Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a prototype of a rehabilitation robot for lower extremities. It is created on the basis of cylindrical kinematic model, equipped with two rigid arms, special handles and fixtures. It has five active degrees of freedom and is designed to repeat the trajectories generated by physiotherapist during the learning phase. Presented prototype of rehabilitation robot has the ability to replay different types of trained exercises such as: hip and knee flexion/extension, leg abduction/adduction. The protection system (including overload detection) implemented in the robot ensures safe working with patients.

Go to article

Authors and Affiliations

Marcin Kaczmarski
Grzegorz Granosik
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with mechanical and hardware design of a robot, used for the rehabilitation of upper extremities. It has been called ARR-1 (Arm Rehabilitation Robot). The robot has a semi-exoskeleton structure. This means that some parts of the robot fit closely to the human arm (an orthosis), but the weight of the construction does not load patient’s body. The device is used for the whole arm rehabilitation, but active joints are only situated in glenohumeral and elbow joints. The robot is electrically actuated.

Go to article

Authors and Affiliations

Artur Gmerek
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to analyse whether the medical rehabilitation segment is an important part of the entire Polish healthcare system, and if the medical rehabilitation services are provided with adequate levels of financing and management. The study reviews published literature and legal acts, and undertakes an analysis of data acquired from international and national health data repositories. In Poland there exists no coordination between medical, vocational and social rehabilitation or between the rehabilitation delivered by the health resort facilities. There is an observed lack of coordination among public fund payers. The described lack of coordination influences not only patient treatments (it is difficult to measure outputs and outcomes), but also makes summarizing the total expenditures on curative rehabilitation more difficult. Even though numerous countries spend a smaller or comparable amount of money on rehabilitation (per patient), funds allocated to rehabilitation in Poland (expressed in PPS) are over seven times lower than in France, about five times lower than in Austria and Belgium, and three times lower than in the Netherlands.

Go to article

Authors and Affiliations

Ewa Kosycarz
Download PDF Download RIS Download Bibtex

Abstract

Geological and Mining Law enforced in Poland does not provide adequate regulations assuring financial means for a mine closure and mined land rehabilitation. The gradual accumulation of funds within a framework of a mine rehabilitation fund may not provide the full coverage of costs of all the necessary works in the event the exploitation is terminated before lifting all minable resources.

Regulations defining the duties of mining enterprises lack specific preclusions related to assurance of financial means for mine closures in the event a mining license is issued by a staroste (prefect). To address this problem a simplified estimation method for establishing closing costs is put forward in the first stage. This is based on unified indicators related to deposits’ reserves or acreage used for mining activities.

The equivalent of the closure costs established in this manner shall be paid to an escrow account on a similar basis as means of rehabilitation funds are put aside. However, paying the entire amount either in one (preferably) or two instalments is recommended. The introduction of this recommendation requires an amendment to the Geological and Mining Law as well as securing appropriate competences in staroste’s offices along with a convincing communication campaign.

Go to article

Authors and Affiliations

Ryszard Uberman
Download PDF Download RIS Download Bibtex

Abstract

Limb physical movements disability is the result of illnesses or serious injuries, impaired execution of daily activities and limitations or even inability to perform working activity. Restoration of fitness in such cases is possible through rehabilitation that requires arduous repetition of appropriate exercises with participation of an experienced physiotherapist. Exercises using the robot to repeat movements would speed up the process of rehabilitation. The paper presents the concept of rehabilitation robot control system realizing a specified purpose.

Go to article

Authors and Affiliations

Andrzej Michnik
Jacek Brandt
Zbyszek Szczurek
Michał Bachorz
Zbigniew Paszenda
Robert Michnik
Jacek Jurkojć
Wiesław Rycerski
Jan Janota
Download PDF Download RIS Download Bibtex

Abstract

In order to rebuild a poetic voice that had been threatened by major historical events, from 1958, the Nerudian poetic subject inaugurated a particular sincerity through the humor. By focusing on a figure of language described by Nicholas Manning in Rhétorique de la sincérité, this paper examines a dialectical mechanism at work in the volume: which is the rehabilitation of the poetic voice by means of the very questioning of his legitimacy.
Go to article

Authors and Affiliations

Mélina Cariz
1
ORCID: ORCID

  1. Lycee François Mansart, Saint-Maur Des Fosses, France
Download PDF Download RIS Download Bibtex

Abstract

The article presents the process of structural diagnostics of the Dominican monastery in Lublin. In order to establish the underlying cause of cracks, not only in situ investigations but also detailed analyses of documents were executed. Inventory drawings were examined in order to identify the building’s structural system. The query of historical documents and city archives was carried out to understand the structure’s performance. Conclusions were confronted with the crack pattern. It was established that the damage resulted from the original conditions of the structural system in place. These conditions were created in past, when the monastery incorporated sections of the medieval town wall into its structure.
The article details structural remedies applied in the course of rehabilitation. The introduction of supporting structures was the effect of a compromise between the necessity of ensuring structural safety and the demand for the minimum impact on the heritage site. The article aims to highlight that the structural assessment of the heritage asset is an investigative process. The work also emphasizes that in spite of numerous up-to-date methods helpful in the structural diagnostics of building structure, the conceptual analyses of the structural system still remain of vital importance. The query of historical documents helps in determining the structural system of a historic building, and vice versa, structural analyses assist in recognizing and supplementing the knowledge of the asset’s history.
Go to article

