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On the space of imperceptible observational errors in linear 
Gauss-Markov models with examples taken from engineering surveys 

This paper presents an analysis of the space, known in the theory of reliability, of 
observational gross errors or blunders absolutely undetectable in the least-squares estima 
tion process in linear Gauss-Markov models. The analysis is based on a general relationship 
linking the observational disturbances and a model response. Although the definition of this 
space is identical with that given by [l] it is arrived at in a slightly different way. Several 
properties of this space are formulated, one of them showing its connection with the 
reliability level of a model with uncorrelated observations. Although the linearized models 
are included in the theory, the approach applied to them, being basically a simple extension 
of that proposed for linear models, can not be considered as a complete proposal for 
practical purposes. The theory is illustrated with examples taken from engineering surveys. 

l. Introduction

It is well known that in Gauss-Markov models (GMMs) with properly distributed 
observational redundancies, one can detect the outlying observations which carry 
gross errors or blunders, henceforward called observational disturbances. According 
to Baarda [2] in a model with uncorrelated observations the minimum detectable 
disturbance in a single observation depends on the level of measurement accuracy, the 
reliability measure for the observation in question as well as on the assumed 
probability levels (ct, /3) for the type I and type II procedural errors. It is also known 
[1] that there are gross errors or blunders which do not change the least-squares (LS) 
residuals and therefore pass undetected through any statistical test. Beside providing 
an independent proof for the definition of the space of such errors (as given in [1]) the 
investigation of its properties and finding relationship to the model's reliability 
characteristics are the main objectives of the present paper. This topic is of special 
interest to engineering surveys where more and more often the demands for high 
precision and high reliability of setting out or deformation monitoring are considered 
essential in the process of the erection of a building structure or in assessing its safety. 
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To provide a terminological basis for the reliability-oriented analyses concerning 
this space, the following classification of observational disturbances is proposed, 
being consistent with the approach presented in [1]: 

I OBSERVATIONAL DISTURBANCES I 
I I 

perceptible imperceptible 
(absolutely undetectable)

I I 
undetectable detectable 

(relatively undetectable) (relatively detectable)

Fig. I The reliability-oriented classification of observational disturbances 

The term "perceptible" covers all those disturbances which cause certain distor 
tions in the LS residuals, the magnitudes of the disturbances being either within the 
uncertainty area of the measurement method (undetectable) or outside that area 
(detectable). The term "imperceptible" refers to all those disturbances, which, since 
they do not induce any distortion in the LS residuals, are absolutely undetectable in 
the process of the LS estimation, i.e. even with the uncertainty area being reduced to 
a point (standard deviation of measurement equal to zero). In this theoretical case the 
minimum detectable disturbance as determined on the basis of the Baarda formula 
becomes zero, which means that every perceptible disturbance is detectable [2]. The 
greater the standard deviation of measurement the bigger the minimum detectable 
disturbance in every observation. To emphasize this dependence (and that of other 
factors) the adjective "relative" can be added to precisely characterize the "undetec 
table" and "detectable" disturbances. 

This paper concentrates on the space of imperceptible disturbances, verifying its 
definition and formulating some of its properties. The identification of the space is 
based here on a general relationship between the observational disturbances and 
a model response. It should be emphasized that of all possible types of disturbances 
we take into account those that do not affect any model equation (the model being 
considered correct) but distort its right hand side terms only. The functioning of this 
space is investigated also in a random error environment. 
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2. The "disturbance/response" relationship for a GMM 

Let us consider the class of linear GMMs, covering the models with minimum 
constraints and the models with no constraints, defined by: 

A.x+e=y 

Sx=O 

e~(O, C) 
(I) 

where: 
y - the n x I vector of observations (observational increments - in a linearized 

model); 
A - the n x u coefficient matrix; rank(A) ~ u, or introducing d as a defect of A, 

rank(A)=u-d (d~O); 
x - the unknown u x 1 vector of parameters (parameter increments-in a linea- 

rized model); 
e - the unknown n x I vector of random errors; e= y-ytruc 
C - the n x n covariance matrix (pos. def.); 

S - the d x u coefficient matrix, rank sr = d, such that rank [~]=u. 

From the consistency of the functional model it follows that /ru0EM(A), where 
M(A) denotes the space spanned by the columns of A. 

Within the models with no constraints in (1) there can also be the over-constrained 
models (S(wxu) where w z- d, rank (Sr)=w, rank [Arsry=u) reduced to their 
equivalent forms having full-rank coefficient matrices. 

