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Abstract. The issue of transportation is a particular type of mathematical programming that facilitates searching for and determining an optimal
distribution network, considering the set of suppliers and recipients. This paper uses a numerical example to present a solution to a transport
problem utilizing classical computation methods, i.e., the northwest corner, the least cost in a matrix, and the VAM approximation method. The
objective of the paper was to develop tools in the form of algorithms that would then be implemented in three various computing environments (R,
GNU Octave, and Matlab) that allow us to optimize transport costs within an assumed supply network. The model involved determining decision
variables and indicating limiting conditions. Furthermore, the authors interpreted and visualized the obtained results. The implementation of the
proposed solution enables users to determine an optimal transport plan for individually defined criteria.
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1. INTRODUCTION
Transport is an integral part of the logistics system. The system-
atic expansion of military equipment with vehicles that exhibit
increased load capacity, capable of moving over varying terrain,
as well as the reconstruction and development of the road net-
work clearly indicate the increasing importance of road trans-
port [1]. An innovative optimization method based on objective
functions and design constraints for the optimal formation of
virtual enterprises was described in [2].

A constraint satisfaction problem, the solution of which fa-
cilitates evaluating the behaviours of a system of concurrently
interacting cyclic processes was presented in [3]. The current
military road transport is used to move not only people and
weapons but also all kinds of cargo, over both short and long
distances. In times of peace, military cargo freight using road
transport is characterized by high stability. Better operational
organization of road transport facilitates reducing costs associ-
ated with the operation, better arrangement of the cargo space,
or limiting the number of people required to implement a task.
In turn, during combat operations, intensively volatile tacti-
cal situations mean that the established supply route may be
changed. In military activity, especially when the time to make
a decision is limited, determining an optimal solution requires
organizational effort from commanders. The ability to utilize
economic theories to solve transport problems for individually
defined criteria gains particular importance [4]. The fuel con-
sumption of vehicles powered by internal combustion engines
constitutes an essential issue in forming the development trends

∗∗∗e-mail: jerzy.malachowski@wat.edu.pl

© 2023 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2022-12-01, revised 2023-02-28, initially
accepted for publication 2023-03-22, published in June 2023.

of the automotive industry and is an important factor in the eco-
nomics of transport [5].

The problem of optimizing the delivery time within the as-
sumed distribution network, allowing the company to develop
and optimally plan the transport of goods with a short shelf
life was considered in [6]. A genetic algorithm to find the con-
trol of the reservation limit to minimize maximum regret was
proposed in [7]. A new optimization tool that supports supply
chain management in the multi-criteria aspect using the genetic
algorithm was proposed in [8]. The evaluation of the effective-
ness of supply chain management was conducted based on the
global function of the criterion. Three examples of actions in
favour of transportation issues in a metropolitan area, demon-
strating the functional and strategic role of mobility, were pro-
posed in [9]. A probabilistic approach to determining a modal
split was described in [10]. Analysis with the use of a logis-
tic regression model was conducted for travel within the War-
saw transport system. In the paper, a new method was devel-
oped to find the initial basic feasible solution to the transporta-
tion problem using the arithmetic mean [11]. A new modifica-
tion to Vogel’s approximation method was introduced in [12]
to find an initial feasible basic solution to the transportation
problem. The article [13] proposed a novel Karagul–Sahin ap-
proximation method used. The solutions obtained using the pro-
posed method were as good as the solutions using the VAM
method.

Due to the development of computer technologies and the
growing demand for quantitative IT tools, the market range of
operational test methods available has been significantly ex-
panded over recent years [14–17]. Many tools that facilitate the
use of programming techniques, loops, and the generation of
new user functions are available with the purpose of solving
transport problems [18]. The development of technology and
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the increasing interest in new mathematical computation meth-
ods that facilitate the solution of transport problems affect the
rational management of a modern fleet of means of transport.
The source literature repeatedly addressed problems related to
the reduction of the computational complexity of transporta-
tion algorithms using, e.g., the C++ programming language,
the Matlab environment, the GNU Octave software, or the R
programming language. However, it must be acknowledged that
they require the user to have a thorough knowledge of the func-
tions available and be proficient in their use.

