Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper is devoted to the application of ultrasonic wave propagation phenomena for the diagnostics of prestressed, concrete, bridge T-beams. A multi-point damage detection system is studied with use of numerically obtained data. The system is designed to detect the presence of the material discontinuities as well as their location.

Go to article

Authors and Affiliations

A. Mariak
K. Wilde
Download PDF Download RIS Download Bibtex

Abstract

The essential problem in the process of technological prestressing is the imperfection of web sheets. These elements made of relatively large sheets (about 2 meters high) show significant imperfections of the shape and flatness. Initial deflections have the value equal several times the web thickness, but they tend to grow in the process of straightening. Such a case can particularly occur when stresses that compress the shield of the web sheet between diaphragms are close to the critical buckling stress. Experiments were carried out in a real object. The box girder having I I .Om span and 1.8 m in its height was prestressed by welding the straps on the bottom flange and on the web in the vicinity of the bottom llange. Results of performed investigations are the subject of the paper.
Go to article

Authors and Affiliations

Artur Blum
Tomasz Kubiak
ORCID: ORCID
Tadeusz Niezgodziński
Zbigniew Orłoś
Jacek Woliński
Download PDF Download RIS Download Bibtex

Abstract

The paper considers parametric optimization problems for the steel bar structures formulated as nonlinear programming ones with variable unknown cross-sectional sizes of the structural members, as well as initial prestressing forces introduced into the specified redundant members of the structure. The system of constraints covers load-bearing capacity constraints for all the design sections of the structural members subjected to all the design load combinations at ultimate limit state, as well as displacement constraints for the specified nodes of the bar system, subjected to all design load combinations at serviceability limit state. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the parametric optimization problem. A numerical technique to determine the optimal number of the redundant members to introduce the initial prestressing forces has been offered for high-order statically indeterminate bar structures. It reduces the dimension for the design variable vector of unknown initial prestressing forces for considered optimization problems.

Go to article

Authors and Affiliations

Vitalina Yurchenko
Ivan Peleshko
Download PDF Download RIS Download Bibtex

Abstract

The study analysed a bisymmetric closely-spaced built-up member, pin-supported at both ends. Itwas bipolarly pre-stressed with a displacement (BPCSBM), and loaded with an axial compressive force. Maximum internal gap between the chords was assumed in the section, in which during the stability failure in a classic closely-spaced member, the largest lateral displacements between nodes would potentially occur. As regards the BPCSBM chosen for analysis, the issues of the buckling resistance in the presence of compressive axial load were solved using the energy method, in which the functional minimisation was performed in accordance with the Rayleigh–Ritz algorithm. The problem of BPCSBM stability was also solved using FEM. A spatial shell model was developed. The stability analysis was performed. The analysis resulted in obtaining the buckling load and the member buckling modes. A general conclusion was formulated based on the results obtained: bipolar pre-stressing leads to an increase in buckling resistance of closely-spaced members.
Go to article

Authors and Affiliations

Monika Siedlecka
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiaclecia PP 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, based on the feasible method and sensors for the full-scale prestressed monitor, the novel optical fiber sensors and the traditional monitoring sensors will be set up into two prestressed concrete beams with the same geometrical dimensions, material properties, and construction conditions, etc. to investigate the working state of the novel sensors and obtain the evolution law of prestress loss of the prestressed feature component under the static load. The results show that the evolution law of prestress loss of the loaded beam under the condition of no damage state and initial crack is the same as the non-loaded one; however, the prestress loss increases with the increase of time under the situation with the limit crack. The total loss of the prestressed beam with the limit crack is 36.4% without damage. The prestress loss of the prestressed beam under the static load increase with the development of the crack (injury).
Go to article

Authors and Affiliations

Jinbo Wang
1
ORCID: ORCID
Guodong Li
1
ORCID: ORCID
Chunguang Lan
2
ORCID: ORCID
Nan Guo
1
ORCID: ORCID

  1. Northeast Forestry University, School of Civil Engineering, Al. Harbin City, Heilongjiang Province, China
  2. Beijing Building Construction Research Institute Co., Ltd, A1. Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

