Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 260
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are significant pollutants found in petroleum products. There is ample literature on the biodegradation of PAHs containing less than five rings, but little has been done on those with more than five rings. Coronene (CRN), a seven-ring-containing PAH, has only been shown to be degraded by one bacterial strain. In this study, a bacterial strain 10SCRN4D was isolated through enrichment in the presence of CRN and 10% NaCl (w/v). Analysis of the 16S rRNA gene identified the strain as Halomonas caseinilytica. The strain was able to degrade CRN in media containing 16.5–165 μM CRN with a doubling time of 9–16 hours and grew in a wide range of salinity (0.5–10%, w/v) and temperature (30–50°C) with optimum conditions of pH 7, salinity 0.5%–10% (w/v), and temperature 37°C. Over 20 days, almost 35% of 16.5 μM CRN was degraded, reaching 76% degradation after 80 days as measured by gas chromatography. The strain was also able to degrade smaller molecular weight PAHs such as benzo[a]pyrene, pyrene, and phenanthrene. This is the first report of Halomonas caseinilytica degrading CRN as the sole carbon source in high salinity, and thus highlights the potential of this strain in bioremediation.
Go to article

Bibliography


  1. Abbasian, F., Lockington, R., Mallavarapu, M. & Naidu, R. (2015). A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl Biochem Biotechnol 176, pp. 670–699. DOI:10.1007/s12010-015-1603-5.
  2. Al-Awadhi, H., Sulaiman, R. H. D., Mahmoud, H. M. & Radwan, S. S. (2007). Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian Gulf. Appl Microbiol Biotechnol 77, pp. 183–186. DOI:10.1007/s00253-007-1127-1.
  3. Alva, V. A. & Peyton, B. M. (2003). Phenol and Catechol Biodegradation by the Haloalkaliphile Halomonas campisalis: Influence of pH and Salinity. Environ Sci Technol 37, pp. 4397–4402. DOI:10.1021/es0341844.
  4. Anonymous (2023). Team, R: A Language and Environment for Statistical Computing, 2023 (R Foundation for Statistical Computing: Vienna). 10 Feb 2023. Available at: http://www.r-project.org/index.html.
  5. Arulazhagan, P. & Vasudevan, N. (2011). Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62, pp. 388–394. DOI:10.1016/j.marpolbul.2010.09.020.
  6. Baali, A. & Yahyaoui, A. (2019). “Polycyclic Aromatic Hydrocarbons (PAHs) and Their Influence to Some Aquatic Species,” in Biochemical Toxicology, eds. M. Ince, O. K. Ince, and G. Ondrasek (Rijeka: IntechOpen), Ch. 12. DOI:10.5772/intechopen.86213.
  7. Bamforth, S. M. & Singleton, I. (2005). Review bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J.Chem.Techn. Biotechn 80, pp. 723–736.
  8. Budiyanto, F., Thukair, A., Al-Momani, M., Musa, M. M. & Nzila, A. (2018). Characterization of Halophilic Bacteria Capable of Efficiently Biodegrading the High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Pyrene. Environ Eng Sci 35. DOI:10.1089/ees.2017.0244.
  9. Cheffi, M., Hentati, D., Chebbi, A., Mhiri, N., Sayadi, S., Marqués, A. & Chamkha, M. (2020). Isolation and characterization of a newly naphthalene-degrading Halomonas pacifica, strain Cnaph3: biodegradation and biosurfactant production studies. 3 Biotech 10. DOI:10.1007/s13205-020-2085-x.
  10. Chen, C., Anwar, N., Wu, C., Fu, G., Wang, R., Zhang, C., Wu, Y., Sun, C & Wu, M. (2018). Halomonas endophytica sp. nov., isolated from liquid in the stems of Populus euphratica. Int J Syst Evol Microbiol 68, pp. 1633–1638. DOI:10.1099/ijsem.0.002585.