1.1. Application of the C++ programming language
A new heuristic total opportunity-cost method to determine the
basic feasible solution to the transportation problem was pro-
posed in [19]. In [20], the author analyzed several variants of
Vogel’s approximation method, taking into account the concept
of the total opportunity-cost method. Using the C++ program-
ming language Turbo, it was found that the VAM method com-
bined with the total opportunity-cost method results in an opti-
mal or close to optimal solution. Implementation of the C++
programming language was also described in [21]. Computa-
tions show that the Juman & Hoque method in as many as 16
problems considered resulted in a minimum transport cost be-
ing determined. In [22], a transportation problem was solved
using the row minimum method, the least cost in the matrix,
the northwest corner, and the VAM methods. The calculations
were conducted using object-oriented programming. Due to the
need to execute a number of iterations leading to a solution to
the problem in question, the C++ programming language was
used. The practical application of C++ to find the optimal so-
lution using the northwest corner rule, the least cost rule, and
the Vogel approximation method was presented in [23].

1.2. Application of the Matlab environment
Matlab is a commercial programming language, which facili-
tates algorithm implementation, matrix manipulations, user in-
terface creation, function plotting, and interfacing with pro-
grams developed in other languages. There are many solutions
to the transportation problem in the source literature that use
the Matlab environment. The problem of transporting chemical
substances using the northwest corner method was analyzed in
the paper [24]. In [25], the authors proposed a solution based
on Vogel’s approximation method and the modified distribu-
tion method that would facilitate the computation of different
numerical problems. In [26], the validity of the use of Matlab
software was proven not only due to the reduction of time re-
quired to perform the calculations but also due to the high effi-
ciency of the algorithm used. Algorithm descriptions based on
the minimum cost method, the northwest corner method, the
MODI method, and the VAM method were presented in [27].
The proposed approach emphasizes the dominance of computer
programming methods over classical analytical methods. More
and more companies have adopted the cost of logistics distri-
bution as one of the important indicators affecting the devel-
opment of companies [28]. The quantitative analysis, overall
analysis, and individual analysis on the supply characteristics
of 402 suppliers using Matlab software were conducted in [29].

The use of a program written in Matlab proposed in [30] allows
us to effectively manage vehicles and determine an optimal dis-
tribution plan within the supply chain.

1.3. Application of GNU Octave
GNU Octave is a free software suite licensed under the Gen-
eral Public License. The learning curve for GNU Octave is
quite flat owing to its simple and intuitive syntax, which is
largely compatible with Matlab [31]. GNU Octave is a high-
level programming language primarily intended for scientific
computing, generating new user functions, or executing com-
plex numerical computations. The optimal solution to deter-
mine the transportation problem using GNU Octave program-
ming was studied in [32]. The implementation of the proposed
solution shortens the calculation algorithm and allows users to
determine the optimal distribution plan for material resources
for individually determined criteria. The authors of [33] pre-
sented the problem of staff allocation and then solved it using
GNU Octave. The evaluation criterion was the minimization of
worker safety risks. Linear programming is one of the most
widely applied optimization models that involve finding effi-
cient algorithms for an optimal solution. It is possible to use
linear programming for the minimization of production costs,
as well as for the maximization of profits. The application of
GNU Octave software to optimize the cost-benefit criterion in
production processes was presented in the article [34]. Integer
programming using GNU Octave software to solve the com-
plex combinatorial optimization problem was described in [35].
The proposed algorithm facilitated the calculation of feasible
schedules in a brief time and cost-benefit analysis of different
staffing levels. Various stochastic methods for combinatorial
optimization can also be used to support the decision-making
process. Stochastic optimization refers to the maximization or
minimization of the objective function, in the presence of ran-
domness within the search process. The authors of [36] applied
a modified form of the honey bees mating optimization algo-
rithm to design a water distribution network. All computations
have been performed in GNU Octave software.

1.4. Application of R
The R programming language allows one to use programming
techniques, generate new user functions, or perform complex
numerical calculations. In addition, R is a powerful, easy-to-
implement, and open-source programming language orientated
at data science and analysis. An innovative method based on the
particle swarm optimization algorithm was proposed in [37].
The combination of the Markov chain and Bayesian networks
method was used to estimate the probability of risk factors as-
sociated with the investment strategy. The R programming lan-
guage was used to solve the problem. Dynamic languages such
as R can be used to process large data sets. Using the dynamic
language R as an optimization target, the authors of [38] pre-
sented an optimization to reduce the memory consumption of
R programs. An innovative algorithm for finding the least-cost
areal mapping between paths using the R language was de-
scribed in [39]. The least cost subnetwork was searched us-
ing the dynamic programming approach. R has a default-install
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set of functionalities that can be easily expanded by the use
of several thousand packages as well as user-written scripts.
The application of R for the estimation of nonlinear param-
eters and minimization of essentially smooth functions was
discussed in the article [40]. A genetic algorithm to identify
the optimal routes for the pairs of seller-customer in the same
group was included in [41]. The R programming language was
used to test the effectiveness of the proposed algorithm. The
travelling salesman problem is one of the combinatorial opti-
mization problems and has wide application in various fields
of science and technology. In [42] a new algorithm was pro-
posed to solve the problem of travelling salespeople. The vari-
able neighbourhood search algorithm implemented in R and
a stochastic approach to finding the optimal solution were ap-
plied. There are many algorithms discussed in the source liter-
ature that deal with multi-objective optimization, most of them
based on evolutionary techniques. In [43], two analytical ex-
amples selected from the literature were used to access the ro-
bustness of multi-objective optimization frameworks. The ad-
vantage of using a proposed algorithm implemented in the R
language was reducing the computational cost of complex op-
timization tasks.

