Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Today’s electricity management mainly focuses on smart grid implementation for better power utilization. Supply-demand balancing, and high operating costs are still considered the most challenging factors in the smart grid. To overcome this drawback, a Markov fuzzy real-time demand-side manager (MARKOV FRDSM) is proposed to reduce the operating cost of the smart grid system and maintain a supply-demand balance in an uncertain environment. In addition, a non-linear model predictive controller (NMPC) is designed to give a global solution to the non-linear optimization problem with real-time requirements based on the uncertainties over the forecasted load demands and current load status. The proposed MARKOV FRDSM provides a faster scale power allocation concerning fuzzy optimization and deals with uncertainties and imprecision. The implemented results show the proposed MARKOV FRDSM model reduces the cost of operation of the microgrid by 1.95%, 1.16%, and 1.09% than the existing method such as differential evolution and real coded genetic algorithm and maintains the supply-demand balance in the microgrid.
Go to article

Authors and Affiliations

G. K. Jabash Samuel
1
ORCID: ORCID
M. S. Sivagama Sundari
2
R. Bhavani
3
A. Jasmine Gnanamalar
4

  1. Department of Electrical and Electronics Engineering, Rohini College of Engineering and Technology, Kanyakumari, India
  2. Department of Electrical and Electronics Engineering, Amrita College of Engineering and Technology, Nagercoil, India
  3. Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi-626004, India
  4. Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Anna University, India
Download PDF Download RIS Download Bibtex

Abstract

Proper design of power installations with the participation of power cables buried in homogeneous and thermally well-conductive ground does not constitute a major problem. The situation changes when the ground is non-homogeneous and thermally low-conductive. In such a situation, a thermal backfill near the cables is commonly used. The optimization of thermal backfill parameters to achieve the highest possible current-carrying capacity is insufficiently described in the standards. Therefore, numerical calculations based on computational fluid dynamics could prove helpful for designers of power cable lines. This paper studies the influence of dimensions and thermal resistivity of the thermal backfill and thermal resistivity of the native soil on the current-carrying capacity of power cables buried in the ground. Numerical calculations were performed with ANSYS Fluent. As a result of the research, proposals were made on how to determine the current-carrying capacity depending on the dimensions and thermal properties of the backfill. A proprietary mathematical function is presented which makes it possible to calculate the cable current-carrying capacity correction factor when the backfill is used. The research is expected to fill the gap in the current state of knowledge included in the provisions of standards.
Go to article

Authors and Affiliations

Seweryn Szultka
1
ORCID: ORCID
Stanisław Czapp
1
ORCID: ORCID
Adam Tomaszewski
2
ORCID: ORCID

  1. Faculty of Electrical and Control Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  2. Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Along with changes in customer expectations, the process of ordering a house, especially one built with the most modern technology from prefabricated HQ 40-foot shipping containers, should take place in an atmosphere of free-flowing, customer-friendly conversation. Therefore, it is important that the company producing such a solution has a tool supporting such offers and orders when producing personalized solutions. This article provides an original approach to the automatic processing of orders based on an example of orders for residential shipping containers, natural language processing and so-called premises developed. Our solution overcomes the usage of records of the conversations between the customer and the retailer, in order to precisely predict the variant required for the house ordered, also when providing optimal house recommendations and when supporting manufacturers throughout product design and production. The newly proposed approach examines such recorded conversations in the sale of residential shipping containers and the rationale developed, and then offers the automatic placement of an order. Moreover, the practical significance of the solution, thus proposed, was emphasized thanks to verification by a real residential ship container manufacturing company in Poland.
Go to article

Authors and Affiliations

Adam Dudek
1
ORCID: ORCID
Justyna Patalas-Maliszewska
2
ORCID: ORCID
Jacek Frączak
3

  1. University of Applied Sciences in Nysa, Armii Krajowej 7, 48-300 Nysa, Poland
  2. University of Zielona Góra, ul. Licealna 9,65-417 Zielona Góra, Poland
  3. Sanpol Sp. z o.o, Sulechowska 27a, 65-119, Zielona Góra, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose a novel priority-aware solution named bypass to handle high- and low-priority traffic in multi-layer networks. Our approach assumes diversification of elastic optical spectrum to ensure additional resources reserved for emergency situations. When congestion occurs, the solution dynamically provides new paths, allocating a hidden spectrum to offload traffic from the congested links in the IP layer. Resources for a bypass are selected based on traffic priority. High-priority traffic always gets the shortest bypasses in terms of physical distance, which minimizes delay. Bypasses for low-priority traffic can be established if the utilization of the spectrum along the path is below the assumed threshold. The software-defined networking controller ensures the global view of the network and cooperation between IP and elastic optical layers. Simulation results show that the solution successfully reduces the amount of rejected high-priority traffic when compared to regular bypasses and when no bypasses are used. Also, overall bandwidth blocking probability is lower when our priority-aware bypasses are used.
Go to article