After standardization the model (1) will take the form: 

Sx=O 
(2) 

where: y* = by; A* =hA; e* =he; bTh=C-1 

The least-squares estimator of ( -e*)' being the vector of standardized residuals 
denoted here by v*' is given by the formula: 

(3) 

where (ArA*)~ is the reflexive g-inverse of ArA* such that S(ArA*).~ = O, 
or with 

(4) 
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The orthogonal projector Cv*' being the covariance matrix of the standardized 
residuals, contains full information on internal reliability of a GMM with uncor 
related observations (see [I], [3], [4]). 

Replacing y * and v* by their increments L1Y * and L1 v* we get a well known 
"disturbance/response" relationship for a GMM (in a standardized form), i.e. 

(5) 

where: Liy * - the vector of dist ur ban ces in standardized observations, 
Liv* - the vector of resulting distortions in the LS standardized residuals. 

Substituting into (5) L1Y* = hL1y, L1v* =hL1vwith bas in (2) and expressing the result in 
terms of A and C as in (1) we obtain the "disturbance/response" relationship for the 
original, i.e. non-standardized, GMM (see e.g. [I], [5]) 

I 
\ 
~ (i 
l 

(6) 

or in a form analogous to (5) 
(7) 

where C(v) is a projector, which can be considered orthogonal in a vector space with 
a norm defined as li y li = (yrc-1y)112 where c-1 is p.d. ( see [6]). The brackets used in 
a subscript are to indicate that C(v) is not a covariance matrix of the LS residuals v. 
The matrix C(v) is a basis for computing the reliability measures in GMMs with 
correlated observations (see [7], [8]). 

With reference to linearized models let us denote by x0 the vector of approximate 
values of parameters and assume that it lies within the specified validity area of linear 
expansion around xtruc_ Now, with A(x0), y-y(x0), A*(x0), y*-y*(x0) taken instead 
of, correspondingly A, y, A*' y *' the formulas (I)-;- (7) become the explicit relations 
hips concerning the linearized models. The requirement for consistency (and hence 
- for correctness) of their functional models expressed as [ytruc - y(x0)] E M{A(x0)] can 
be satisfied to a degree resulting from the accepted inaccuracy of linear expansion. 

3. The space of imperceptible observational disturbances

Taking into consideration the relationship (5) we shall investigate the cases when 
there is no response of the model to disturbances in the standardized observations. 
The set of such disturbance vectors, denoted by U*' i.e. 

(8) 

will form the space of imperceptible disturbances in the standardized observations. 
Consequently, the space of the corresponding imperceptible disturbances in the 
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original observations, denoted by U, will be 

U={L1y: L1y#O =-L1v=0} 

where: L1y=h-1L1y*' L1v=h-'L1v* 

Although we can find immediately from (5) that the model yields no responses in 
the following two cases: 

(9) 

a) C0*=0 

b) Cv*L1y=0 rc., #0) 
(10a) 

(!Ob) 

so that we might analyze them separately, we shall follow a more general approach. 
According to [9], for any type of g-inverse in (4) we have C°*A* = O, which means 

that C0* carries out the projection onto the space orthogonal to that spanned by the 
columns of A*' i.e. M(A*). Consequently, M(A*) is the null space of C0*' i.e. 
M(A*)=N(C°*), so M(A*)1-M(C0*) and hence, dim M(C°*)+dimM(A*)=n, where 
dimM(C0*)=n-u+d, dimM(A*)=u-d. 

By distinguishing between dim M(A*) =n(=- C"* = O) and dimM(A*) < n 
(=- C0* #0) we cover the cases a) and b) listed above. Unlike the latter case, the 
former one excludes the occurrence of any dependence between the rows of A, which 
applies to the model with no observational redundancies. 

Thus, the space of imperceptible observational disturbances in the standardized 
GMM can be defined as 

(11) 

For L1y * such that L1y * E M(A*) the corresponding L1y (see (9)) satisfies L1y E M(A) 
and hence, the space of imperceptible observational disturbances in the non 
standardized GMM can be defined as 

U={L1y: i:1yEM(A)} (12) 

Multiplying A (or A*) by different nonsingular matrices KERuxu (excluding the 
identity matrix and the permutation matrix) we can generate different sets of i1.y (or 
L1y *) belonging to the space U ( or U*). There can be such column vectors in K that 
with A being of incomplete rank (i.e. rank (A)< u) the multiplication will yield L1y = O 
( or L1y* =0). 