  11. Dhar, K., Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K. & Megharaj, M. (2020). Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Rev Environ Contam Toxicol 251, pp. 25–108. DOI:10.1007/398_2019_29.
  12. Dore, S. Y., Clancy, Q. E., Rylee, S. M. & Kulpa Jr., C. F. (2003). Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol 63, pp. 194–199. DOI:10.1007/s00253-003-1378-4.
  13. Ghosal, D., Ghosh, S., Dutta, T. K. & Ahn, Y. (2016). Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 7, 1369. DOI:10.3389/fmicb.2016.01369.
  14. Govarthanan, M., Khalifa, A. Y. Z., Kamala-Kannan, S., Srinivasan, P., Selvankumar, T., Selvam, K. & Kim, W. (2020). Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere 243, 125389. DOI:10.1016/j.chemosphere.2019.125389.
  15. Habe, H., Kanemitsu, M., Nomura, M., Takemura, T., Iwata, K., Nojiri, H., Yamane, H. & Omori, T. (2004). Isolation and characterization of an alkaliphilic bacterium utilizing pyrene as a carbon source. J Biosci Bioeng 98, pp. 306–308. DOI:10.1016/S1389-1723(04)00287-7.
  16. Hajizadeh, N., Sefidi Heris, Y., Zununi Vahed, S., Vallipour, J., Hejazi, M., Golabi, S., Asadpour-Zeynali, K. & Hejazi, M.S. (2015). Biodegradation of Para-Amino Acetanilide by Halomonas sp. TBZ3. Jundishapur J Microbiol 8. DOI:10.5812/jjm.18622.
  17. Harrison, J., Hallsworth, J. & Cockell, C. (2015). Reduction of the Temperature Sensitivity of Halomonas hydrothermalis by Iron Starvation Combined with Microaerobic Conditions. Appl Environ Microbiol 81, pp. 2156–2162. DOI:10.1128/AEM.03639-14.
  18. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1996). Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia. Biotechnol Lett 18, pp. 577–582. DOI:10.1007/BF00140206.
  19. Juhasz, A. L., Britz, M. L. & Stanley, G. A. (1997). Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by Burkholderia cepacia. Water Science and Technology 36, pp. 45–51. DOI:10.1016/S0273-1223(97)00641-0.
  20. Juhasz, A. L., Stanley, G. A. & Britz, M. L. (2000). Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30, pp. 396–401. DOI:10.1046/j.1472-765x.2000.00733.x.
  21. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. (2004). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, pp. 499–511. DOI:10.1099/ijs.0.02799-0.
  22. Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci 3, 1339841. DOI:10.1080/23311843.2017.1339841.
  23. Leahy, J. G. & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54, pp. 305–315. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372779/.
  24. Lee, B.-K. & v Vu, T. (2010). “Sources, Distribution and Toxicity of Polyaromatic Hydrocarbons (PAHs) in Particulate Matter,” in Air Pollution DOI:10.5772/10045.
  25. Lima, A. L. C., Farrington, J. W. & Reddy, C. M. (2005). Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ Forensics 6, pp. 109–131. DOI:10.1080/15275920590952739.
  26. Margesin, R. & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56, pp. 650–663. DOI:10.1007/s002530100701.
  27. Ming, H., Ji, W., Li, M., Zhao, Z., Cheng, L., Niu, M., Ling-Yu, Z., Wang, Y. & Guo-Xing, N. (2020). Halomonas lactosivorans sp. nov., isolated from salt-lake sediment. Int J Syst Evol Microbiol 70, pp. 3504–3512. DOI:10.1099/ijsem.0.004209.
  28. Nzila, A. (2018). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives. Environ Pollut 239, pp. 788–802. DOI:10.1016/j.envpol.2018.04.074.
  29. Nzila, A. & Musa, M. M. (2020). Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene. Int J Environ Res Public Health 18. DOI:10.3390/ijerph18010262.
  30. Nzila, A., Musa, M. M., Sankara, S., Al-Momani, M., Xiang, L. & Li, Q. X. (2021). Degradation of benzo[a]pyrene by halophilic bacterial strain Staphylococcus haemoliticus strain 10SBZ1A. PLoS One 16, e0247723. DOI:10.1371/journal.pone.0247723.
