and ode15i) and coordinate systems ((dq0)r/r: stator and rotor described in a rotor fixed 
two phase reference frame, (dq0)s/s: stator and rotor described in a synchronously rotating two phase 

reference frame) 
 
 

 
Fig. 8. Comparison of the ODE solver step sizes during the simulation of the example machine with flux-

linkages as state variables for an explicit (E) and a mass matrix (M) ODE representation 
 
 

6. Equation structures and numerical ODE solvers 
 
 In this section finally different combinations of basic equation structures and standard 
ODE solvers are studied with respect to computational efficiency. The presented results in the 
sections 4 and 5 were achieved by formulating the model’s state space representation in form 
of an explicit ODE )( ),( txFx =&  which had been solved with MATLAB’s standard ode45 
solver. This approach is the first choice, when simulating the behavior of a single machine. 
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Are there more machines to be simulated in an aggregated model, other basic equation 
structures like a mass matrix formulation )( ),(),( tt xFxxM =&  or an implicit formulation 

)( ),,( txxF0 &=  have to be used in order to consider the additional algebraic constraints due to 
the aggregation. Appropriate standard MATLAB solvers for this equation structures are 
ode15s and ode23t for the mass matrix case and ode15i for the implicit case. For more details 
on the solvers, cf. [4, 5].  
 As in the sections 4 and 5, all possible combinations of equation structure, ODE solver and 
coordinate system had been simulated and selected results of the solver’s performance are 
shown in Fig. 7. It turns out that explicit model representations, marked with “E” in Fig. 7, 
perform well with all investigated ODE solvers. The results of implicit representations, mar-
ked with “I” in Fig. 7, are similar besides the slightly higher number of failed steps whereas 
the mass matrix representations (“M”) need about 84 times more steps and – even worse – the 
number of failed steps nearly equals the number valid steps. The reason for these remarkable 
differences can be found in the control schemes for the step size within the solver algorithm. 
In the case of solving an explicit model equation with the ode15s solver, the step sizes behave 
quite smoothly with a gradual rise towards the periodic steady state solution (Fig. 8, upper 
panel). In Fig. 8, lower panel, a very different behavior of the step size control can be obser-
ved. There a mass matrix representation had been simulated with the same solver, which needs 
to correct the step size at nearly every integration step. 
 
 

7. Conclusion 
 
 In this paper, the numerical efficiency of different model representations of electrical 
machines is studied in an example oriented manner. It turns out, that the choice of the basic 
model equation structure, the set of state variables and the reference frame reveal a strong 
impact on the total number of time steps, which are needed by the numerical ODE solver to 
obtain the simulation result for given tolerances. Therefore, it is possible to save simulation 
time by utilizing an appropriate model representation. 
 In future work it is tried to figure out a systematic procedure for finding the most pra-
cticable model representation rather than benchmarking all possible variants as done for this 
study presented here. 
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