The definition of the space U as in (12), which is independent of the given 
covariance matrix C, could also be obtained directly on the basis of (6) by analogous 
derivations. 

Still another method of arriving at the same definition of U (or U*) would be to 
resort to the algebraic properties of the original model (I) (or the standardized model 
(2)) and apply the n.s. condition for the model consistency (see [6]) to the incremental 
form of (I) (or (2)), i.e. A· L1x= L1y (or A*L1x =L1y *). Using the duality properties of 
the least squares method (see [1 O]) one can easily prove a full consistency in the 
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definition of the space of imperceptible observational disturbances (the SID for short) 
between the parametric method and the method of conditions. 

Maintaining the assumption of correctness of a model, in the case of linearized 
models we have to modify the definitions of the SID (see (11) and (12)) as shown 
below for the definition (12) 

(13) 

where: R1 - the space of those L~.Y, which, when contained in the observations used 
in computing x0, do not affect the model correctness; 

R2 - the space of those L1y, which, when contained in the observations not 
used in finding x0, can not be detected by the individual "free-term" 
checks. The assumption is here made that x0, which is found on other 
basis, ensures the model correctness. 

By introducing these two spaces without defining them precisely we would like to 
emphasize only that the actual SID for linearized models constitutes a certain 
subspace of M[A(x0)]. 

4. Disturbances in a random error environment

Let us consider the following structure of the observation vector: 

y=/ruc+e+L1y

where: ytruc - the vector of true values of measured quantities; 
e - the vector of random errors, as in (I); 
L1y - the vector of disturbances (gross errors, blunders). 

ln a standardized model the formula (14) will take the form 

(14) 

(I 5) 

Let each of the vectors e* and L1y* be a superimposition of the component 
belonging to U* and the component not belonging to U*' i.e. 

y * = y~c+ e~-) + e~+) + L1yt) + L1y~+) (16) 

where: e~-l¢ U*' e~+)E U* and L1y~-l¢ U*' L1y~+JE U*. The consistency of the model 
equations implies that y~0EM(A*) and hence y~0E U*. Either directly from (14) or 
by multiplying both sides of (16) by b-1 (bas in (2)) we may get the analogous form of 
the observation vector in the initial model. 

Substituting the relationship (16) into the formula ( 4) and taking into account that 
C u1ruc_o and C e<+l=O· C L1y<+l=O we get 

uµ - V* * , V* * ' 
v = - C e< - l - C * L1y<- l * V* * V * (17) 
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or in a condensed form
(18)

where: v*<rJ - the vector of standardized residuals corresponding to perceptible
standardized random errors;

Llv* - the vector of standardized model responses to perceptible standardi
zed observational disturbances.

The analysis presented above leads to the following statements which hold true also
for the initial (i.e. non-standardized) model:

i) both Lly~+J and e~+J - the components of the vector of standardized obser
vational results - are not perceptible in the LS estimation process;

ii) the standardized disturbances Lly~-J being within the magnitude of the
standardized random errors may not be detectable in a particular GMM. Hence,
potentially, the space of disturbances which can be overlooked in the LS estimation
process will be the space of imperceptible disturbances extended by the space of
perceptible but undetectable disturbances;

Lly* (overlooked) = Lly~+J (imperceptible) + Lly~-J (undetectable) (19)

iii) for a particular GMM we can define the LS equivalent sets of obser
vational results, being those vectors y* (see (16)) for which we get the same
vectors v*' i.e.

(20)

where the subscript i denotes an arbitrary non-zero vector belonging to U* 
iv) the imperceptible disturbances reside in the LS estimated values of the

observed quantities
As j\ = y * + v* and u* does not contain any compensation for the disturbances

Lly~+J and e~+J, they are transferred onto the LS estimator j,*. We can verify it
immediately using the relationship j,= (I- Cv*){y.cąJ ;= A*(ArA*)-~ Ar{Y•cą,} ;, whe
re {Y•cąv}; is an arbitrary element of {Y•cąv} as in (20). The matrix I-Cv* carries out
the projection upon M(A*)' so we obtain finally

j,* =y~"c+ (1-Cv*)[e~-J+ Llytl]+e~+J+ Lly~+) 

v) the distortion of the LS estimated parameter values due to disturbances
overlooked in the estimation process is

(21)
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where k is a non-zero column vector, such that Ak:;eO (i.e. k¢:N(ATA)) and 
(1-s-s) is a projector onto the space .lto M(S-); 

The above-mentioned requirement for k excludes the column vectors of the 
transposed coefficient matrix S0 of free-net conditions (i.e. such that AS~= O) as they 
span the null-space of AT A. 