A conducted source literature review indicates that while the
use of modern IT tools and programming languages that enable
solving transport problems was the subject matter of many stud-
ies, the majority of publications required programming skills,
familiarity with available functions, and proficiency in their ap-
plication. Furthermore, the suggested solution often prevented
one from determining the time required to perform computa-
tions. As a result, the objective characterized by the originality
of this article set by its authors was to develop solutions in the
form of scripts implemented in Matlab (ver. R2020b, 64-bit),
GNU Octave (ver. 3.4.3, 64-bit), and R (ver. 2022.07.0, 64-
bit), which would allow optimizing transport costs within an
assumed supply network. The proposed solutions can be easily
implemented by users who are not fluent in programming tech-
niques since they eliminate the need to apply loops and user-
generated functions. In addition, they not only ensure the deter-
mination of an optimal solution to the problem in question but
also display the total computation time, which can be crucial
when the time to make a decision is limited.

2. MATHEMATICAL MODEL
The optimization problem is also called the mathematical pro-
gramming problem, and it involves finding the best solution in
terms of the adopted decision criterion. The optimization issue
can be reduced to searching for a set of permissible solutions,
for which the function that represents a specific criterion and
is described within this set reaches its extreme. Many linear
programming problems can be solved after they are reduced to
optimization problems. One of them is a transport problem that
involves organizing a distribution network for a certain com-
modity from established suppliers to known recipients. Each of
the recipients places a request and the resources of each supplier
are also known. It is also assumed that supply and demand are
equal. The problem requires determining the number of goods

from each supplier to each recipient to be delivered so that the
total transport cost is as low as possible. The cost of transport-
ing one unit of commodity between suppliers and recipients is
known. The total transport cost is equal to the transport cost for
all routes. The model adopted the following designations:
M ∈ N+ – number of suppliers,
N ∈ N+ – number of recipients,
ai ∈ R+ – resource of the i-th supplier, i = 1, . . . ,M,
b j ∈ R+ – demand of the j-th recipient, j = 1, . . . ,N,
C =

[
ci j

]
M×N , ci j ∈ R+ – transport cost for one unit of the

commodity from the i-th supplier to the j-th recipient,
X =

[
xi j

]
M×N , xi j ∈ R0

+ – number of units to be transported
from the i-th supplier to the j-th recipient,

L ∈ R+ – total transportation cost.
From the perspective of conducted analyses, the mathemat-

ical model that presents the essence of the solved problem is
based on the following equations and assumptions [32]:
a) each supplier sends as many commodities as there are in its

resources
N

∑
j=1

xi j = ai , (1)

b) each recipient receives as many commodities as requested

M

∑
i=1

xi j = b j , (2)

c) demand equals supply

N

∑
i=1

ai =
M

∑
j=1

b j , (3)

d) transport cost for one unit of commodity

L(X ,C) =
M

∑
i=1

N

∑
j=1

xi j ci j , (4)

e) the total commodity transport cost is to be as low as possible

L(X∗) = min
X

L(X). (5)

The transport problem is completely determined by the num-
ber of recipients N and suppliers M. Please note that the number
of all decision variables in the problem is M ·N, while the num-
ber of constraints is equal to M +N. In addition, the decision
variables found under limiting conditions are only accompa-
nied by a coefficient of 0 or 1. The balanced transport problem
under consideration was solved based on the northwest corner,
the least cost in the matrix, and Vogel’s approximation (VAM)
methods.

3. METHODOLOGY
3.1. The Northwest corner method
The northwest corner method involves searching a transport
table and assigning specific values to variables, each time for
routes in the left top corner of the cost matrix. In the case of the
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problem in question, the authors assumed that transport would
be conducted using a general-purpose, large-capacity JELCZ
325 vehicle, for which the unit operating cost index per oper-
ating unit is PLN 6. Transport costs were calculated based on
Order No. 40 of the Chief of the Armed Forces Support Inspec-
torate dated 17 February 2020. Numerical data on the route, de-
mand, and costs of transport between suppliers and recipients
are listed in Table 1.