Authors and Affiliations

Edyta Biernacka
1
ORCID: ORCID
Piotr Boryło
1
ORCID: ORCID
Piotr Jurkiewicz
1
ORCID: ORCID
Robert Wójcik
1
ORCID: ORCID
Jerzy Domżał
1
ORCID: ORCID

  1. Institute of Telecommunications, AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper three algorithms of motion planning for two-input, one-chained nonholonomic systems are presented. The classical Murray-Sastry algorithm is compared with two original algorithms aimed at optimizing energy of controls. Based on the generalized Campbell- Baker-Hausdorff-Dynkin formula applied to the systems, some observations are made concerning the optimal relationship between amplitudes and phases of harmonic controls. The observations help to optimize a selection of controls and to design new algorithms for planning a sub- optimal trajectory between given boundary configurations. It was also shown that for those particular systems the generalized C-B-H-D formula is valid not only locally (as in a typical case) but also globally. Simulations performed on the five-dimensional chain system facilitate distinguishing the proposed algorithms from the Murray-Sastry algorithm and to illustrate their features. Systems in a chained form are important from a practical point of view as they are canonical for a class of systems transformable into this form. The most prominent among them are mobile robots with or without trailers.
Go to article

Authors and Affiliations

Ignacy Duleba
1
ORCID: ORCID
Iwona Karcz-Duleba
2
ORCID: ORCID

  1. Department of Cybernetics and Robotics
  2. Department of Control Systems and Mechatronics Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Although laser scanning ideas and hardware solutions are well-known to experts in the field, there is still a large area for optimization. Especially, if long-range and high-resolution scanning is considered, the smallest defects in optical quality should be perfected. On the other hand, the simplicity, reliability, and finally the cost of the solution plays an important role, too. In this paper, a very simple but efficient method of optical correction is presented. It is dedicated to laser scanners operating from inside cylindrical glass domes. Such covers normally introduce aberrations into both the laser beam and receiving optics. If these effects are uncorrected, the laser scanner performance is degraded both in terms of angular resolution and maximum range of operation. It may not be critical for short-range scanning applications; however, if more challenging concepts are considered, this issue becomes crucial. The proposed method does not require sophisticated optical solutions based on aspheric or freeform components, which are frequently used for similar purposes in imaging-through-dome correction but is based on a simple cylindrical refractive correction plate.
Go to article

Authors and Affiliations

Jacek Wojtanowski
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The dynamic development of science requires constant improvement of approaches to modeling physical processes and phenomena. Practically all scientific problems can be described by systems of differential equations. Many scientific problems are described by systems of differential equations of a special class, which belong to the group of so-called singularly perturbed differential equations. Mathematical models of processes described by such differential equations contain a small parameter near the highest derivatives, and it was the presence of this small factor that led to the creation of a large mathematical theory. The work proposes a developed algorithm for constructing uniform asymptotics of solutions to systems of singularly perturbed differential equations.
Go to article

Authors and Affiliations

Valentyn Sobchuk
1
ORCID: ORCID
Iryna Zelenska
1
ORCID: ORCID
Oleksandr Laptiev
1
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, Ukraine

Authors and Affiliations

Bogusław Major
1
ORCID: ORCID
Marcin Nabialek
2
ORCID: ORCID
Marek Sroka
3
ORCID: ORCID
Marek Węglowski
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
5
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Kraków, Poland
  2. Czestochowa University of Technology, Częstochowa, Poland
  3. Silesian University of Technology, Gliwice, Poland
  4. Łukasiewicz Research Network – Institute of Welding, Gliwice, Poland
  5. University Malaysia Perlis, Kangar, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

In order to investigate the effect of the milling time on the corrosion resistance of the Mg65Zn30Ca4Pr1 alloy, powders of the alloy were prepared and milled for 13, 20, and 70 hours, respectively. The samples were sintered using spark plasma sintering (SPS) technology at 350◦C and pressure of 50 MPa. The samples were subjected to potentiodynamic immersion tests in Ringer’s solution at 37◦C. The obtained values of Ecorr were –1.36, –1.35, and –1.39 V, with polarization resistance Rp = 144, 189, and 101 Ω for samples milled for 13, 20 and 70 h, respectively. The samples morphology showed cracks and pits, thus signaling pitting corrosion.
Go to article