Based on the electromechanical equivalent circuit theory, equations related to the resonance frequency and the magnifying coefficient of a quarter-wave vibrator and a quarter-wave taper transition horn were deduced, respectively. A series of 3D models of ultrasonic composite transducers with various conical section length was also established. To reveal the influences of the conical section length and the prestressed bolt on the dynamic characteristics (resonance frequency, amplitude, displacement node, and the maximum equivalent stress) of the models and the design accuracy, finite element (FE) analyses were carried out. The results show that the addition of prestressed bolt increases the resonance frequency and causes the displacement node on the center axis to move towards the small cylindrical section. As the conical section length rises, the increment of resonance frequency reduces and tends to a stable value of 360 Hz while the displacement of the node on the center axis becomes lager and gradually approaches 1.5 mm. Furthermore, the amplitude of the output terminal is stable at 16.18 μm under 220 V peak-topeak (77.8 VRMS) sinusoidal potential excitation. After that, a prototype was fabricated and validated experiments were conducted. The experimental results are consistent with that of theory and simulations. It provides theoretical basis for the design and optimization of small-size, large-amplitude, and high-power composite transducers.

Go to article

Authors and Affiliations

Tao Chen
Hongbo Lil
Qihan Wang
Junpeng Ye
Download PDF Download RIS Download Bibtex

Abstract

Fiber reinforced polymers (FRPs) due to their specific high-strength properties become more and more popular and replace traditional structural materials like conventional steel in prestressed concrete structures. FRP reinforced structures are relatively new when compared to structures prestressed with steel tendons. For that reason only several studies and applications of pre-tensioned FRP reinforcement have been conducted until now. Moreover, researchers only considered short-term behavior of FRP reinforced concrete members. The precise information about long-term behavior of FRP reinforcement is necessary to evaluate the prestress losses, which should be taken into account in the design of prestressed RC structures. One of the most important factor influencing long term behavior of FRP reinforcement is stress relaxation. The overview of experimental tests results described in the available literature considering the prestress losses obtained in FRP prestressed concrete members is presented herein.

Go to article

Authors and Affiliations

M. Przygocka
R. Kotynia
Download PDF Download RIS Download Bibtex

Abstract

The demands placed on industry today are increasingly challenging and demanding. To meet these challenges, designers, contractors, and technology managers are constantly looking for effective solutions. Industry has always thrived on new technologies and innovations to achieve better results, so it is critical to undertake new developmental research to simulate and test new technological proposals. In this paper, the author describes a new direction in civil engineering technology that interdisciplinary couples solutions known to the bridge industry with geotechnical aspects in the technology space and the possibility of implementation in the construction industry. The author proposes the application of prestressing together with technological aspects of this solution to diaphragm walls, which are not only a temporary housing but also the foundations of a new investment. Thanks to this solution it is possible, among other things, to resign from one level of diaphragm expansion of diaphragm walls, which translates into cost optimization. It is an innovative approach to designing and most of all constructing the load-bearing structure, which directly influences the technological optimization of selected issues of completing the underground parts of the investment. Additionally, the presented solution contributes to the balanced execution of the investment by reducing the use of materials and construction equipment. The author discusses technological, execution and implementation problems related to the application of innovative solutions in construction companies together with examples of cost optimization. The author presents the results of conducted research with application of the proposed solution in the implementation of the underground commercial investment.
Go to article