For rank(A)=u we have instead of (ATC-1A)5 a regular inverse (ATC-1A)-1, 
N(ATA)={O} and hence 

.ó.i=k+ (ATc-1 A)-1A Tc-1.ó.y<-) (22) 

where k is an arbitrary non-zero column vector; 
vi) it seems reasonable to recommend that the space of imperceptible disturban 

ces (dim(U*)=dimM(A*)=u-d) should constitute a small part of the whole 
n - dimensional observational space, hence (u -d)/n should be as small as possible, or 
equivalently, that the space of perceptible disturbances (dimM(C~)=n-u+d)
should constitute a dominating part of the whole n - dimensional observational 
space, and hence (n-u+d)/n should be as big as possible. We recognize at once that 
the latter is a requirement for a high value of the global measure of the standarized 
model's internal reliability The higher the value of the global measure of the 
standarized model's internal reliability the smaller is the space of imperceptible 
disturbances. Assuming the uniform distribution of redundancies throughout the 
model the above global measure is identical with each of the local measures (i.e. 
concerning each observation). 

The models with a low level of internal reliability ({ C0*};; < 0.5 (i= 1, ... , n), as 
specified in [3] for the models with uncorrelated observations), do not satisfy the 
reg uirement stated above. 

5. Further properties of the space of imperceptible disturbances

Here are some other properties of the SID together with their proofs: 
- in a GMM with redundancies such that {C0*};;>0 (i= 1, ... , n) the space of 

imperceptible disturbances does not contain any vector with a single observational 
disturbance. Assuming the standardized disturbance vector .ó.y*,i=[O ... O Liy*; O ... OY
(i= 1, ... , n) and substituting it into (10b) we obtain the requirement for the i-th 
column vector of C0* being {C0*}.;=0 (i= 1, ... , n), which contradicts the assump 
tion, and thus Liy*,;¢: U* (i= 1, ... , n). The single disturbance being perceptible may be 
a detectable or an undetectable quantity. 
- the disturbance vector L1y;=a;=[a1,i, a2_;, ••• , an,;Y, where a; is the i-th 

column-vector of A (.ó.y; EU), contains the disturbances in the observations which 
approach the i-th parameter node as shown on a structural network of A in Fig.2. The 
connecting lines are drawn only for the non-zero componenets of the vector Liy; (in 
the figure a2,; = O). Hence, each of the column vectors of A contains the single-node 
imperceptible disturbances. 
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Fig.2 Structural network of the matrix A 

Yn 

-the disturbance vector liy=Ak=k1a1+k2a2+ ... +kuau, with k (as in (20)) 
having at least two non-zero components, contains the disturbances in the obser 
vations belonging to different parameter nodes; 
- neither reordering of the parameters in a vector x (see (I)) nor rescaling of each 

of them affects the space of imperceptible disturbances. 
The first modification corresponds to using as K (see section 3) the permutation 
matrix, and the second - the diagonal matrix, i.e. Ax=AKK-1x=AMxM, and hence 
M(A,,,) = M(A); 
- the disturbance vector liy=Ak=ki<L1+k2a2+ ... +kuau, with kas in (22), 

corresponds to the vector of parameter increments lix=[kl2 ... kuY- 
On the basis of (1) we have A·lix=liy and thus A·lix=A·[k1k2 ... kX= 

= k/11 + ... + kuau. In linearized models the property holds for parameter shifts which 
are within the area of validity of linear expansion. 

Special cases, which are characteristic from the practical point of view, are as 
follows: 

a) tix =[O ... O l(il O ... 0f=tiy=a;; 
The vector of the i-th node disturbances corresponds to the change in the i-th 
parameter; 

b) tix=[O ... O k; kj 0 ... 0]1' =liy=k;a;+kpj; 
When the i-th and the j-th parameters are X, Y coordinates of a point, a linear 
combination of the i-th and the j-th column-vectors of A corresponds to the 
change in the (X, Y) position of this point. 
- the disturbance vector tiy corresponding to t.x as above, distorts the LS 

estimation of the parameter vector x by tix according to the relationship (for notation 
see property v., sect. 4) 

and with A being of full rank we have tii=lix. 
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--------- 

6. Examples

For simple measuring schemes, as can be met in the practice of engineering 
surveys, we shall find some of the SID vectors and demonstrate the way of generating 
the equivalent observation vectors. 