Bibliography

[1] E. Radziszewska-Zielina, G. Sladowski, “Supporting the selection of a variant of the adaptation of a historical building with the use of fuzzy modelling and structural analysis”, Journal of Cultural Heritage, 2017, vol. 26, pp. 53–63.
[2] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony”, Bulletin of Polish Academy of Science: Technical sciences, 2016, vol. 64, pp. 665–673.
[3] G. Barbieri, M. Valente, L. Biolzi, C. Togliani, L. Fregonese, G. Stanga, “An insight in the late Baroque architecture: An integrated approach for a unique Bibiena church”, Journal of Cultural Heritage, 2017, vol. 23, pp. 58–67.
[4] M. P. Sammartino, G. Cau, R. Reale, S. Ronca, G. Visco, “A multidisciplinary diagnostic approach preliminary to the restoration of the country church “San Maurizio” located in Ittiri (SS)”, Heritage Science 2, 2014, vol. 4.
[5] E. Diz-Mellado, E.J. Mascort-Albea, R. Romero-Hernández, C. Galán-Martín, C. Rivera-Gòmez, J. Ruiz- Jaramillo, A. Jaramillo-Morilla, “Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study”, Journal of Building Engineering, 2021, vol. 37, p. 102134.
[6] M.F. Funari, S. Spadea, P. Lonetti, F. Fabbrocino, R. Luciano, “Visual programming for structural assessment of out-of-plane mechanism in historic masonry structures”, Journal of Building Engineering, 2020, vol. 31, p. 101425.
[7] M.A. Nùñez-Andrés, F. Buill, A. Costa-Jover, J.M. Puche, “Structural assessment of Roman wall and vaults in the cloister of Tarragona Cathedral”, Journal of Building Engineering, 2017, vol. 13, pp. 77–86.
[8] C. Akcay, A. Solt,N.M.Korkmaz, B. Sayin, “Aproposal for the reconstruction of historical masonry building constructed in Ottoman Era (Istambul)”, Journal of Building Engineering, 2020, vol. 32, pp. 101493.
[9] ICOMOS: “Recommendation for the analysis, conservation and structural restoration of architectural heritage”. 2003. Website of International Council of Monuments and sites. https://www.icomos.org/en/aboutthe-centre/179-articles-en-francais/ressources/charters-and-standards/165-icomos-charter-principles-forthe- analysis-conservation-and-structural-restoration-of-architectural-heritage. Accessed 10 Feb. 2021
[10] C. Alessandri, V. Mallardo, “Structural assessments of the Church of the Nativity in Bethlehem”, Journal of Cultural Heritage, 2012, vol. 13, Supplement, pp. e61–e69.
[11] A. Anzani, L. Binda, A. Carpinteri, S. Invernizzi, G. Lacidogna, “A multilevel approach for the damage assessment of Historic masonry towers”, Journal of Cultural Heritage, 2010, vol. 11, pp. 459–470.
[12] L. Binda, A. Saisi, C. Tiraboschi, “Investigation procedures for the diagnosis of historic masonries”, Construction and Building Materials, 2000, vol. 14, pp. 199–233.
[13] P. B. Lourenço, “Recommendations for restoration of ancient buildings and the survival of masonry chimney”, Construction and Building Materials, 2006, vol. 20, pp. 239–251.
[14] M-G. Masciotta, L. F. Ramos, P. B.Lourenço, “The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal”, Journal of Cultural Heritage, 2017, vol. 27, pp. 36–47.
[15] G. Teza, S. Trevisani, A. Pesci, “The role of geoenvironmental sciences in Cultural Heritage preservation: the case of 1000 year old leaning bell tower of Caorle (Venice)”. Journal of Cultural Heritage, 2019, vol. 39, pp. 270–277.
[16] C. Alessandri, M. Garutti, V. Mallardo, G. Milani, “Crack Patterns Induced by Foundation Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy”, International Journal of Architectural Heritage, 2015, vol. 9, pp. 111–129.
[17] M. Betti, M. Orlando, A. Vignoli, “Static behaviour of an Italian Medieval Castle: Damage assessment by numerical modelling”, Computer Structures, 2011, vol. 89, pp. 1956–1970.
[18] G. Croci, “General methodology for the structural restoration of historic buildings: the cases of the Tower of Pisa and the Basilica of Assisi”. Journal of Cultural Heritage, 2000, vol. 1, pp. 7–18.
[19] S. Hemeda, “3D finite element coupled analysis model for geotechnical and complex structural problems of historic masonry structures: conservation of Abu Serga church, Cairo, Egypt”, Heritage Science, 2019, vol. 6.
[20] K. Papadopoulos, “The Restoration of the North-Side Foundation of the Temple of Apollo Epikourios”, International Journal of Architectural Heritage, 2010, DOI: 10.1080/15583050903121869.
[21] L. Schueremans, K. Van Balen, K. Brosens, D. Van Gemert, P. Smars, “Church of Saint-James at Leuven: Structural Assessment and Consolidation Measures”, International Journal of Architectural Heritage, 2007, DOI: 10.1080/15583050601126137.
[22] “Public records of Lublin City 1465-1810” (in Polish). National Archives in Lublin.
[23] B. Nowak, “Lublin Guidebook” (in Polish), Test, Lublin, 2000.
[24] A. Halicka, A. Ostanska, “Selection of repair materials for the restoration of historic monastery masonry” (in Polish), in: Ecology in the building processes. Lublin University of Technology, Lublin 2003, pp. 185–192.
[25] A. Halicka, A. Ostanska, “Strengthening of the corner of historic Dominican monastery in Lublin” (in Polish), Przeglad budowlany 2004, vol. 7-8, pp. 32–36.
[26] J. Lewicki, “Free-standing early medieval building in Dominican Monastery in Lublin” (in Polish), in: Medieval sacral architecture inPoland in the light of new research. Biblioteka Poczatków Panstwa Polskiego, Gniezno, 2014, 173–189.
[27] J. Jasienko, D. Logon, W. Misztal, “Trass-lime reinforced mortars in strengthening and reconstruction of historical masonry walls”, Construction and Building Materials, 2016, vol. 102, pp. 884–892.
[28] M. Corradi, A. Di Schino, A. Borri, R. Rufini, “A review of the use of stainless steel for masonry repair and reinforcement”, Construction and Building Materials, 2018, vol. 181.
[29] P. Zampieri, N.Simoncello, C.D. Tetougueni, C. Pellegrino, “A review of methods for strengthening of masonry arches with composite materials”, Engineering Structures, 2018, vol. 171, pp. 154–169.
[30] F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, “Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation”, Composite Structures, 2018, vol. 187, pp. 466–480.
Go to article

Authors and Affiliations

Anna Halicka
1
ORCID: ORCID
Anna Ostańska
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 40, 20-618 Lublin
Download PDF Download RIS Download Bibtex

Abstract

The optimization of cut-off grades is a fundamental issue for metallic ore deposits. The cut-off grade is used to classify the material as ore or waste. Due to the time value of money, in order to achieve the maximum net present value, an optimum schedules of cut-off grades must be used. The depletion rate is the rate of depletion of a mineral deposit. Variable mining costs are to be applied to the really excavated material, as some of the depletion can be left in-situ. Due to access constraints, some of the blocks that have an average grade less than the determined cut-off grade are left in-situ, some of them are excavated and dumped as waste material. Naturally, variable mining costs should be applied to the blocks of a mineral deposit that are actually excavated. The probability density function of an exponential distribution is used to find the portion of the depletion rate over the production rate that is to be left in-situ. As a result, inverse probability density function is to be applied as the portion of the depletion rate over the production rate that is to be excavated and dumped. The parts of a mineral deposit that are excavated but will be dumped as waste material incur some additional cost of rehabilitation that is to be included in the algorithm of the cut-off grades optimization. This paper describes the general problem of cut-off grades optimization and outlines the further extension of the method including various depletion rates and variable rehabilitation cost. The author introduces the general background of the use of grid search in cut-off grades optimization by using various depletion rates and variable rehabilitation cost. The software developed in this subject is checked by means of a case study.
Go to article