Authors and Affiliations

Mateusz Frydrych
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The roadway surrounding rock is often subjected to severe damage under dynamic loading at greater mining depths. To study the dynamic response of prestressed anchors, the damage characteristics of anchor solids with different prestresses and number of impacts under dynamic and static loads were investigated by improving the Hopkinson bar equipment. The effect of prestress on stress wave transmission was obtained, and the laws and reasons for axial force loss under static and dynamic loads were analyzed. The damage characteristics of anchor solids were determined experimentally. The results show that with an increase in prestress from 15 to 30 MPa, the peak value of the stress wave gradually increases and the decay rate gradually decreases. Shear damage occurred at the impact end of the specimen, combined tension and shear damage occurred at the free end, and fracture occurred in the middle. With an increase in the number of impacts, the damage to the anchor solid specimens gradually increased, and the prestressing force gradually decreased. After impact, the axial force of the various prestressed anchor solid specimens gradually increased; however, the anchor bar with a 17 MPa prestressing force had the slowest rate of axial force loss during impact, withstanding a greater number of impacts. In on-site applications, after three explosions, the displacement on both sides of the tunnel supported by 17 MPa prestressed anchor rods could be controlled within 0.3 m, with an average displacement of 206, 240, and 283 mm, respectively, increasing by 16.5% and 17.9%. This study, based on theoretical analysis and laboratory research combined with field application provides guidance for the anchor support of a dynamic loading tunnel.
Go to article

Authors and Affiliations

Zhiqiang Yin
1
ORCID: ORCID
Chao Wang
1
ORCID: ORCID
Zhiyu Chen
2
ORCID: ORCID
Youxun Cao
3
ORCID: ORCID
Tao Yang
3
ORCID: ORCID
Deren Chen
4
ORCID: ORCID
Dengke Wang
4
ORCID: ORCID

  1. Anhui University of Science and Technology, School of Mining Engineering, Anhui ProvinceCoal Mine Safety Mining Equipment Manufacturing Innovat ion Center, Huainan 232001,China
  2. Industrial and Energy Administrat ion of Xishui County, Zunyi 564699, China
  3. Great Wall No.6 Mining Co. LTD, Etuokeqianqi 016200, China
  4. Shandong Huakun Geological Engineering Co. LTD, Taian 271413, China
Download PDF Download RIS Download Bibtex

Abstract

Static analyses of bridge structures are currently performed using the finite element method (FEM). Depending on the geometry of the structure and the technically required accuracy of calculations, different levels of discretization of these structures are used in their design. In the design process, beam grillage models (denoted e1, p2), shell models (denoted e2, p2) or shell-beam models (denoted e1+ e2, p3) are often used. Solid models (denoted e3+ p3) are mostly used in advanced analyses, having frequently a scientific character. It is shown that there is an impact of the applied types of the numerical model (i.e., degree of complexity, degree of discretization, accuracy of the model) of the road bridge on the calculated values of bending moments and displacements, which indirectly affects the global safety coefficient of the designed bridge structure. The main purpose of the calculations is to examine the discrepancies of analyzed internal forces and displacements depending of the type of numerical model used. The calculated values are referred to the results taken from the field tests of the existing bridge denoted MS 03, which is a continuous beam structure with the three spans 37:50 + 46:75 + 37:50 m made of prestressed concrete and with variable beam depth. On the basis of numerical simulations, the paper provides author’s recommendations for computer modeling of similar bridges.
Go to article

Authors and Affiliations

Radosław Oleszek
1
ORCID: ORCID
Wojciech Radomski
1
ORCID: ORCID
Krzysztof Nowak
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The list of potential hazards related to concrete elements and structures prestressed with the use of unbonded tendons, including the flat slabs, is long and fairly well recognized. In addition to the standard accidental events this list includes: mishandling during construction, small fire, local corrosion, loss of bond at the anchorage, second order effects, brittle fracture of elements, etc. Despite of these hazards related to unbonded post-tensioning, this type of structures are extensively promoted and used in practice thanks to the possibility of the large span floors and innovative character of this technology. The paper presents a proposal for the application of risk analysis to assess the robustness of structures with flat slabs prestressed with unbonded tendons. The adoption of variables that determine risk and robustness as fuzzy numbers assigned to linguistic variables are proposed. Numerical example is presented to demonstrate risk and robustness assessment of building structure with unbonded posttensioned slabs supported directly on columns.
Go to article