Table 1
Data for numerical problem

Suppliers

S1 S2 S3 S4 S5 Demand

Recipients

R1 432 1715 1092 765 1104 46

R2 858 2246 376 1357 1697 37

R3 1209 2764 494 1968 2308 53

R4 1450 938 1968 463 117 49

Supply 36 29 23 42 55

The transportation model was presented by the network
shown in Fig. 1.

Fig. 1. Network structure of transportation problem

Determining a permissible solution using the northwest cor-
ner method involves indicating an element in the left corner of
the cost matrix and establishing corresponding supply and de-
mand. The next stage requires selecting the lower value and
entering a selected value in the field corresponding to the left
corner first cell, as shown in Table 2.

Next, the entered number has to be subtracted from the sup-
ply and demand. Then check for which value the 0 was ob-
tained. In a situation where demand takes the zero value, the
other fields in a given line should be filled with zeros. The sup-
ply in the problem under consideration is 0. A permissible so-
lution presented in Table 3 was determined by following the
procedure described in the steps below.

Table 2
Results table for the northwest corner method

S1 S2 S3 S4 S5

36 29 23 42 55

R1 46 36

R2 37

R3 53

R4 49

Table 3
A feasible solution for the northwest corner method

S1 S2 S3 S4 S5

0 0 0 0 0

R1 0 36 10 0 0 0

R2 0 0 19 18 0 0

R3 0 0 0 5 42 6

R4 0 0 0 0 0 49

A permissible solution is degenerate when the number of
baseline elements (different from zero) is equal to M +N− 1.
Considering the obtained baseline solution, the sum of prod-
ucts of baseline elements and the corresponding transport costs
were determined according to equation (4) in order to calcu-
late transport costs with the northwest corner method. The total
transport cost calculated with the northwest corner method is
PLN 186 851.

3.2. The least cost in the matrix method
The first step to determine a permissible solution using the least
cost method in the matrix is to select the least value among all
in the cost matrix. Next, it is necessary to determine the lower
value of supply and demand that corresponds to this cell. The
results are shown in Table 4.

Table 4
Table of results for the least cost in the matrix method

S1 S2 S3 S4 S5

36 29 23 42 55

R1 46

R2 37

R3 53

R4 49 117

The minimum element in the transport cost matrix is 117,
with its supply at 55 and demand equal to 49. In the next itera-
tion, both supply and demand were reduced by 49, which led to

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 3, p. e145570, 2023



Optimization programming tools supporting supply chain management

0 for demand. This resulted in filling the other field of the fourth
line with 0 as well. Table 5 shows the results after applying the
presented procedure.

Table 5
Results of the first iteration

S1 S2 S3 S4 S5

36 29 23 42 6

R1 46

R2 37

R3 53

R4 0 0 0 0 0 49

Proceeding in an analogous manner, considering the cells
filled with 0, resulted in obtaining a degenerate permissible
solution. Table 6 illustrates the result of the calculations per-
formed.

Table 6
A feasible solution for the least cost in the matrix method

S1 S2 S3 S4 S5

0 0 0 0 0

R1 0 36 0 0 10 0

R2 0 0 0 23 14 0

R3 0 0 29 0 18 6

R4 0 0 0 0 0 49

The obtained permissible solution is also in degenerate form
since it has 8 baseline elements. In order to calculate transport
costs with the least cost in the matrix method, the authors once
again determine the sum of products of baseline elements and
costs listed in Table 1, with the result being PLN 186 009. It
should be noted that the transport cost calculated with the least
cost in the matrix method is lower than the value determined
with the northwest corner method, which means that the ac-
ceptable solution in Table 6 is better.

3.3. Vogel’s approximation method (VAM)
The VAM involves calculating the so-called indices, understood
as the difference between the cheapest and second lowest cost in
each line and column. Next, an element with the highest value
should be determined among the calculated indices. If the high-
est difference in transport costs corresponds to the column, se-
lect the lowest cost in the column in question. If the highest
index corresponds to a line, this will require selecting the mini-
mum element in the analyzed line. Table 7 illustrates the result
of the calculations performed.