Authors and Affiliations

Cetin Erhan
Download PDF Download RIS Download Bibtex

Abstract

The church of Santa Ana in Moratalaz, Madrid, Spain (1965-1971), is an emblematic work of the architect Miguel Fisac. In his long career include interventions in the religious field, constituting one of the most important contributions to Spanish religious architecture of the last century. This church is a singular place of worship and architecturally significant, in which the acoustics played an important role in the configuration of the spatiality of the church. This paper studies the acoustic behaviour of the church and its relationship with its unique structural, spatial and coating material characteristics. The analysis of the current acoustic conditions, with high reverberation times (up to 6 seconds) and poor intelligibility on the audience, serve as the basis for making an acoustic rehabilitation proposal that contributes to improving the sound conditions of the building for the intended use, without distorting the spatial, formal and material aspects with which the architect conceived the project.

Go to article

Authors and Affiliations

Ana María Bueno
Ángel Luis León
Miguel Galindo
Download PDF Download RIS Download Bibtex

Abstract

Cut-off grades optimization is a fundamental issue for mineral deposits. A cut-off grade is any grade that is used to separate two courses of action; to mine or not to mine, to process or to dump. In order to achieve the maximum discounted cash flow, generally a decreasing order of cut-off grades schedule takes place. Variable mining costs are applied to the extracted material, not to all of the depletion rate as some of the depletion can be left in-situ. B ecause of access constraints, some of the blocks that have an average grade less than the determined cut-off grade are left in-situ, some of them are excavated and dumped as waste material. The probability density function of an exponential distribution is used to find the portion of the material below the cut-off used that is left in situ. The parts of a mineral deposit that are excavated but will be dumped as waste material and tailings of ore incur some additional cost of rehabilitation. The method of memetic algorithms is a very robust optimization tool. It is a step further from the genetic algorithms. The crossover, mutation and natural selection behavior of the method ensures it escape from a local optimum point, and a further local search improves the optimum further. This paper describes the general problem of cut-off grades optimization, outlines the use of memetic algorithms in cut-off grades optimization and further extension of the method including partial depletion rates and variable rehabilitation cost. This paper is the first application of memetic algorithms to cut-off grades optimization in this context.
Go to article

Bibliography

Cetin, E . 2016. Cut-off grades optimization by means of memetic algorithms with uncertain market conditions. Middle East Journal of Technic 1(1).
Cetin, E . and Dowd, P. A. 2002. The use of genetic algorithms for multiple cut-off grade optimisation. Proceedings of the 30th International Symposium on the Application of Computers and Operations Research in the Minerals Industries, Littleton, Colorado, USA.
Cetin, E . and Dowd, P.A. 2016. M ultiple cut-off grade optimization by genetic algorithms and comparison with grid search method and dynamic programming. The Journal of the South African Institute of Mining and Metallurgy 116(7), pp. 681–688, DOI: 10.17159/2411-9717/2016/v116n7a10.
Dowd, P.A. 1976. Application of dynamic and stochastic programming to optimise cut-off grades and production rates. Transactions of the Institution of Mining and Metallurgy Section A: Mining Industry 81. pp. 160–179.
Dawkins, R. 1976. The Selfish Gene, Oxford University Press.
Garg, P. 2009. A Comparison between Memetic algorithm and Genetic algorithm for the Cryptanalysis of Simplified Data Encryption Standard Algorithm. International Journal of Network Security & Its Applications (IJNSA), 1(1), pp. 34–42.
Gholamnejad, J. 2008. Determination of the optimum cutoff grade considering environmental cost. Journal of International Environmental Application and Science 3(3), pp. 186-194.
Gholamnejad, J. 2009. Incorporation of rehabilitation cost into the optimum cut-off grade determination. The Journal of the South African Institute of Mining and Metallurgy 109(2), pp. 89–94.
Holland, J.H. 1975. Adaptation in N atural and Artificial Systems. University of Michigan Press, USA.
Lane, K.F. 1964. Choosing the optimum cutoff grade. Colorado School of Mines Quarterly 59(4), pp. 811–829.
Lane, K.F. 1988. The Economic Definition of Ore. Mining Journals Books Ltd., L ondon, UK.
Go to article

Authors and Affiliations

Erhan Cetin
1
ORCID: ORCID
Abdurrahman Dalgic
2

  1. Dicle University, Diyarbakır, Turkey
  2. Alanya Alaaddin Keykubat University, Alanya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This study developed an ankle rehabilitation device for post-stroke patients. First, the research models and dynamic equations of the device are addressed. Second, the Sliding Mode Controller for the ankle rehabilitation device is designed, and the device's response is simulated on the software MATLAB. Third, the ankle rehabilitation device is successfully manufactured from aluminum and uses linear actuators to emulate dorsiflexion and plantarflexion exercises for humans. The advantages of the device are a simple design, low cost, and mounts onto rehabilitative equipment. The device can operate fast through experiments, has a foot drive mechanism overshoot of 0°, and a maximum angle error of 1°. Moreover, the rehabilitation robot can operate consistently and is comfortable for stroke patients to use. Finally, we will fully develop the device and proceed to clinical implementation.
Go to article