Bibliography

[1] F. Knoll, T. Vogel, Design for Robustness. Structural Engineering Documents No11. Zurich: IABSE, 2009, ISBN 978-3-85748-120-8.
[2] Santa Fe Institute, RS-2001-009, Working definitions of robustness, 2001. [Online].Available: http://discuss.santafe.edu/robustness/sories.
[3] E.A.P. Liberati, C.G. Nogueira, E.D. Leonel, “Nonlinear formulation based on FEM, Mazars damage criterion and Fick’s law applied to failure assessment of reinforced concrete structures subjected to chloride ingress and reinforcements corrosion”, Engineering Failure Analysis, 2014, vol. 46, pp. 247–268, DOI: 10.1016/j.engfailanal.2014.09.006.
[4] N.C. Lind, “Measures of vulnerability and damage tolerance”, Reliability Engineering & System Safety, 1995, vol. 48, no. 1, pp. 1–6.
[5] D.M. Frangopol, J.P. Curly, “Effects of damage and redundancy on structural realibility”, Journal of Structural Engineering, 1987, vol. 113, no. 7, pp. 1533–1549.
[6] S. Woo, D.L. O’Neal, “Reliability design and case study of mechanical system like a hinge kit system in refrigerator subjected to repetitive stresses”, Engineering Failure Analysis, 2019, vol. 99, pp. 319–329, DOI: 10.1016/j.engfailanal.2019.02.015.
[7] I.W. Baker, M. Schubert, M.H. Faber, “On assessment of robustness”, Journal of Structural Safety, 2008, vol. 30, pp. 253–267.
[8] ISO Standard 19902, Petroleum and natural gas industries – Fixed steel offshore structures, 2008.
[9] T. Vrouwenvelder, et al., Eds. Risk assessment and risk communication in civil engineering. CIB Report, 259. Rotterdam: CIB General Secretariat, 2001.
[10] EN 1991-1-7, Eurocode 1 – Actions on structures – Part 1–7: General actions – Accidental actions.
[11] A. del Caño, M. Pilar de la Cruz, D. Gómez, M. Pérez, “Fuzzy method for analysing uncertainty in the sustainable design of concrete structures”, Journal of Civil Engineering and Management, 2016, vol. 22, no. 7, pp. 924–935, DOI: 10.3846/13923730.2014.928361.
[12] S. Boral, I. Howard, S.K. Chaturvedi, K. Mc Kee, V.N.A. Naikan, “An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA”, Engineering Failure Analysis, 2020, vol. 108, ID Article: 104195, DOI: 10.1016/j.engfailanal.2019.104195.
[13] Sz.Wolinski, “Defining of the structural robustness”, Bulletin of the Polish Academy of Sciences, Technical Sciences, 2013, vol. 61, no. 1, pp. 137–144, DOI: 10.2478/bpasts-2013-0012.
[14] H. Bandamer, S. Gottwald, Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications. Chichester: J.Wiley & Sons, 1995.
[15] EN 1990:2004 Eurocode- Basis of structural design.
[16] G. Harding, J. Carpenter, “Disproportional collapse of Class 3 buildings: the use of risk assessment”, The Structural Engineering, 2009, vol. 87, no. 15-16, pp. 29–34.
[17] Bai Yu, Hou Jian, Huang Yuan, “Progressive collapse analysis and structural robustness of steel-framed modular buildings”, Engineering Failure Analysis, 2019, vol. 104, pp. 643–656, DOI: 10.1016/j.engfailanal. 2019.06.044.
[18] G. Milani, M. Valente, “Comparative pushover and limit analyses on seven masonry churches damaged by the 2012 Emilia-Romagna (Italy) seismic events: Possibilities of non-linear finite elements compared with pre-assigned failure mechanisms”, Engineering Failure Analysis, 2015, vol. 47, Part A, pp. 129–161, DOI: 10.1016/j.engfailanal.2014.09.016.
[19] Sz. Wolinski, T. Pytlowany, “Analysis of the state of prestressed structure using data collection simulation technique”, MATEC Web of Conferences, 2019, vol. 262, DOI: 10.1051/matecconf/201926208006.
[20] Sz. Wolinski, T. Pytlowany, “Risk and robustness assessment for floor slabs prestressed with unbonded tendons”, in Konstrukcje betonowe i stalowe, (in Polish). Bydgoszcz: University of Science & Technology, 2015, pp. 137–144.
[21] Sz. Wolinski, “Robustness and vulnerability of slab structures”, Procedia Engineering, 2017, vol. 193, pp. 88–95, DOI: 10.1016/j.proeng.2017.06.190.
[22] JCSS: Probabilistic Model Code, The Joint Committee on Structural Safety. [Online]. Available: https://www.jcss-lc.org/jcss-probabilistic-model-code/.
[23] E.A.P. Liberati, C.G. Nogueira, E.D. Leonel, “Nonlinear formulation based on FEM, Mazars damage criterion and Fick’s law applied to failure assessment of reinforced concrete structures subjected to chloride ingress and reinforcements corrosion”, Engineering Failure Analysis, 2014, vol. 46, pp. 247–268, DOI: 10.1016/j.engfailanal.2014.09.006.
[24] B. Rodowitz, M. Schubert, M. Faber Havbro, “Robustness of Externally and Internaly Post Tensioned Bridges”, Beton und Stahlbetonbau, 2008, vol. 103, pp. 16–22, DOI: 10.1002/best.200810111.
[25] B. Rodowitz, Robustheit von Balkenbrucker mit externer und interner Vorspannung. Institut fur Massivbau und Baustofftechnologie, Abtailung Massivebau. Karlsruhe: Universitat Karlsruhe, 2007 (in German).
[26] A. Setareh, H. Saffari, J. Mashhadi, “Assessment of dynamic increase factor for progressive collapse analysis of RC structures”, Engineering Failure Analysis, 2018, vol. 84, pp. 300–310, DOI: 10.1016/j.engfailanal.2017.11.011.
[27] I. Skrzypczak, L. Buda–Ozóg, T. Pytlowany, “Fuzzy method of conformity control for compressive strength of concrete on the basis of computational numerical analysis”, Meccanica, 2016, vol. 51, no. 2, pp. 383–389, DOI: 10.1007/s11012-015-0291-0.
[28] Sz. Wolinski, T. Pytlowany, “Parametric Analysis of the Sensitivity of a Prestressed Concrete Beam Using the DOE Simulation Technique”, Archives of Civil Engineering, 2019, vol. 65, no. 4, pp. 97–112, DOI: 10.2478/ace-2019-0049.
Go to article