E x a m p 1 e I. Let us consider a local levelling scheme shown in Figure 3. 

hs 

6 

Fig.3 The levelling scheme used in the example 

Instead of presenting the whole matrix A(9 x 8) (rank(A) = 7) we shall show only two 
of its columns, representing the characteristic types of the SID vectors: 

- for the node H1
- for the node H5 

~h< + l = [ - 1 O O O O O 1 O oy
M< + l = [O O O 1 - 1 O O O 1 Y

The components of these vectors are single-node disturbances. By applying the 
transformation Ak, where k is as in (21), we may get other forms of the SID vectors, 
e.g. for k = [O O 5 5 O O O O oy and k = [O O O O 4 1 O O oy we get 

~h<+l=[O 5 O -5 O O O O oy
~h<+l=[O O O 4-3 -1 O O OY 

The examples of the SID vectors demonstrate the well known effects of gross error 
compensation in levelling networks. 

In analogy to (20) the LS equivalent observation vectors can be generated by the 
formula: 

h<:,.jV,i = h+ ~hj+)= h+ Aki 

where 
~h\+l - an arbitrary non-zero element of U; 
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ki - an arbitrary non-zero column vector except for k E M(S~), where
S0 = [1 1 1 1 1 1 I 1 1].

Here are the examples of the equivalent observation vectors hflłv for a given obser
vation vector h (without showing the corresponding vectors k) 

h =[-4.99 14.86 -2.94 -20.12 11.09 19.11 -16.93 0.57 -9.12]T

hcqv=[-4.99 14.86 2.06 -25.12 11.09 29.11 -26.93 0.57 -9.12V

o -8.20 o o o 8.28 O -8.55V

hcqv=[ O O O 0.35 -0.27 O O O OV 
The bold-typed numbers in the first example of hflł" indicate the observations carrying
the disturbance. The last two examples have been deliberately constructed to show the
possibility of aggregating the observational results along the individual lines or within
the individual loops.

Assuming that the observations are equally accurate and uncorrelated we get the
vector of residuals

V= [0.025 - 0.060 -0.060 - 0.060 0.025 0.025 0.025 0.085 0.085V,

being identical for all the four observation vectors presented above.
It is obvious that the parameter estimates corresponding to the observation

vectors in question will differ considerably between themselves.

E x a m p 1 e 2. Figure 4 presents a horizontal measuring scheme with the
observations being: the directions k1, k2, ... , k15 and distances Ll'L2• The parameters

llx 

Fig. 4 The horizontal measuring scheme used in the example
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to be determined in a local reference system are the coordinate increments dX, dY for 
each point and the orientation constants Z for each theodolite station. To construct 
the matrix A we assume the point coordinates as listed in Table 1. 

Tab Ie 1 

Point X0[m] Y0[m] 

SI 120.030 16.950 
S2 85.132 221.193 
S3 93.735 384.216 
Pl 280.145 16.950 
P2 255.688 200.007 
P3 240.346 360.771 

For the purpose of this analysis they represent the true coordinates, so we have 
x0=x1ru". Maintaining the notation ~y<+l used for the SID vectors (see section 4) we 
introduce an auxiliary symbol ~y+ to denote those vectors ~y which satisfy the condition 

but were not checked against the requirement ~yE(R1uR2), which constitutes the 
second component in formula (13). 

,.- ...... 
' dY1 °i ~ 

• d.X1 
\ 

I
I

I
o 
k11 

Z3 

I~\ 
I I I \ \ 

I I I \ \ 
I I I \ 
I I I \ \ 
I I \ \ 
I I \ \ 

I I \ \ 
I \ \ 
I \ \ 

\ ' 
O b 
k14 k1s 

I
o 
k12 

Fig. 5. A fragment of the structural network of the matrix A for horizontal measuring scheme 

Here are the vectors ~y+, being the columns of the matrix A(x0
), corresponding to 

the parameter nodes dXl' dYl' Z3 (see Figure 5): 
- for the node dX1 ~y+ =[0 ... 0 1.63(7) 0 ... 0 1.38(13) 0 ... 0f 