Bibliography

[1] E. Osayande, K.P. Ayodele, M.A. Komolafe. Development of a robotic hand orthosis for stroke patient rehabilitation. International Journal of Online and Biomedical Engineering, 16(13):142–149, 2020. doi: 10.3991/ijoe.v16i13.13407.
[2] Z. Yue, X. Zhang, and J. Wang. Hand Rehabilitation robotics on poststroke motor recovery. Behavioural Neurology, 2017:3908135, 2017. doi: 10.1155/2017/3908135.
[3] C. Grefkes and G.R. Fink. Recovery from stroke: current concepts and futures perspectives. Neurological Research and Practice, 2(1):17, 2020. doi: 10.1186/s42466-020-00060-6.
[4] R. Gassert and V. Dietz. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of NeuroEngineering and Rehabilitation, 15:46, 2018. doi: 10.1186/s12984-018-0383-x.
[5] S.H. Hayes and S.R. Carroll. Early intervention care in the acute stroke patient. Archives of Physical Medicine and Rehabilitation, 67(5):319–321, 1986.
[6] D.U. Jette, R.L. Warren, and C. Wirtalla. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Archives of Physical Medicine and Rehabilitation, 86(3):373–379, 2005. doi: 10.1016/j.apmr.2004.10.018.
[7] Z. Zhou and Q. Wang. Concept and prototype design of a robotic ankle-foot rehabilitation system with passive mechanism for coupling motion. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pages 1002–1005, Suzhou, China, 29 July -2 August, 2019. doi: 10.1109/cyber46603.2019.9066745.
[8] C.M. Racu and I. Doroftei. An overview on ankle rehabilitation devices. Advanced Materials Research, 1036:781–786, 2014. doi: 10.4028/www.scientific.net/amr.1036.781.
[9] A.A. Blank, J.A. French, A.U. Pehlivan, and M.K. O'Malley. Rehabilitation: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Current Physical Medicine and Rehabilitation Reports, 2(3):184–195, 2014.
[10] Z. Liao, L. Yao, Z. Lu, and J. Zhang. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. International Journal of Intelligent Robotics and Applications, 2(3):351–360, 2018. doi: 10.1007/s41315-018-0063-9.
[11] C.C.K. Lin, M.S. Ju, S.M. Chen, and B.W. Pan. A specialized robot for ankle rehabilitation and evaluation. Journal of Medical and Biological Engineering, 28(2):79–86, 2008.
[12] Z. Sun et al. Mechanism Design and ADAMS-MATLAB-Simulation of a Novel Ankle Rehabilitation Robot. 2019 IEEE International Conference on Robotics and Biomimetic (ROBIO), pages 425–432, Dali, China, December, 2019. doi: 10.1109/robio49542.2019.8961829.
[13] Q. Liu, A. Liu, W. Meng, Q. Ai, and S.Q. Xie. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles. Frontiers in Neurorobotics, 11:64, 2017. doi: 10.3389/fnbot.2017.00064.
[14] T. Yonezawa, K. Nomura, T. Onodera, S. Ishimura, H. Mizoguchi, and H. Takemura. Evaluation of venous return in lower limb by passive ankle exercise performed by PHARAD. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3582–3585, Milan, Italia, 25–29 August, 2015. doi: 10.1109/embc.2015.7319167.
[15] Ye Ding, M. Sivak, B. Weinberg, C. Mavroidis, and M.K. Holden. NUVABAT: Northeastern university virtual ankle and balance trainer. 2010 IEEE Haptics Symposium, pages 509–514, Waltham, Massachusetts, USA, 25–26 March, 2010. doi: 10.1109/haptic.2010.5444608.
[16] D. Ao, R. Song, and J. Gao. Movement performance of human–robot cooperation control based on emg-driven hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8):1125–1134, 2017. doi: 10.1109/tnsre.2016.2583464.
[17] Y. Ren, Y.-N. Wu, C.-Y. Yang, T. Xu, R. L. Harvey, and L.-Q. Zhang. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6):589–596, 2017. doi: 10.1109/tnsre.2016.2584003.
[18] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 30(4):486–499, 2011. doi: 10.1177/0278364910385730.
[19] Z. Zhou, Y. Sun, N. Wang, F. Gao, K. Wei, and Q. Wang. Robot-assisted rehabilitation of ankle plantar flexors spasticity: a 3-month study with proprioceptive neuromuscular facilitation. Frontiers in Neurorobotics, 10:16, 2016. doi: 10.3389/fnbot.2016.00016.
[20] I. Doroftei, C.M. Racu, C. Honceriu, and D. Irimia. One-degree-of freedom ankle rehabilitation platform. IOP Conference Series: Materials Science and Engineering, 591:012076, 2019. doi: 10.1088/1757-899x/591/1/012076.
[21] A. Gmerek and E. Jezierski. Admittance control of a 1-DoF robotic arm actuated by BLDC motor. 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), pages 633–638, Miedzyzdroje, Poland, 27–30 August, 2012. doi: 10.1109/mmar.2012.6347811.
[22] Ł. Woliński. Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study. Archive of Mechanical Engineering, 67(1):111–121, 2020. doi: 10.24425/ame.2020.131686.
[23] Meera C S, M.K. Gupta, and S. Mohan. Disturbance observer-assisted hybrid control for autonomous manipulation in a robotic backhoe. Archive of Mechanical Engineering, 66(2):153–169, 2019. doi: 10.24425/ame.2019.128442.
[24] O. Jedda, J. Ghabi and A. Douik. Sliding mode control of an inverted pendulum. In: Derbel N., Ghommam J., Zhu Q. (eds), Applications of Sliding Mode Control. Studies in Systems, Decision and Control, chapter 6:105–118, 2016, Springer. doi: 10.1007/978-981-10-2374-3_6.
[25] S. Singh, M.S. Qureshi, and P. Swarnkar. Comparison of conventional PID controller with sliding mode controller for a 2-link robotic manipulator. 2016 International Conference on Electrical Power And Energy System (ICEPES), pages 115–119, Bhopal, India, 14-16 December, 2016. doi: 10.1109/icepes.2016.7915916.
[26] P. Boscariol and D. Richiedei. Trajectory design for energy savings in redundant robotic cells. Robotics, 8(1):15, 2019. doi: 10.3390/robotics8010015.
[27] M. Adolphe, J. Clerval, Z. Kirchof, R. Lacombe-Delpech, and B. Zagrodny. Center of mass of human's body segments, Mechanics and Mechanical Engineering, 21(3):485–497, 2017.
[28] T. Eiammanussakul and V. Sangveraphunsiri. A lower limb rehabilitation robot in sitting position with a review of training activities. Journal of Healthcare Engineering, 2018:927807, 2018. doi: 10.1155/2018/1927807.
[29] A. Roy, H.I. Krebs, C.T. Bever, L.W. Forrester, R.F. Macko, and N. Hogan. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. Journal of Neurophysiology, 105(5):2132–2149, 2011. doi: 10.1152/jn.01014.2010.
[30] F. Gao, Y. Ren, E.J. Roth, R. Harvey, and L.-Q. Zhang. Effects of repeated ankle stretching on calf muscle–tendon and ankle biomechanical properties in stroke survivors. Clinical Biomechanics, 26(5):516–522, 2011. doi: 10.1016/j.clinbiomech.2010.12.003.
[31] G. Bucca, A. Bezzolato, S. Bruni and F. Molteni. A Mechatronic Device for the Rehabilitation of Ankle Motor Function. Journal of Biomechanical Engineering, 131(12):125001, 2009. doi: 10.1115/1.4000083.
[32] J. Zhong, Y. Zhu, C. Zhao, Z. Han, and X. Zhang. Position tracking of a pneumatic-muscle-driven rehabilitation robot by a single neuron tuned pid controller. Complexity, 2020:438391, 2020. doi: 10.1155/2020/1438391.
Go to article