  31. Nzila, A., Ramirez, C. O. C. O., Musa, M. M. M., Sankara, S., Basheer, C. & Li, Q. X. Q. X. (2018). Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY4 strain. Int Biodeterior Biodegradation 130, pp. 40–47. DOI:10.1016/j.ibiod.2018.03.014.
  32. Nzila, A., Sankara, S., Al-Momani, M., Musa Musa, M. & Musa, M. M. (2017). Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons: phenanthrene and anthracene. Arch Environ Prot 44, pp. 43–54. DOI:10.1515/aep-2016-0028.
  33. Patel, A. B., Shaikh, S., Jain, K. R., Desai, C. & Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol 11. Available at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.562813.
  34. Pohl, A. & Kostecki, M. (2020). Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogeniclymnic ecosystems under conditions of diversified anthropopressure. Archives of Environmental Protection 46, pp. 104–120. DOI:10.24425/aep.2020.135769.
  35. Qin, W., Fan, F., Zhu, Y., Huang, X., Ding, A., Liu, X. & Dou, J. (2018). Anaerobic biodegradation of benzo(a)pyrene by a novel Cellulosimicrobium cellulans CWS2 isolated from polycyclic aromatic hydrocarbon-contaminated soil. Braz J Microbiol 49, pp. 258–268. DOI:10.1016/j.bjm.2017.04.014.
  36. Stapleton, R. D., Savage, D. C., Sayler, G. S. & Stacey, G. (1998). Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64, pp. 4180–4184. DOI:10.1128/AEM.64.11.4180-4184.1998.
  37. Swaathy, S., Kavitha, V., Pravin, A. S., Mandal, A. B. & Gnanamani, A. (2014). Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnology Reports 4, pp. 161–170. DOI:10.1016/j.btre.2014.10.004.
  38. Wenting, R., Montazersaheb, S., Khan, S. A., Kim, H. M., Tarhriz, V., Hejazi, M. A. & Che, O.O. (2021). Halomonas azerica sp. nov., Isolated from Urmia Lake in Iran. Curr Microbiol 78, pp. 3299–3306. DOI:10.1007/s00284-021-02482-0.
  39. Włodarczyk-Makuła, M. (2012). Half-Life of Carcinogenic Polycyclic Aromatic Hydrocarbons in Stored Sewage Sludge. Archives of Environmental Protection 38. DOI:10.2478/v10265-012-0016-6.
  40. Wu, Y., He, T., Zhong, M., Zhang, Y., Li, E., Huang, T. & Hu, Z. (2009). Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. Journal of Environmental Sciences 21, pp. 1446–1451. DOI:10.1016/S1001-0742(08)62438-9.
  41. Wu, Y.-H., Xu, X.-W., Huo, Y.-Y., Zhou, P., Zhu, X.-F., Zhang, H.-B. & Wu, M. (2008). Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet Plateau, China. Int J Syst Evol Microbiol 58, pp. 1259–1262. DOI:10.1099/ijs.0.65381-0.
  42. Xiao-Ran, J., Jin, Y., Xiangbin, C. & Guo-Qiang, C. (2018). “Chapter Eleven - Halomonas and Pathway Engineering for Bioplastics Production,” in Methods in Enzymology, ed. N. Scrutton (Academic Press), pp. 309–328. DOI:10.1016/bs.mie.2018.04.008.
  43. Xu, L., Ying, J.-J., Fang, Y.-C., Zhang, R., Hua, J., Wu, M., Han, B-N. & Sun, C. (2021). Halomonas populi sp. nov. isolated from Populus euphratica. Arch Microbiol 204, 86. DOI:10.1007/s00203-021-02704-w.
  44. Ye, J.-W. & Chen, G.-Q. (2021). Halomonas as a chassis. Essays Biochem, 65(2), pp. 393-403. DOI:10.1042/EBC20200159.
  45. Yessica, G.-P., Alejandro, A., Ronald, F.-C., José, A. J., Esperanza, M.-R., Samuel, C.-S. J., Mendoza-Lopes, M.R & Ormeño-Orrillo, E. (2013). Tolerance, growth and degradation of phenanthrene and benzo[a]pyrene by Rhizobium tropici CIAT 899 in liquid culture medium. Applied Soil Ecology 63, pp. 105–111. DOI: 10.1016/j.apsoil.2012.09.010.
  46. Yin, J., Chen, J.-C., Wu, Q. & Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33, pp. 1433–1442. DOI:10.1016/j.biotechadv.2014.10.008.
Go to article