The maximum transport cost difference in the problem in
question corresponds to the column and amounts to 987. The

Table 7
The result of computations conducted for the VAM

S1 S2 S3 S4 S5

426 777 118 302 987

R1 333 432 1715 1092 765 1104

R2 482 858 2246 376 1357 1697

R3 715 1209 2764 494 1968 2308

R4 346 1450 938 1968 463 117

minimum element in the analyzed column is 117, with a de-
mand of 49 and a supply of 55. The lowest value of the two
should be entered in the cell with a cost value of 117, while the
entered number should be subtracted from both supply and de-
mand. The 0 obtained for demand leads to the need to fill other
cells in the line in question with zeros. The consequences of
applied transformations are illustrated in Table 8.

Table 8
Results table for the VAM

S1 S2 S3 S4 S5

36 29 23 42 6

R1 46

R2 37

R3 53

R4 0 0 0 0 0 49

Further computations should not include the lines or columns
filled with 0. A permissible solution presented in Table 9 was
determined by following the procedure described in the follow-
ing steps.

Table 9
A feasible solution for the VAM

S1 S2 S3 S4 S5

0 0 0 0 0

R1 0 0 0 0 40 6

R2 0 6 29 0 2 0

R3 0 30 0 23 0 0

R4 0 0 0 0 0 49

The determined solution has 8 baseline elements; therefore,
the requirement with respect to a degenerate permissible solu-
tion has been satisfied. The total transport costs calculated as
the sum of products of the baseline solution and the costs re-
sulting from Table 1 for the VAM method are PLN 163 585.
Table 10 lists the permissible solutions obtained depending on
the applied method.
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3.4. Karagul–Sahin approximation method
The Karagul–Sahin method is an iterative method consisting of
5 steps:

1. Determine the coefficients ri j =
b j

ai
and r ji =

ai

b j
.

2. Determine the matrices:
a) weighted A transport costs (i.e., the products ri j and the

transport cost matrix),
b) weighted B transport costs (i.e., the products r ji and the

transport cost matrix).
3. Identify the minimum weighted transportation cost in ma-

trices A and B and then identify the largest possible assign-
ment corresponding to the value of supply or demand on the
route (considering the limiting conditions).

4. If all elements of matrices A and B have been analyzed –
then the end of the algorithm. Otherwise, return to step 3.

5. Determine the value of the objective function.
Table 10 summarizes the results of the calculations per-

formed.

Table 10
The determined values of the coefficients ri j , r ji and the values of the

individual cells of the matrix A and B

ri j R1 R2 R3 R4

S1 1.28 1.03 1.47 1.36

S2 1.59 1.28 1.83 1.69

S3 2.00 1.61 2.30 2.13

S4 1.10 0.88 1.26 1.17

S5 0.84 0.67 0.96 0.89

Matrix A R1 R2 R3 R4

S1 552.00 881.83 1779.92 1973.61

S2 2720.34 2865.59 5051.45 1584.90

S3 2184.00 604.87 1138.35 4192.70

S4 837.86 1195.45 2483.43 540.17

S5 923.35 1141.62 2224.07 104.24

r ji R1 R2 R3 R4

S1 0.78 0.97 0.68 0.73

S2 0.63 0.78 0.55 0.59

S3 0.50 0.62 0.43 0.47

S4 0.91 1.14 0.79 0.86

S5 1.20 1.49 1.04 1.12

Matrix B R1 R2 R3 R4

S1 338.09 834.81 821.21 1065.31

S2 1081.20 1760.38 1512.38 555.14

S3 546.00 233.73 214.38 923.76

S4 698.48 1540.38 1559.55 396.86

S5 1320.00 2522.57 2395.09 131.33

The first minimum weighted transportation cost in matrix
A is the value of 104.24, while in matrix B it is the value of
131.33. The largest possible assignment corresponding to the
value of 104.24 is the number 49 and therefore this value was
entered into the cell corresponding to the intersection of S5 and
R4, as illustrated in Table 11.

Table 11
Table for results

R1 R2 R3 R4

46 37 53 49

S1 36 0

S2 29 0

S3 23 0 0 23 0

S4 42 0

S5 55 49

The next minimum weighted transport cost in matrix A is
the number 552 while in matrix B it is the number 214.38. The
smaller of the two is 214.38 for which the largest possible as-
signment is the number 23, so this value was entered in the field
corresponding to the intersection of cells S3 and R3. Following
the procedure presented, the admissible solution presented in
Table 12 was obtained.