Authors and Affiliations

Minh Duc Dao
1
ORCID: ORCID
Xuan Tuy Tran
2
Dang Phuoc Pham
1
Quoc Anh Ngo
1
Thi Thuy Tram Le
3

  1. Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam
  2. Faculty Technology of Mechanical Engineering, The University of Danang – University of Science and Technology, Danang, Vietnam
  3. The Faculty Electronic-Electrical, The Quang Nam College, Quang Nam, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Temporomandibular disorders (TMD) are the second most common cause of chronic pain in the human musculoskeletal system. The triad of symptoms of TMD includes: pain within the temporomandibular joint (TMJ), limitation of its mobility and crepitations. The aim of the study was to present the methods of physiotherapy and to assess its effectiveness in patients with hypomobility of temporomandibular joints.

Material and Methods: 44 patients (40.2 ± 10.6 years) were examined for signs of TMD using the Manual Functional Analysis of masticatory system (MFA) questionnaire due to DC/TMD. In the above group, 20 patients showed hypomobility of TMJs and myofascial pain. They underwent a 3-week phy-siotherapy consisting of manual therapy and exercises. In the study group, linear measurements of TMJs mobility and palpation of selected masticatory muscles were performed. Pain was assessed before and after 3 weeks of therapy according to Numerical Rating Scale (NRS). Statistical processing of the data was done with STATISTICA 13 and was conducted considering significance at a p-value <0.05.

Results: Significant improvement in TMJ’s mobility, which increased on average by 6.6 mm (p = 0.0005) and reducing of pain, a decrease of 3 points on average on the NRS Scale (p = 0.00002) were achieved.

Conclusions: The applied physiotherapy algorithm, including manual therapy and exercises of mas-ticatory muscles, is effective in the case of improvement TMJ’s range of motion and reduction of pain in patients with hypomobility of TMJ’s.

Go to article

Authors and Affiliations

Joanna Piech
Małgorzata Pihut
Małgorzata Kulesa-Mrowiecka
Download PDF Download RIS Download Bibtex

Abstract

Authors, mostly specialists on rehabilitation and orthopedic surgery prove that arthrofibrosis is a commonly overlooked phenomenon, which may lead to serious limitation in the range of movement, leading to limitation in patients quality of functioning. The main goal of this article is to emphasize the importance of understanding a such complex condition. Non typical patomechanism, lack of biomarkers dedicated to this dysfunction and general lack of under-standing in this pathology causes that risk factors and the most effective strategies remain vastly unknown. Pathophysiology of the arthrofibrosis in the joints is definitely multifactorial, but intense production of collagen seems to be the main factor. Most modern pharmacological methods concentrate on the regula-tion of collagen fiber production and reducing the inflammation. Inflammation from joint contractures stimulates the proliferation of activated cells that results in the production of extracellular matrix macromolecules to form fibrotic tissue that is deposited into the capsule, thereby resulting in fibrosis.
Lack of unified classification scale is caused by relatively high variation of the functions fulfilled by particular joints and each treatment plan should be constructed individually. Quality of surgical treatment and physical therapy play a major role in both prevention and treatment of such complex condition as arthrofibrosis.
Both iatrogenic mistakes and overly aggressive manual therapy are some of main factors increasing the risk of this pathological condition. Introducing properly conducted physical therapy treatment in the early stage is crucial to main the range of movement and preventing this significant problem.
Go to article

Authors and Affiliations

Andrzej Walocha
1
Bartosz Rutowicz
2
Wojciech Przybycień
2
Michał Zarzecki
2
Michał Kłosiński
2
Paweł Depukat
2
Bernard Solewski
2
Ewa Mizia
2
Anna Gil
2
Ewa Walocha
3

  1. Boom Boxing Studio, Kraków, Poland
  2. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  3. Laboratory of Nursing Theory and Fundamentals, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Historic interiors with large cubature, such as reception, theatrical, and concert halls, need to be renovated periodically if they are to be preserved as cultural heritage for future generations. In such cases it is necessary to maintain appropriate balance between requirements imposed by heritage conservation authorities office which are usually being given a higher priority, applicable safety regulations, and the comfort of use, including good acoustics. The paper is a presentation of architectural interference in three historic interiors with large cubature leading to changes in their acoustic qualities. In two cases, the changes were beneficial to the functional qualities of the halls to satisfaction of the investors carrying out the renovation work. In the third instance, the architectural interference aimed at showing off the monumental valor of the interior resulted in significant degradation of its acoustics. To remedy the situation impairing the functional program of the facility, corrective measures are proposed neutral with respect to its historic character.
Go to article

Authors and Affiliations

Tadeusz Kamisiński
Andrzej Kulowski
Roman Kinasz
Download PDF Download RIS Download Bibtex

Abstract

In this report, ankle rehabilitation routines currently approved by physicians are implemented via novel control algorithms on a recently appeared robotic device known as the motoBOTTE. The physician specifications for gait cycles are translated into robotic trajectories whose tracking is performed twofold depending on the availability of a model: (1) if obtained via the Euler-Lagrange approach along with identification of unknown plant parameters, a new computed-torque control law is proposed; it takes into account the parallel-robot characteristics; (2) if not available, a variation of the active disturbance rejection control technique whose parameters need to be tuned, is employed. A detailed discussion on the advantages and disadvantages of the model-based and model-free results, from the continuous-time simulation to the discrete-time implementation, is included.
Go to article