Authors and Affiliations

Ajibola H. Okeyode
1
Assad Al-Thukair
1
Basheer Chanbasha
2 3
Mazen K. Nazal
4
Emmanuel Afuecheta
5 6
Musa M. Musa
2 7
ORCID: ORCID
Shahad Algarni
1
Alexis Nzila
1 3

  1. Department of Bioengineering, King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia,
  2. Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
  3. Interdisciplinary Research Center for Membranes and Water Security, King Fahd University ofPetroleum and Minerals, Dhahran, Saudi Arabia
  4. Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd Universityof Petroleum and Minerals, Dhahran, Saudi Arabia
  5. Departments of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, SaudiArabia
  6. Interdisciplinary Research Center for Finance and Digital Economy, KFUPM, Dhahran, Saudi Arabia
  7. Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University ofPetroleum and Minerals, Dhahran 31261, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the profile of EC (elemental carbon) and OC (organic carbon) temperature fractions in PM1 and PM2.5 samples and in wet deposition samples (material collected on a filter). The research was conducted at the urban background station in Zabrze (southern Poland) in the period of Oct 2020–Oct 2021. PM samples were collected with high-volume samplers; the automatic precipitation collector NSA 181 by Eigenbrodt was used to collect the deposition samples. Concentrations of EC and OC were determined using thermal-optical method (carbon analyzer from Sunset Laboratory Inc., “eusaar_2” protocol). Regardless of the type of research material, organic carbon constituted the dominant part of the carbonaceous matter, and this dominance was more visible in the non-heating season. The profile of temperature fractions of OC and EC was clearly different for dust washed out by precipitation. Noteworthy is a much lower content of pyrolytic carbon (PC) in OC, which can be explained by the fact that PC is most often combined with the water soluble organic carbon. In addition, a high proportion of the OC3 fraction was observed, followed by OC4, which may indicate that these fractions are of a more regional origin. With regard to the EC fractions, the differences are less visible and concern, in particular, the higher share of EC4 and the lower EC2. The obtained results may be a valuable source of information about the actual status of the carbonaceous matter and its transformation in the atmosphere.
Go to article