Authors and Affiliations

Szczepan Woliński
1
ORCID: ORCID
Tomasz Pytlowany
2
ORCID: ORCID

  1. Rzeszów University of Technology, The Faculty of Civil and Environmental Engineering and Architecture, Powstanców Warszawy 12, 35-084 Rzeszów, Poland
  2. Carpathian State College in Krosno, Politechnik Institutution, Dmochowskiego 12, 38-400 Krosno, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is an analysis of the influence of circumferential prestressing on the interaction of cylindrical silos and tanks with the subsoil. The behaviour of the shell structures of RC and PC cylindrical silos or tanks (with circumferential pre-tensioning), and particularly of the ground slab interacting with subsoil, depends largely on the function graphs of the subsoil reactions on the foundation surface. Distributions of the subbase reactions on the ground slab in such structures as silos and tanks have a significant impact on the behaviour of not only the slab itself, but also the interacting shell structure. An analysis of these structures with walls fixed in a circular ground slab and foundation ring was carried out taking into consideration the elastic half-space model using the Gorbunov-Posadov approach and the two-parameter Winkler model. In the computational examples of RC and PC silos and tanks with walls fixed in the circular ground slab or foundation ring, the eventual effects of prestressing obtained as a result of the superposition of internal forces were examined. Although the results for both subsoil models proved to be divergent, the conclusions that follow are fairly important for the engineering practice.