On the space of imperceptible observational errors ... 103 

- for the node dY1 ~y+ =[3.98<1i 0 ... 0 1.56(7) 0 ... 0 0.70<13i O ... Of 
- for the node Z3 ~y+=[O ... O -1 -1 -1 -1 -1 O Of 
When we center the signal over the point Pl making the eccentricity error 

~r=[2 -IY and keep the position of the signal fixed in all the measurements in 
a scheme we automatically generate the vector ~y+ having the form 

~y+=[-3.98(1) 0 ... 0 1.70(7) 0 ... 0 -2.06(13) o ... ov 

Withy being a given observation vector the equivalent observation vectors can be 
gene-rated by the same formula as in Example 1, i.e. 

where k;r/N{[A(x0)f A(x0)} (see formula (21)). 
Following the formula (19) we shall construct the vector ~Y(ovcrlookcd) on the basis of 

~y+ for the node dX1, recognized after an appropriate check as ~y<+l: 

13.8(13J O Of 

l.2c13J O Of 

15.0c,3i O Of 

In checking whether ~y+ qualifies to be ~y<+l the following condition for the model 
correctness was assumed: 

~y(+) =[0 ... 0 16.3(7) 0 ... 0 

~y<-) =[0 ... 0 -1.3(7) 0 ... 0 

~Y(ovrlookcd) =[0 ... 0 15.0(7) 0 ... 0 

i= 1, 2, ... , n 

where xd - is the vector x0 with the use of the values of k7 and k13 containing the 
disturbances, a y,i - the a priori standard deviations being here a k = 3cc; a L = 1 mm. 
Using the simulated vector y, the LS residual vectors v were computed for the 
following three options of the observation vector: 

Y Y. y -y+~y . y3=y+~y<-l-, 1 = , 2 - (overlooked), 

The results of the computation were as follows 

In spite of discrepancies (within ± 0.3ay) in the second equality, the results of the 
adjustment for the options 2 and 3 are, in terms of the tests based on residuals, 
equivalent with the results for the option I. 
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7. Concluding remarks

The analysis of the space of imperceptible disturbances, carried out in this paper, 
allows one to give a more complete description of the advantages of designing 
a GMM to a suitably high reliability level: 
- better detection of perceptible disturbances thanks to the reduction of the space 

of undetectable disturbances; 
- reduction of the space of imperceptible disturbances. 
Obviously, both these advantages are closely interrelated by their reference to the 

same model relationships. 
For the models being the result oflinearization of the initial non-linear models the 

analysis of SID should have a specific approach adjusted to the complexity and 
peculiarity of the problem being modelled. Note that the non-linear models with no 
observational redundancies (which are in fact more theoretical than practical 
structures) may, in general, have more than one solution. The approach to linearized 
models presented in this paper is only a straightforward extension of that proposed 
for the linear models and hence, requires further investigation. The spaces R1 and R2 
cannot easily be defined precisely as they depend on the procedures for finding the 
approximate coordinates and on the degree of precision with which one can estimate 
their accuracy level. There are procedures which, prior to the main adjustment 
process, make it possible to eliminate a certain number of the evidently outlying 
observations. 

It should be emphasized that, either being correct or incorrect, every GMM 
possesses SID. However, in incorrect models the imperceptible disturbances can be 
a superimposition of the observational disturbances and the disturbances being the 
effect of model imperfections or of the model's inadequacy. The complexity of such 
situations in linearized models speaks in favour of giving such models a separate 
treatment 

There are numerous potential sources of disturbances (and hence - also of the 
imperceptible disturbances) in geodetic observations so we will not attempt to list 
them here. However, in the light of the analyses carried out so far we shall only 
comment that a permanent eccentric signalling of a network point will always 
generate an SID vector, whereas the disturbances induced in the measurement process 
(e.g. from the influence of external conditions) may only incidentally form a vector 
falling into that space. 

Here are some practical conclusions which emerge from the fact of the SID 
existence in every GMM. By containing this space such a model incorporates some 
potential risks for the technology which uses this model as a data-processing tool. The 
identification of such risks, which can be done on the basis of the matrix A, is specially 
important in the models with a low level of internal reliability. Such models can be 
encountered in the engineering survey practice. Having in mind a proper quality of 
the survey products it would be well worth while to investigate the measurement 
procedure and the measurement process itself with respect to possible disturbing 
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factors which may result in the occurrence of the SID component in the observation
vector. A surveyor may substantially reduce the risk of the occurrence of imperceptib
le disturbances if he designs the measurement procedure in correlation with the
shaping of the structure of a data-processing model. The analysis and technological
identification of the SID can also be helpful in planning the post-measurement checks
of the established framework.