Bibliography

  1. Aswini, A.R., Hegde, P., Nair, P.R. & Aryasree, S. (2019). Seasonal changes in carbonaceous aerosols over a tropical coastal location in response to meteorological processes. Sci Total Environ, 656, pp. 1261–1279. DOI:10.1016/j.scitotenv.2018.11.366.
  2. Bautista VII, A.T., Pabroa, P.C.B., Santos, F.L., Racho, J.M.D. & Quirit, L.L. (2014). Carbonaceous particulate matter characterization in an urban and a rural site in the Philippines. Atmos Pollut Res, 5(2), pp. 245–252. DOI:10.5094/APR.2014.030.
  3. Błaszczak, B. & Mathews, B. (2020). Characteristics of Carbonaceous Matter in Aerosol from Selected Urban and Rural Areas of Southern Poland. Atmosphere, 11(7), 687. DOI:10.3390/atmos11070687.
  4. Cao, J.J., Lee, S.C., Ho, K.F., Zou, S.C., Fung, K., Li, Y., Chow, J.C. & Watson, J.G. (2004). Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ, 38(27), pp. 4447–4456. DOI:10.1016/j.atmosenv.2004.05.016.
  5. Cao, J.J., Lee, S.C., Ho, K.F., Fung, K., Chow, J.C. & Watson, J.G. (2006). Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res., 6, 106–122. DOI:10.4209/aaqr.2006.06.0001.
  6. Chow, J.C., Lowenthal, D.H., Chen, L.-W.A., Wang, X. & Watson, J.G. (2015). Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health, 8, pp. 243–263. DOI:10.1007/s11869-015-0338-3.
  7. Chief Inspectorate for Environmental Protection, Air quality portal (https://powietrze.gios.gov.pl/pjp/current (07.11.2022)).
  8. Dillner, A.M., Phuah, C.H. & Turner, J.R. (2009). Effects of post-sampling conditions on ambient carbon aerosol filter measurement. Atmos Environ, 43, pp. 5937–5943. DOI:10.1016/j.atmosenv.2009.08.009.
  9. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe (http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (23.09.2022)).
  10. EEA (2022). European Environmental Agency, 2022. Air quality in Europe 2022. Web Report (https://www.eea.europa.eu/publications/air-quality-in-europe-2022/air-quality-in-europe-2022 (24.11.2022).
  11. EN 12341:2014 Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter.
  12. Freney, E.J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J.M., Colomb, A., Prévôt, A.S.H. & Laj, P. (2011). Seasonal variations in aerosol particle composition at the Puy-de-Dôme research station in France. Atmos. Chem. Phys., 11, pp. 13047–13059. DOI:10.5194/ACP-11-13047-2011.
  13. Karanasiou, A., Minguillón, M.C., Alastuey, A., Putaud, J.-P., Maenhaut, W., Panteliadis, P., Močnik, G., Favez, O. & Kuhlbusch, T.A.J. (2015). Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Disciss., 8, pp. 9649–9712. DOI:10.5194/amtd-8-9649-2015.
  14. Kim, K.H., Sekiguchi, K., Furuuchi, M. & Sakamoto, K. (2011). Seasonal variation of carbonaceous and ionic components in ultrafine and fine particles in an urban area of Japan. Atmos Environ, 45, pp. 1581–1590. DOI:10.1016/j.atmosenv.2010.12.037.
  15. Li, H.Z., Dallmann, T.R., Li, X., Gu, P. & Presto, A.A. (2018). Urban organic aerosol exposure: spatial variations in composition and source impacts. Environ. Sci. Technol., 52, pp. 415–426. DOI:10.1021/acs.est.7b03674.
  16. Lim, S., Lee,, M., Lee, G., Kim, S., Yoon, S. & Kang, K. (2012). Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC superstation and their ratios as source signature. Atmos. Chem. Phys., 12, pp. 2007–2024. DOI:10.5194/acp-12-2007-2012.
  17. Michalski, R. & Pecyna-Utylska, P. (2022). Chemical characterization of bulk depositions in two cities of Upper Silesia (Zabrze, Bytom), Poland. Case study. Arch. Environ. Prot., 48(2), pp. 106–116. DOI: 10.24425/aep.2022.140784.
  18. Reizer, M. & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health, 9(5), pp. 517–531. DOI:10.1007/s11869-015-0358-z.
  19. Sahu, M., Hu, S., Ryan, P.H., Le Masters, G., Grinshpun, S.A., Chow, J.C. & Biswas, P. (2011). Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate. Sci Total Environ, 409, pp. 2642–2651. DOI:10.1016/j.scitotenv.2011.03.032.
  20. dos Santos, D.A.M., Brito, J.F., Godoy, J.M. & Artaxo, P. (2016). Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil. Atmos Environ, 144, pp. 226–233. DOI:10.1016/j.atmosenv.2016.08.081.
  21. Tohidi, R., Altuwayjiri, A. & Sioutas, C. (2022). Investigation of organic carbon profiles and sources of coarse PM in Los Angeles. Environ Pollut, 314, 120264. DOI:10.1016/j.envpol.2022.120264.
  22. Vodička, P., Schwarz, J., Cusack, M. & Ždímal, V. (2015). Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Sci Total Environ, 518–519, pp. 424–433. DOI:10.1016/j.scitotenv.2015.03.029.
  23. Zhu, C.-S., Chen, C.-C., Vao, J.-J., Tsai, C.-J., Chou, C.C.-K., Liu, S.-C. & Roam, G.-D. (2010). Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmos Environ, 44, 2668–2673. DOI:10.1016/j.atmosenv.2010.04.042.
  24. Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Han, Y.-M., Liu, S.-X. & Zhao, Z.-Z. (2014). Comparison and implications of PM2.5 carbon fractions in different environments. Sci Total Environ, 466–467, pp. 203–209. DOI:10.1016/j.scitotenv.2013.07.029.
  25. Zioła, N., Błaszczak, B. & Klejnowski, K. (2021). Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere 12, 119. DOI:10.3390/atmos12010119.
Go to article

Authors and Affiliations

Barbara Błaszczak
1
Barbara Mathews
1
Krzysztof Słaby
1
Krzysztof Klejnowski
1

  1. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper the new transformation of coordinates in three-dimensional space has been given. This transformation allows determination of the coordinates of the points in the new Cartesian coordinate system based on the reference point with known coordinates in initial Cartesian coordinate system.
Go to article