Go to article

Authors and Affiliations

Paweł Marek Lewiński
Download PDF Download RIS Download Bibtex

Abstract

Prestressed anchor cables are active reinforcement to improve slope stability. However, the anchoring is not a permanent guarantee of stability, and the slope retains a potential risk of instability. From the perspective of the internal force of anchor cables, a new early warning method for the safety of the slope is provided, and a slope analysis model is established. With the increase in the strength reduction factor, the internal force increment curves of anchor cables under different prestresses are obtained. The point corresponding to strength reduction factors λ1 and λ2 represents a warning point. Key conclusions are drawn as follows: (1) The internal force of an anchor cable can be used to judge the stability of the slope strengthened by a prestressed anchor cable. (2) A warning index based on the internal force increment ratio of anchor cables is established. (3) The internal force increment ratio of anchor cables eliminates the influence of the initial prestress and is convenient for engineering applications.
Go to article

Authors and Affiliations

Jincai Feng
Jiaxin Chen
Jian Li
Yu Zhang
ORCID: ORCID
Jianhua Guo
Hongyong Qiu
Download PDF Download RIS Download Bibtex

Abstract

In the structural reinforcement of a high-rise residential building in Changzhou city, Jiangsu province, China, the technology of prestressed steel bar strengthening shear wall, which was initiated in China, was applied. Combined with the engineering quality inspection report, the project characteristics and the requirements of the construction party, various methods, such as increasing cross-section reinforcement method and staged replacement concrete reinforcement method, were comprehensively used to treat and reinforce the structures with different quality problems and different parts. In general, the stress and strain of the newly added part always lags behind the stress and strain of the original structure. This will cause the stress of the original structure is too high and the deformation is large, while the stress of the new part is still at a low level, which cannot fully play its role and its due reinforcement effect. Prestressed steel bar reinforced shear wall technology, through the prestressed steel bar on the prestressed steel bar, which is a good solution to this problem, avoid the phenomenon of stress lag, and ultimately not only shorten the construction period of reinforcement, but also ensure the quality of reinforcement and user use area, successfully passed the reinforcement special acceptance. The monitoring data also proved that the reinforcement measures adopted are safe, reliable and economical. This paper can provide reference for the effective development of similar reinforcement projects.
Go to article

Authors and Affiliations

Cheng Heping
1
ORCID: ORCID
Yao Wenchi
2
ORCID: ORCID

  1. Prof., Changzhou Vocational Institute of Engineering, School of Civil Engineering, Changzhou, Jiangsu, 213164, China
  2. Eng., Jiangsu Digital Construction Engineering Research Center, Changzhou, Jiangsu, 213164, China
Download PDF Download RIS Download Bibtex

Abstract

This paper reports an experimental on the flexural performance of prestressed concrete-encased high-strength steel beams (PCEHSSBs). To study the applicability of high-strength steel (HSS) in prestressed concrete-encased steel beams (PCESBs), one simply supported prestressed concrete-encased ordinarystrength steel beam (PCEOSSB) and eight simply supported PCEHSSBs were tested under a four-point bending load. The influence of steel strength grade, I-steel ratio, reinforcement ratio and stirrup ratio on the flexural performance of such members was investigated. The test results show that increasing the I-steel grade and I-steel ratio can significantly improve the bearing capacity of PCESB. Increasing the compressive reinforcement ratio of PCEHSSB can effectively improve its bearing capacity and ductility properties, making full use of the performance of HSS in composite beams. Increasing the hoop ratio has a small improvement on the load capacity of the test beams; setting up shear connectors can improve the ductile properties of the specimens although it does not lead to a significant increase in the load capacity of the combined beams. Then, combined with the test data, the comprehensive reinforcement index considering the location of reinforcement was proposed to evaluate the crack resistance of specimens. The relationship between the comprehensive reinforcement index and the crack resistance of specimens was given.
Go to article

Authors and Affiliations

Jun Wang
1
ORCID: ORCID
Yurong Jiao
1
ORCID: ORCID
Menglin Cui
1
ORCID: ORCID
Wendong Yang
1
ORCID: ORCID
Xueqi Fang
1
ORCID: ORCID
Jun Yan
1
ORCID: ORCID

  1. Northeast Forestry University, Faculty of Civil Engineering, Harbin 150000, China

This page uses 'cookies'. Learn more