Bibliography


[1] N. Alibeji, N. Kirsch, S. Farrokhi, and N. Sharma: Further results on predictor-based control of neuromuscular electrical stimulation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), (2015), 1095–1105.
[2] J. Alvarez, J.C. Arceo, C. Armenta, J. Lauber, and M. Bernal: An extension of computed-torque control for parallel robots in ankle reeducation, IFAC-PapersOnLine, 52(11), (2019), 1–6.
[3] J.C. Arceo, J. Lauber, L. Robinault, S. Paganelli, M. Jochumsen, I.K. Niazi, E. Simoneau, and S. Cremoux: Modeling and control of rehabilitation robotic device: motobotte, In International Conference on NeuroRehabilitation, pages 546–550. Springer, 2018.
[4] J.C. Arceo, M. Sanchez, V. Estrada-Manzo, and M. Bernal: Convex stability analysis of nonlinear singular systems via linear matrix inequalities, IEEE Transactions on Automatic Control, 2018.
[5] V. Arnez-Paniagua, H. Rifai, Y. Amirat, M. Ghedira, J. M. Gracies, and S. Mohammed: Adaptive control of an actuated ankle foot orthosis for paretic patients, Control Engineering Practice, 90 (2019), 207–220.
[6] E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, S.E. Chiuve, M. Cushman, F.N. Delling, R. Deo, et al.: Heart disease and stroke statistics-2018 update: a report from the American Heart Association, Circulation, 137(12), (2018), e67.
[7] A˙ . Bjorck and V. Pereyra: Solution of vandermonde systems of equations, Mathematics of Computation, 24(112), (1970), 893–903.
[8] D. Brown, B. Boden-Albala, K. Langa, L. Lisabeth, M. Fair, M. Smith, R.L. Sacco, and L. Morgenstern: Projected costs of ischemic stroke in the united states, Neurology, 67(8), (2006) 1390–1395.
[9] G.C. Burdea, D. Cioi, A. Kale,W.E. Janes, S.A.Ross, and J.R. Engsberg: Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy—a case study series, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), (2012), 165–173.
[10] H. Cheng, Y.K. Yiu, and Z. Li: Dynamics and control of redundantly actuated parallel manipulators, IEEE/ASME Transactions on mechatronics, 8(4), (2003), 483–491.
[11] D.M.Dawson, C.T. Abdallah, and F.L. Lewis: Robot manipulator control: theory and practice, CRC Press, 2003.
[12] I. Diaz, J. J. Gil, and E. Sanchez: Lower-limb robotic rehabilitation: literature review and challenges, Journal of Robotics, 2011, Article ID 759764.
[13] A. Dontchev and W. Hager: The euler approximation in state constrained optimal control, Mathematics of Computation, 70(233), (2001), 173–203.
[14] V.L. Feigin, M.H. Forouzanfar, R. Krishnamurthi, G.A. Mensah, M. Connor, D.A. Bennett, A.E. Moran, R.L. Sacco, L. Anderson, T. Truelsen, et al.: Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010, The Lancet, 383(9913), (2014), 245–255.
[15] M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern: Model-based control of fes-induced single joint movements, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(3), (2001), 245–257.
[16] P. Ghosh: Numerical, Symbolic and Statistical Computing for Chemical Engineers using MATLAB, PHI Learning Pvt. Ltd., 2018.
[17] J. Han: From pid to active disturbance rejection control, IEEE transactions on Industrial Electronics, 56(3), (2009), 900–906.
[18] H. Herr: Exoskeletons and orthoses: classification, design challenges and future directions, Journal of Neuroengineering and Rehabilitation, 6(1), (2009), 21.
[19] N. Instruments: NI myRIO-1900 User Guide and Specifications, National Instruments, 11500 North Mopac Expressway, Austin, Texas, 78759–3504, 376047c-01 edition, May 2016.
[20] S. Jezernik, G. Colombo, T. Keller, H. Frueh, and M. Morari: Robotic orthosis lokomat: A rehabilitation and research tool, Neuromodulation: Technology at the neural interface, 6(2), (2003), 108–115.
[21] M. Jochumsen, S. Cremoux, L. Robinault, J. Lauber, J.C. Arceo, M. Navid, R. Nedergaard, U. Rashid, H. Haavik, and I. Niazi: Investigation of optimal afferent feedback modality for inducing neural plasticity with a self-paced brain-computer interface, Sensors, 18(11), (2018), 3761.
[22] M.A. Khosravi and H.D.Taghirad:Robust pid control of fully-constrained cable driven parallel robots, Mechatronics, 24(2), (2014), 87–97.
[23] V. Klee and G. J. Minty: How good is the simplex algorithm, Technical report, Washington Univ Seattle Dept. of Mathematics, 1970.
[24] P. Langhorne, J. Bernhardt, and G. Kwakkel: Stroke rehabilitation, The Lancet, 377(9778), (2011), 1693–1702.
[25] F.L. Lewis:Asurvey of linear singular systems, Circuits, Systems and Signal Processing, 5(1), (1986), 3–36.
[26] O. Linda and M. Manic: Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot, IEEE Transactions on Industrial Informatics, 7(4), (2011), 661–670.
[27] H. Markus: Stroke: causes and clinical features, Medicine, 36(11), (2008), 586–591.
[28] J. Merlet: Parallel robots, volume 128, Springer Science & Business Media, 2006.
[29] M. Motor: ESCON 50/5 DC Servo Controller Hardware Reference, Maxon Motor, Bränigstrasse 220 P.O.Box 263 CH-6072 Sachseln, rel7125 edition, November 2018.
[30] N.S. Nedialkov, J.D. Pryce, and G. Tan: Algorithm 948: Daesa—a matlab tool for structural analysis of differential-algebraic equations: Software, ACM Transactions on Mathematical Software (TOMS), 41(2), (2015), 12.
[31] M. Noel, B. Cantin, S. Lambert, C.M. Gosselin, and L.J. Bouyer: An electrohydraulic actuated ankle foot orthosis to generate force fields and to test proprioceptive reflexes during human walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), (2008), 390–399.
[32] C.C. Pantelides: The consistent initialization of differential-algebraic systems, SIAM Journal on Scientific and Statistical Computing, 9(2), (1998), 213–231.
[33] L. Peng, Z.-G. Hou, and W. Wang: Dynamic modeling and control of a parallel upper-limb rehabilitation robot, In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pages 532–537, 2015.
[34] J.C. Perez-Ibarra and A.A. Siqueira: Comparison of kinematic and emg parameters between unassisted, fixed-and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects, In 2017 International Conference on Rehabilitation Robotics (ICORR), pages 461–466. IEEE, 2017.
[35] N. Petroff, K.D. Reisinger, and P.A. Mason: Fuzzy-control of a hand orthosis for restoring tip pinch, lateral pinch, and cylindrical prehensions to patients with elbow flexion intact, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(2), (2001), 225–231.
[36] Z. Qi, J.E. McInroy, and F. Jafari: Trajectory tracking with parallel robots using low chattering, fuzzy sliding mode controller, Journal of Intelligent and Robotic Systems, 48(3), (2007) 333–356.
[37] P.J. Rabier and W.C. Rheinboldt: Theoretical and numerical analysis of differential-algebraic equations, Elsevier, 2002.
[38] E.J. Rouse, L.J. Hargrove, E.J. Perreault, and T.A. Kuiken: Estimation of human ankle impedance during the stance phase of walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), (2014), 870–878.
[39] B.S. Rupal, S. Rafique, A. Singla, E. Singla, M. Isaksson, and G.S. Virk: Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications, International Journal of Advanced Robotic Systems, 14(6), (2017), 1729881417743554.
[40] A. Sala and C. Arino: Polynomial fuzzy models for nonlinear control: A Taylor series approach, IEEE Transactions on Fuzzy Systems, 17(6), (2009), 1284–1295.
[41] L. F. Shampine, S. Thompson, J. Kierzenka, and G. Byrne: Non-negative solutions of odes, Applied Mathematics and Computation, 170(1), (2005), 556–569.
[42] W.W. Shang, S. Cong, and Y. Ge: Adaptive computed torque control for a parallel manipulator with redundant actuation, Robotica, 30(3), (2012) 457–466.
[43] K.A. Shorter, G.F. Kogler, E. Loth, W.K. Durfee, and E.T. Hsiao- Wecksler: A portable powered ankle-foot orthosis for rehabilitation, Journal of Rehabilitation Research & Development, 48(4), (2011).
[44] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant: Sliding mode control and observation, Springer, 2014.
[45] R.M. Singh, S. Chatterji, and A. Kumar: Trends and challenges in emg based control scheme of exoskeleton robots-a review, Int. J. Sci. Eng. Res., 3(9), (2012), 933–940.
[46] SKF: CAHB-21: Linear Actuator. Installation, operation and maintenance manual, SKF Taiwan Co., Ltd, No. 3, Lane 11, Tzu-Chiang St., Tu-Cheng Industrial District, Taipei, Taiwan, August 2010. [47] Y. Su, B. Duan, and C. Zheng: Nonlinear pid control of a six-dof parallel manipulator, IEEE Proceedings-Control Theory and Applications, 151(1), (2004), 95–102.
[48] B.M. Vinagre, Y.Q. Chen, and I. Petras: Two direct tustin discretization methods for fractional-order differentiator/integrator, Journal of the Franklin Institute, 340(5), (2003), 349–362.
[49] O. Vinogradov: Fundamentals of kinematics and dynamics of machines and mechanisms, CRC Press, 2000. [50] L. Wang, Z. Lu, X. Liu, K. Liu, and D. Zhang: Adaptive control of a parallel robot via backstepping technique, International Journal of Systems, Control and Communications, 1(3), (2009), 312–324.
[51] D.A. Winter: Biomechanics and motor control of human movement, John Wiley & Sons, 2009.
[52] R. Xu, N. Jiang, N. Mrachacz-Kersting, C. Lin, G.A. Prieto, J.C. Mo- reno, J.L. Pons, K. Dremstrup, and D. Farina: A closed-loop brain– computer interface triggering an active ankle–foot orthosis for inducing cortical neural plasticity, IEEE Transactions on Biomedical Engineering, 61(7), (2014), 2092–2101.
[53] J. Yoon, J. Ryu, and K.-B. Lim: Reconfigurable ankle rehabilitation robot for various exercises, Journal of Robotic Systems, 22(S1), (2006), S15–S33.
[54] H. Zhu, J. Doan, C. Stence, G. Lv, T. Elery, and R. Gregg: Design and validation of a torque dense, highly backdrivable powered knee-ankle orthosis, In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 504–510, IEEE, 2017.
Go to article