Authors and Affiliations

Janusz Martusewicz
Download PDF Download RIS Download Bibtex

Abstract

The article presents a family of modified the so called general polynomial transition curves, determined with the purpose of being applied at the design of the grade line of roads. The designing conditions of those curves have been provided alongside detailed information on determination of particular designing parameters. The application methods of those curves in the process of the grade line designing, based upon economically justified minimization of earth works, have been presented as well.
Go to article

Authors and Affiliations

Andrzej Kobryń
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method of robust estimation of variance coefficient. The concept of YRestimation presented in (6] is generalised in case of dependent observations. The basis of the method is usage of reinforcement matrix which guarantees the robustness of the estimate. The reinforcement matrix which is closely connected with the weight function of M-estimation, gives a possibility to perform robust adjustment. Thus such a method is also presented. At last, an example is shown too.
Go to article

Authors and Affiliations

Robert Duchnowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article deals with the problem of application of the dynamic model of the geodetic control network in monitoring the subsidence of earthen structures. A tentative model of a control network coupled with a soil environment functioning model has been presented herein alongside an organization pattern of measuring and control works. Against such background the purposefulness of the use of the suggested algorithm in monitoring the condition of earthen structures has been discussed together with specification of the conditions that should be satisfied to make the use of the algorithm possible.
Go to article

Authors and Affiliations

Jacek Zyga
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new method of measuring of small inclination angles. The method consists in application of a pendulum with a diaphragm coworking with an optoelectronical barrier. Results of studies of the constructed device are also presented, they focused on determination of drift of the measured inclination angles as well as variation of the period of the complete oscillation of the pendulum for positive and negative angles of inclination. Variation of mean errors of the studied magnitudes for all test measuring series were analyzed graphically.
Go to article

Authors and Affiliations

Andrzej Wanic
Download PDF Download RIS Download Bibtex

Abstract

The article is an extension of the suggestion published earlier on determination of the relative position of a point. Introduction of formulas to convert ortho-Cartesian coordinates of points to nondimensional numerical coefficients alongside reverse converting formulas is the main part of the thesis. The said formulas have been completed with demonstrative examples that verify the correctness thereof.
Go to article

Authors and Affiliations

Lech Pitoń
Download PDF Download RIS Download Bibtex

Abstract

The article presents the putting into practice of a neural state estimator for navigational measurements. One of the basic problems of sea navigation is considered, which is the statistic working out of navigational measurements with the purpose of determining the estimated vector of the vessel's movement and position.
Go to article

Authors and Affiliations

Andrzej Stateczny
Download PDF Download RIS Download Bibtex

Abstract

The article presents a family of the so called multinomial transition curves. It is possible to conveniently form the curvatures of those curves through appropriate choice of minimum radius of curve R, tangent gradient at starting point tgu0, and the abscissa of ending point xK, which affects the value of elementary design parameter C=Rtgu0/xK. The possibility to select C values from interval < 1/3; 2/3 > and the unusual position of the curves within the Cartesian coordinate system make them remarkably useful for example at designing road grade lines in order to accomplish optimum compatibility with the relief. The foregoing being borne in mind, the article presents appropriate methods of designing road grade line with the use of the said curves.
Go to article

Authors and Affiliations

Andrzej Kobryń
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article presents the elementary coordinate calculating formulas (simple and reverse problems) of the Gauss-Kruger projection in wide meridional zone. The formulas that make it possible to calculate the values oflocal area distortions and reductions of directions, angles and lengths, have been presented as well.
Go to article

Authors and Affiliations

Jerzy Balcerzak
Jan Panasiuk
Bogusław Gdowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of the space, known in the theory of reliability, of observational gross errors or blunders absolutely undetectable in the least-squares estimation process in linear Gauss-Markov models. The analysis is based on a general relationship linking the observational disturbances and a model response. Although the definition of this space is identical with that given by [l] it is arrived at in a slightly different way. Several properties of this space are formulated, one of them showing its connection with the reliability level of a model with uncorrelated observations. Although the linearized models are included in the theory, the approach applied to them, being basically a simple extension of that proposed for linear models, can not be considered as a complete proposal for practical purposes. The theory is illustrated with examples taken from engineering surveys.
Go to article

Authors and Affiliations

Witold Prószyński

This page uses 'cookies'. Learn more