A knowledge, albeit incomplete, of the probabilistic nature of gross observational
errors or blunders would make it possible to compare (or at least - to rank) the
chances of occurence of the specified disturbance vectors, and thus also those
belonging to the SID. The results of research aimed at formulating, on an empirical
basis, a probability law for gross errors in geodetic networks (see [12]) are promising
and further research in this direction would be well worth while. It seems that the
transfer of this approach to the sphere of engineering surveying, if successful, might
result in improvements in the methodology of planning measuring schemes and
procedures.

The findings of this paper can also be applied to linear regression models.
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O przestrzeni niedostrzegalnych błędów obserwacyjnych w liniowych modelach Gaussa-Markowa 
z przykładami zaczerpniętymi z pomiarów inżynieryjnych

Streszczenie

Przedstawiono analizę znanej w teorii niezawodności przestrzeni błędów grubych bądź omyłek
niewykrywalnych w procesie estymacji metodą najmniejszych kwadratów w liniowych modelach Gaus
sa-Markova. Podstawę analizy stanowi ogólna zależność wiążąca zaburzenia obserwacyjne i odpowiedzi
modelu. Chociaż definicja tej przestrzeni jest identyczna z podaną w pracy [I] dochodzi się do niej w nieco
odmienny sposób. Sformułowano kilka własności tej przestrzeni. Jedna z nich pokazuje związek tej
przestrzeni z poziomem niezawodności modelu z obserwacjami nieskorelowanymi. Wprawdzie w roz
ważaniach teoretycznych uwzględnione są modele zlinearyzowane, podejście do nich jest zasadniczo
zwykłym rozszerzeniem podejścia zaproponowanego dla modeli liniowych i nie można go traktować jako
gotowej propozycji dla potrzeb praktycznych. Teoria ilustrowana jest przykładami zaczerpniętymi
z pomiarów inżynieryjnych.

Bumonso Ilpyiauuscxu

O npocrpancree ee1aMe111L1x owu6oK Ha6moii;eHeii II JIHHeHHLIX MOJJ;eJlllX I'aycca-Mapxoaa 
C npDMepaMB Hl HHlKeHepHblX HlMepeHeii

Pe3IOMe

Ilpencraanensr aaanaasr rrpocrpaacrna, H3BeCTHoro B reopaa aaneacaocra, rpyósrx omafiox
Ha6JIIOri;eflllii ana rpyfisrx oniaóox a6coJIIOTHO aeotiaapyxaaaeasrx a .rm:HellHh!X Mori;emrx
Faycca-Mapxoaa B rrpouecce orrpeneneaaa MeTOLJ;OM HaRMeHhllIBX KBan;paTOB. Aaanassr OCHOBaHh! Ha
oóruax 3aBlłCEIMOCTllX, CBX3h!BałOWIDC IIOMeXH aafimoneaaa El peaKUIDO MOLJ;eJill. XOTX orrpeaeneaae
3TOfO npocrpancrsa TOllCJJ;eCTBeHHO c LJ;aHHh!M Kacnapsrsr [1], TO OHO noxyxeao aesmoro JJ;pyrHM
cnocoóoss. Onpeneneasr HeKOTOph!e CBOllCTBa JTOro npocrpaacrna, OJJ;HO H3 HEIX YKa3h!BaeT ero CBX3H
C yposaesr Hari;el!CHOCTH MOLJ;eJill C HeKoppenHpOBaHHhIMH Ha6JIIOLJ;efil!XMH. XOTX CJil!HeapH30BaHHh!e
MOLJ;eJIH nxmoseasr B TeOpHIO, IIpHMeMeMblii IIOJJ;XOLJ; K fil!M, j!BJij!łQI!UłllCX B OCHOBHOM rrpOCTh!M
pacmapeaaesr cnoco6a npennaraeeaoro MX naaeaasrx Mori;eneii, He MOlKeT paccssarpaaarsca KaK nonaoe
rrpertnoaceaae Jlilll rrpaxraxecxax rrpasreaeaaź. Teopas IlOl!CHeHa npasrepasra H3 lłHl!CeHepcKHX
113Mepemrn.