Table 12
Permissible solution determined by the Karagul–Sahin method

R1 R2 R3 R4

46 37 53 49

S1 36 0 6 30 0

S2 29 0 29 0 0

S3 23 0 0 23 0

S4 42 42 0 0 0

S5 55 4 2 0 49

Considering the degenerate baseline solution obtained, the
sum of the products of the baseline elements and the corre-
sponding transportation costs was determined according to for-
mula (4) to calculate the transport costs using the Karagul–
Sahin method. The total transport cost is PLN 163 587.

3.5. Maximum difference extreme difference method
The following steps can be detailed in the maximum difference
method [44]:
1. Determine the difference between the two largest values in

each row of the cost matrix.
2. Determine the difference between the maximum and mini-

mum values of the cost in each column of the cost matrix.
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3. Identify the maximum among the values calculated in steps
1 and 2 and then find the corresponding minimum trans-
portation cost.

4. If the maximum difference corresponds to two or more
cells, then select the cost cell located in the upper left corner
of the cost matrix.
For the indicated cell, find the smaller of the corresponding
values of supply and demand, and then reduce demand and
supply by the entered value, completing the remaining cells
with 0 values, depending on whether 0 was obtained in the
row or in the column.

5. Repeat steps 1–4 until all supply and demand cells are equal
to 0.

6. Determine the value of the objective function.
Table 13 illustrates the results of applying the described treat-

ment scheme.

Table 13
The result of implementing the method of maximum difference

R1 R2 R3 R4

0 0 0 0

S1 0 0 6 30 0

S2 0 0 29 0 0

S3 0 0 0 23 0

S4 0 42 0 0 0

S5 0 4 2 0 49

Difference values determined for rows (maximum difference)

241 241 592 – – – –

518 518 531 531 531 531 2246

876 – – – – – –

611 611 592 592 – – –

611 611 593 593 593 593 1697 1697

Difference values determined for columns (extreme difference)

1283 1870 2270 1851

1283 1388 1555 1333

1283 1388 – 1333

950 889 – 821

611 549 – 821

611 549 – –

– 549 – –

1697

Taking into account the base solution (the solution is degen-
erate because the number of base elements is M +N − 1), in
order to calculate the transport costs by the described method,
the sum of the products of the base elements and the corre-
sponding transport costs was determined according to formula
(4). The total transportation cost is 163 587 PLN. Table 14
presents a summary of the admissible solutions depending on
the method used and a graphical interpretation of the base solu-
tions is presented in Fig. 2.

The northwest
corner method

The least cost in
the matrix method

Vogel’s
approximation

method

Karagul–Sahin
approximation

method

Maximum
difference extreme
difference method

Fig. 2. The graphical interpretation of the base solutions
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Table 14
Obtained permissible solutions

S1 S2 S3 S4 S5

The northwest
corner method

R1 0 0 0 40 6

R2 6 29 0 2 0

R3 30 0 23 0 0

R4 0 0 0 0 49

The least cost
in the matrix method

R1 36 0 0 10 0

R2 0 0 23 14 0

R3 0 29 0 18 6

R4 0 0 0 0 49

Vogel’s
approximation method

R1 0 0 0 40 6

R2 6 29 0 2 0

R3 30 0 23 0 0

R4 0 0 0 0 49

Karagul–Sahin
approximation method

R1 0 0 0 42 4

R2 6 29 0 0 2

R3 30 0 23 0 0

R4 0 0 0 0 49

Maximum difference
extreme difference

method

R1 0 0 0 42 4

R2 6 29 0 0 2

R3 30 0 23 0 0

R4 0 0 0 0 49

4. RESULTS
4.1. Optimization of the basic feasible solution (the

potential method)
The potential method aims to optimize the permissible solu-
tion obtained. Based on the input data and the solution obtained
with the northwest corner method, the authors developed a table
for the results (i.e., indirect costs), so that the elements corre-
sponding to the supply and demand values remain empty. The
transport costs in the cells corresponding to the elements of the
baseline solution were filled with the values in Table 1. It was
assumed that Y1 = 0. A transport cost equal to 432 corresponds
to potential Y1. In order to determine potential X1, the authors
calculated the difference between the cost and potential Y1, ac-
cording to the dependence: X1 = 432−Y1. Next, in the line cor-
responding to potential Y1, the authors indicated a next transport
cost, which allowed us to determine potential X2 understood as:
X2 = 1715−Y1. The other potentials, Xi, where i= 1, . . . ,M and
Yj where j = 1, . . . ,N were determined similarly. The cells con-
stituting zero elements of the permissible solutions were filled
with the sums of potential Xi +Yj. The results of applied trans-
formations are illustrated in Table 15.

Table 16 shows the optimality indices that are the difference
between indirect costs and costs arising from Table 1.