Authors and Affiliations

Juan Carlos Arceo
1
Jorge Álvarez
2
Carlos Armenta
1
Jimmy Lauber
1
Sylvain Cremoux
3
Emilie Simoneau-Buessinger
1
Miguel Bernal
2

  1. Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France
  2. Sonora Institute of Technology, 5 de Febrero 818 Sur, Ciudad Obregon, Sonora, Mexico
  3. Centre de Recherche Cerveau et Cognition, CNRS UMR 5549, Université de Toulouse, Toulouse 31052, France
Download PDF Download RIS Download Bibtex

Abstract

In this work, continuous third-order sliding mode controllers are presented to control a five degrees-of-freedom (5-DOF) exoskeleton robot. This latter is used in physiotherapy rehabilitation of upper extremities. The aspiration is to assist the movements of patients with severe motor limitations. The control objective is then to design adept controllers to follow desired trajectories smoothly and precisely. Accordingly, it is proposed, in this work, a class of homogeneous algorithms of sliding modes having finite-time convergence properties of the states. They provide continuous control signals and are robust regardless of non-modeled dynamics, uncertainties and external disturbances. A comparative study with a robust finite-time sliding mode controller proposed in literature is performed. Simulations are accomplished to investigate the efficacy of these algorithms and the obtained results are analyzed.
Go to article

