@ARTICLE{Oleszek_Radosław_Influence_2024, author={Oleszek, Radosław and Radomski, Wojciech and Nowak, Krzysztof}, volume={vol. 70}, number={No 1}, journal={Archives of Civil Engineering}, pages={153-165}, howpublished={online}, year={2024}, publisher={WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES}, abstract={Static analyses of bridge structures are currently performed using the finite element method (FEM). Depending on the geometry of the structure and the technically required accuracy of calculations, different levels of discretization of these structures are used in their design. In the design process, beam grillage models (denoted e1, p2), shell models (denoted e2, p2) or shell-beam models (denoted e1+ e2, p3) are often used. Solid models (denoted e3+ p3) are mostly used in advanced analyses, having frequently a scientific character. It is shown that there is an impact of the applied types of the numerical model (i.e., degree of complexity, degree of discretization, accuracy of the model) of the road bridge on the calculated values of bending moments and displacements, which indirectly affects the global safety coefficient of the designed bridge structure. The main purpose of the calculations is to examine the discrepancies of analyzed internal forces and displacements depending of the type of numerical model used. The calculated values are referred to the results taken from the field tests of the existing bridge denoted MS 03, which is a continuous beam structure with the three spans 37:50 + 46:75 + 37:50 m made of prestressed concrete and with variable beam depth. On the basis of numerical simulations, the paper provides author’s recommendations for computer modeling of similar bridges.}, type={Article}, title={Influence of the type of numerical model a prestressed concrete bridge on the determination of its internal forces and displacements}, URL={http://www.czasopisma.pan.pl/Content/130766/ACE_2024_01_09.pdf}, doi={10.24425/ace.2024.148905}, keywords={numerical models, prestressed concrete bridges, computer analysis of superstructure, transverse distribution of load}, }