Table 15
The results of applied transformations

Indirect costs

X1 X2 X3 X4 X5

432 1715 –155 1319 1659

432 1715 –155 1319 1659 Y1 0

963 2246 376 1850 2190 Y2 531

1081 2364 494 1968 2308 Y3 649

–1110 173 –1697 –223 117 Y4 –1542

Transportation costs

432 1715 1092 765 1104

858 2246 376 1357 1697

1209 2764 494 1968 2308

1450 938 1968 463 117

Table 16
The values of optimality indices for the northwest corner method

X1 X2 X3 X4 X5

432 1715 –155 1319 1659

0 0 –1247 554 555 Y1 0

105 0 0 493 493 Y2 531

–128 –400 0 0 0 Y3 649

–2560 –765 –3665 –686 0 Y4 –1542

The presence of positive values among optimality indices
means that the obtained permissible solution is not optimal.
Obtaining a new solution with a lower transport cost requires
building a cycle in such a manner that the maximum optimality
index is the first element of a positive cycle. Next, it is required
to indicate in the line with the positive cycle element an element
having an equivalent in the column. The described procedure
should be repeated until the cycle is fully closed. The minimum
value among all negative cycle elements should be indicated.
Next, the positive cycle elements should be increased and the
negative cycle element reduced by this number. Table 17 illus-
trates the constructed cycle and a new permissible solution.

Table 17
The results of applied transformations

Cycle New feasible solution

36 10 (–) 0 0 0 (+) 36 4 0 0 6

0 19 (+) 18 (–) 0 0 0 25 12 0 0

0 0 5 (+) 42 6 (–) 0 0 11 42 0

0 0 0 0 49 0 0 0 0 49
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The transport cost in the new baseline (degenerate) solution
is lower than initially and amounts to PLN 183 521. A new so-
lution was obtained after repeating the procedure, leading to de-
termining optimality indices and cycle construction five times.
Table 18 illustrates the ultimate results and calculated optimiza-
tion indicators.

Table 18
The new feasible solution and optimization indicators

New feasible solution Optimization indicators

0 0 0 40 6 –166 –61 –1541 0 0

6 29 0 2 0 0 0 –233 0 –1

30 0 23 0 0 0 –167 0 –260 –261

0 0 0 0 49 –2171 –271 –3404 –685 0

The fact that all optimality indices are non-positive clearly
indicates that the obtained solution is optimal. The entire cargo
transport cost is PLN 163 585. The transport costs for each
method and the result of the potential method that leads to an
optimal solution are presented in Tables 19 and 20.

Table 19
Transport costs for the basic solution

Method
Transport costs for

basic solution (PLN)

The northwest corner method 186 851

The least cost in the matrix method 186 009

Vogel’s approximation method 163 585

Karagul–Sahin approximation method 163 587

Maximum difference extreme difference
method

163 587

When comparing the results obtained, it should be noted that
the objective function values for individual permissible solu-
tions vary depending on the selected method. Each of the meth-
ods in question satisfied the condition in terms of the permis-
sible solution degeneracy. The northwest corner method, de-
spite the simplicity of the computation, turned out to be the
least accurate, since it required applying the potential method
five times. In the case of the least cost element in the matrix
method, a lower transport cost was determined for the base-
line solution than in the northwest corner method, however, it
also required fivefold optimization of the permissible solution.
The Karagul–Sahin method and the method of maximum dif-
ferences provided the same admissible solution, which was not
optimal because it required applying the method of potentials
once. Only the VAM method ensured that a minimum objec-
tive function value was obtained, hence, determining an optimal
commodity transport plan from the supplier to the recipients al-
ready in the first step. The transport costs after subsequent steps
of improvement are illustrated in Fig. 3.

Table 20
Comparison of solutions obtained
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1st improvement
of the solution

183 521 177 135 163 587 163 585

2nd improvement
of the solution

181 305 174 665 163 585

3rd improvement
of the solution

165 969 174 238

4th improvement
of the solution

164 983 164 581

5th improvement
of the solution

163 585 163 585

Fig. 3. The transport costs after subsequent steps of improvement

4.2. Reduction of computational complexity of the
transportation problem using programming languages

As is well known, the travelling salesman problem is NP-
difficult, which means that algorithms with polynomial com-
putational complexity that solve this problem are not known.
Therefore, in practical applications, it is necessary to use poly-
nomial approximation algorithms. One possible algorithm is to
check the possible Hamiltonian cycles and choose the shortest
cycle. The disadvantage of this method is that the number of
cycles for an n-vertex graph is (n−1)!/2. The problem of com-
putational complexity has been the subject of research by many
scientists, who have so far failed to find the best algorithm in
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terms of computational complexity. As examples, we can point
to the Held–Karp algorithm, which has a complexity of n22n,
the nearest neighbour algorithm with a complexity of n2, the
greedy algorithm with a complexity of n2 log(n) or the RNN
algorithm (repetitive NN algorithm) with a complexity of n3.