Bibliography

[1] N. Rehmat, J. Zuo, W. Meng, Q. Liu, S.Q. Xie, and H. Liang. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. International Journal of Intelligent Robotics and Applications, 2(3):283–295, 2018. doi: 10.1007/s41315-018-0064-8.
[2] A. Demofonti, G. Carpino, L. Zollo, and M.J. Johnson. Affordable robotics for upper limb stroke rehabilitation in developing countries: a systematic review. IEEE Transactions on Medical Robotics and Bionics, 3(1):11–20, 2021. doi: 10.1109/TMRB.2021.3054462.
[3] A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010. doi: 10.1056/NEJMoa0911341.
[4] P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. Journal of NeuroEngineering and Rehabilitation, 6(1):46, 2009. doi: 10.1186/1743-0003-6-46.
[5] A.S. Niyetkaliyev, S. Hussain, M.H. Ghayesh, and G. Alici. Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Transactions on Human-Machine Systems, 47(6):1134–1145, 2017. doi: 10.1109/THMS.2017.2700634.
[6] A. Michnik, J. Brandt, Z. Szczurek, M. Bachorz, Z. Paszenda, R. Michnik, J. Jurkojc, W. Rycerski, and J. Janota. Rehabilitation robot prototypes developed by the ITAM Zabrze. Archive of Mechanical Engineering, 61(3):433–444, 2014. doi: 10.2478/meceng-2014-0024.
[7] A. Gmerek. Mechanical and hardware architecture of the semi-exoskeleton arm rehabilitation robot. Archive of Mechanical Engineering, 60(4):557-574, 2013. doi: 10.2478/meceng-2013-0034.
[8] I. Büsching, A. Sehle, J. Stürner, and J. Liepert. Using an upper extremity exoskeleton for semi-autonomous exercise during inpatient neurological rehabilitation – a pilot study. Journal of NeuroEngineering and Rehabilitation, 15(1):72, 2018. doi: 10.1186/s12984-018-0415-6.
[9] R. Fellag, T. Benyahia, M. Drias, M. Guiatni, and M. Hamerlain. Sliding mode control of a 5 dofs upper limb exoskeleton robot. In 2 017 5th International Conference on Electrical Engineering – Boumerdes (ICEE-B), pages 1–6, Boumerdes, Algeria, 29-31 Oct. 2017. doi: 10.1109/ICEE-B.2017.8192098.
[10] M.H. Rahman, M. Saad, J-P. Kenné, and P.S. Archambault. Control of an exoskeleton robot arm with sliding mode exponential reaching law. International Journal of Control, Automation and Systems, 11(1):92–104, 2013. doi: 10.1007/s12555-011-0135-1.
[11] T. Madani, B Daachi, and K. Djouani. Non-singular terminal sliding mode controller: Application to an actuated exoskeleton. Mechatronics, 33:136–145, 2016. doi: 10.1016/j.mechatronics.2015.10.012.
[12] A. Abooee, M.M. Arefi, F. Sedghi, and V. Abootalebi. Robust nonlinear control schemes for finite-time tracking objective of a 5-DOF robotic exoskeleton. International Journal of Control, 92(9):2178–2193, 2019. doi: 10.1080/00207179.2018.1430379.
[13] A. Riani, T. Madani, A. Benallegue, and K. Djouani. Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Engineering Practice, 75:108–117, 2018. doi: 10.1016/j.conengprac.2018.02.013.
[14] A. Jebri, T. Madani, and K. Djouani. Adaptive continuous integral-sliding-mode controller for wearable robots: Application to an upper limb exoskeleton. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pages 766–771, Toronto, Canada, 24-28 June 2019. doi: 10.1109/ICORR.2019.8779431.
[15] C.A. Zamora, J.A. Moreno, and S. Kamal. Control integral discontinuo para sistemas mecánicos. In Congreso Nacional de Control Automático 2013, pages 11–16. Ensenada, Mexico, Oct. 16- 18, 2013. (in Spanish).
[16] J.A. Moreno. Discontinuous integral control for systems with relative degree two. In: J. Clempner, W.Yu (eds.), New Perspectives and Applications of Modern Control Theory, pages 187–218. Springer, 2018. doi: 10.1007/978-3-319-62464-8_8.
[17] S. Kamal, J.A. Moreno, A. Chalanga, B. Bandyopadhyay, and L.M. Fridman. Continuous terminal sliding-mode controller. Automatica, 69:308–314, 2016. doi: 10.1016/j.automatica.2016.02.001.
[18] S. Kamal, A. Chalanga, J.A. Moreno, L. Fridman, and B. Bandyopadhyay. Higher order supertwisting algorithm. In: 2014 13th International Workshop on Variable Structure Systems (VSS), pages 1–5, Nantes, France, 29 June – 2 July 2014. doi: 10.1109/VSS.2014.6881129.
[19] A. Levant. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6):1247–1263, 1993. doi: 10.1080/00207179308923053.
[20] J.A. Moreno and M. Osorio. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4):1035–1040, 2012. doi: 10.1109/TAC.2012.2186179.
[21] J.A. Moreno and M. Osorio. A Lyapunov approach to second-order sliding mode controllers and observers. In: 2008 47th IEEE Conference on Decision and Control, pages 2856–2861, Cancun, Mexico, 9-11 December 2008. doi: 10.1109/CDC.2008.4739356.
[22] R. Fellag, M. Hamerlain, S. Laghrouche, M. Guiatni, and N. Achour. Homogeneous finite time higher order sliding mode control applied to an upper limb exoskeleton robot. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), pages 355–360, Paris, France, 23-26 April 2019. doi: 10.1109/CoDIT.2019.8820676.
[23] H-B. Kang and J-H. Wang. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety. ISA Transactions, 52(6):844–852, 2013. doi: 10.1016/j.isatra.2013.05.003.
[24] H-B. Kang and J-H. Wang. Adaptive robust control of 5 DOF upper-limb exoskeleton robot. International Journal of Control, Automation and Systems, 13(3):733–741, 2015. doi: 10.1007/s12555-013-0389-x.
[25] B.O. Mushage, J.C. Chedjou, and K.Kyamakya. Fuzzy neural network and observer-based faulttolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dynamics, 87(3):2021–2037, 2017. doi: 10.1007/s11071-016-3173-7.
[26] M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 2008.
[27] A. Levant. Homogeneity approach to high-order sliding mode design. Automatica, 41(5):823–830, 2005. doi: 10.1016/j.automatica.2004.11.029.
[28] S. Kamal, A. Chalanga, V. Thorat, and B. Bandyopadhyay. A new family of continuous higher order sliding mode algorithm. In: 2015 10th Asian Control Conference (ASCC), pages 1–6, Kota Kinabalu, Malaysia, 31 May – 3 June 2015. doi: 10.1109/ASCC.2015.7244591.
[29] S.P. Bhat and D.S. Bernstein. Finite-time stability of continuous autonomous systems. SIAM Journal of Control and Optimization, 38(3):751–766, 2000. doi: 10.1137/S0363012997321358.
[30] J.J. Craig. Introduction to Robotics: Mechanics and Control, 3rd ed. Pearson Education International, 2009.
[31] J-H.Wang, Z-B. Jiang, X-F.Wang, Y. Zhang, and D. Guo. Kinematics simulation of upper limb rehabilitant robot based on virtual reality techniques. In: 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pages 6681–6683, Deng Feng, China, 8-10 August 2011. doi: 10.1109/AIMSEC.2011.6009874.
Go to article

Authors and Affiliations

Ratiba Fellag
1 3
ORCID: ORCID
Mohamed Guiatni
2
ORCID: ORCID
Mustapha Hamerlain
1
Noura Achour
3

  1. Centre de Développement des Technologies Avancées, Alger, Algérie.
  2. Laboratoire LCS^2, Ecole Militaire Polytechnique, Alger, Algérie.
  3. Laboratoire LRPE, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algérie.
Download PDF Download RIS Download Bibtex

Abstract

This article presents a critical interpretation of Barbara Klicka’s Zdrój [ The Spa] (2019) within the framework of the Spatial Turn. The analysis examines the relationship between the subject and the medical spaces with the help of concepts like heterotopia, atopia, psychotopography as well as the author’s own concept of topopathography. The aim is to explore the impact of the designated sanatorium space on the patient’s identity.
Go to article

Authors and Affiliations

Wiktoria Kulak
1
ORCID: ORCID

  1. Wydział Polonistyki UJ

This page uses 'cookies'. Learn more