Authors and Affiliations

Bartłomiej Hrapkowicz
1
ORCID: ORCID
Sabina Lesz
1
ORCID: ORCID
Aleksandra Drygała
1
ORCID: ORCID
Małgorzata Karolus
2
ORCID: ORCID
Klaudiusz Gołombek
3
ORCID: ORCID
Rafał Babilas
1
ORCID: ORCID
Julia Popis
1
ORCID: ORCID
Adrian Gabryś
1
ORCID: ORCID
Katarzyna Młynarek-Żak
1
ORCID: ORCID
Dariusz Garbiec
4

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Institute of Materials Engineering, University of Silesia, ul. Pułku Piechoty 75 1a, 41-500 Chorzow, Poland
  3. Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  4. Łukasiewicz Research Network – Poznan Institute of Technology, ul. Ewarysta Estkowskiego 6, 61-755 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research presented in this paper concerns the influence of the rate of plastic deformation generated directly in the processes of severe plastic deformations on the microstructure and properties of three metals: copper, iron and zinc. The equal channel angular pressing (ECAP) method was used, and it was performed at a low plastic deformation rate of ∼ 0.04 s−1. The high plastic strain rate was obtained using the hydrostatic extrusion (HE) method with the deformation rate at the level of ∼ 170 s−1. For all three tested materials different characteristic effects were demonstrated at the applied deformation rates. The smallest differences in the mechanical properties were observed in copper, despite the dynamic recrystallization processes that occurred in the HE process. In Armco iron samples, dynamic recovery processes in the range of high plastic deformation rates resulted in lower mechanical properties. The most significant effects were obtained for pure zinc, where, regardless of the method used, the microstructure was clearly transformed into bimodal after the ECAP process, and homogenized and refined after the HE process. After the HE process, the material was transformed from a brittle state to a plastic state and the highest mechanical properties were obtained.
Go to article

Authors and Affiliations

Mariusz Kulczyk
1
ORCID: ORCID
Monika Skorupska
1
Jacek Skiba
1
Sylwia Przybysz
1
Julita Smalc-Koziorowska
1

  1. Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The issue of transportation is a particular type of mathematical programming that facilitates searching for and determining an optimal distribution network, considering the set of suppliers and recipients. This paper uses a numerical example to present a solution to a transport problem utilizing classical computation methods, i.e., the northwest corner, the least cost in a matrix, and the VAM approximation method. The objective of the paper was to develop tools in the form of algorithms that would then be implemented in three various computing environments (R, GNU Octave, and Matlab) that allow us to optimize transport costs within an assumed supply network. The model involved determining decision variables and indicating limiting conditions. Furthermore, the authors interpreted and visualized the obtained results. The implementation of the proposed solution enables users to determine an optimal transport plan for individually defined criteria.
Go to article

Authors and Affiliations

Joanna Szkutnik-Rogoż
1
ORCID: ORCID
Jerzy Małachowski
2
ORCID: ORCID

  1. Military University of Technology, Cybernetics Faculty, gen. Kaliskiego 2, 00-908 Warsaw, Poland
  2. Military University of Technology, Faculty of Mechanical Engineering, gen. Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Endurance capability is a key indicator to evaluate the performance of electric vehicles. Improving the energy density of battery packs in a limited space while ensuring the safety of the vehicle is one of the currently used technological solutions. Accordingly, a small space and high energy density battery arrangement scheme is proposed in this paper. The comprehensive performance of two battery packs based on the same volume and different space arrangements is compared. Further, based on the same thermal management system (PCM-fin system), the thermal performance of staggered battery packs with high energy density is numerically simulated with different fin structures, and the optimal fin structure parameters for staggered battery packs at a 3C discharge rate are determined using the entropy weight-TOPSIS method. The result reveals that increasing the contact thickness between the fin and the battery (X) can reduce the maximum temperature, but weaken temperature homogeneity. Moreover, the change of fin width (A) has no significant effect on the heat dissipation performance of the battery pack. Entropy weight-TOPSIS method objectively assigns weights to both maximum temperature (Tmax) and temperature difference (DT) and determines the optimal solution for the cooling system fin parameters. It is found that when X = 0:67 mm, A = 0:6 mm, the staggered battery pack holds the best comprehensive performance.
Go to article

Authors and Affiliations

Chenghui Qiu
1
Chongtian Wu
1
Xiaolu Yuan
1
Linxu Wu
1
Jiaming Yang
1
Hong Shi
1
ORCID: ORCID

  1. College of Energy & Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P.R. China

This page uses 'cookies'. Learn more