4.2.1. Application of the Matlab environment
Considering the reduction in time necessary to perform the
enormous calculations, the transport problem can be easily
solved using the source code proposed in this article, which
has been implemented in the Matlab command window (Ap-
pendix A). The R2020b (64-bit) version was used in the com-
putations. The application of the built-in ‘linprog’ function en-
sured an optimal solution, consistent with the result of the VAM
method. The total computation time determined with the ‘tic ();
toc’ function was 0.021 s.

4.2.2. Application of the GNU Octave
A source code based on the ‘glpk’ function available in GNU
Octave was developed to determine an optimal solution to the
transport problem (Appendix B). In turn, determining the com-
putation time was possible due to the application of the ‘tic ();
toc’ function, which resulted in an optimal solution obtained
after 0.354 s. GNU Octave v.3.4.3 (64-bit) was used in the in-
vestigation.

4.2.3. Application of the R
With optimal supply chain management in mind, the last of the
solutions proposed in this article was to use the ‘lp.transport’
function called in R (Appendix C). The ‘Sys.time()’ function
was used to determine the total computation time. As a re-
sult of the conducted analysis, it was concluded that the total
time required to determine the optimal solution in R was only
0.013 s. The computations were performed using R v.2022.07.0
(64-bit).

Figure 4 summarizes the total time required to perform the
calculations for each of the proposed scripts.

Fig. 4. The total time required to perform the calculations

The longest time of calculations ensuring the determination
of an optimal solution to the problem in the questions has been
recorded when using GNU Octave. Please note that implement-
ing a script called in Matlab or R significantly reduced the com-
putation time relative to GNU Octave. The fastest solution to

the problem in question, hence, the lowest computation com-
plexity was obtained using R. Table 21 lists similarities and dif-
ferences resulting from the application of R, GNU Octave, and
Matlab.

5. SUMMARY AND CONCLUSIONS
The transport and traffic subsystem are crucial elements of a lo-
gistics system. Its main task is to ensure the correct and timely
transfer of people and goods. The development of technology
and the increasing interest in new mathematical computation
methods that allow one to solve transport problems are fac-
tors that support rational supply chain management. The ap-
plication of computer technologies and the growing demand
for IT optimization tools were the reason behind expanding the
market offer in the field of operational studies over the recent
years. Programming languages are increasingly being used to
support the decision-making process. It should be stressed that
decision-making time may be crucial in supply chain manage-
ment. As a result, the objective of this article was to develop
solutions in the form of scripts implemented in GNU Octave,
Matlab and R, which enable minimizing transport costs within
supply networks, while minimizing the time required for com-
putations.

The solutions proposed in this publication can be easily im-
plemented by users not fluent in programming techniques, since
they eliminate the need to apply loops and user-generated func-
tions. The paper used the north-west corner, the least cost in
the matrix and the VAM methods. In turn, the potential method
was used to optimize individual baseline solutions. Classical ac-
counting methods were characterised by high computing com-
plexity and, hence, were very time-consuming. The analysis
conducted allowed one to determine an optimal solution with
a total transport cost of PLN 163 585.0. The north-west corner
method and the least cost in the matrix method required a five-
fold application of the potential method, while VAM ensured
determining an optimal solution in the first step.

To determine the optimal solution to the transport problem,
the authors used a built-in ‘glpk’ function within the script im-
plemented in GNU Octave. The total computation time was
0.354 s. However, determining the most favourable transport
plan with the use of the Matlab environment involved the appli-
cation of the ‘linprog’ function, which is an element of the Op-
timization Toolbox suite that employs the so-called simple-dual
algorithm simultaneously solving the current and dual prob-
lems. The optimal solution to the problem in question was
found after 0.021 s. The last of the proposed scripts has an
implemented ‘lp.transport’ function, which was then called in
the R environment. As a result of the computations performed,
it was concluded that the total time required to determine an
optimal solution in R was 0.013 s. The quickest solution to
the problem in question, and thus, the lowest computational
complexity, was obtained when using R. Furthermore, R, like
GNU Octave, is free, unlike the Matlab computing environ-
ment, which is commercial. The developed scripts do not enable
determining individual permissible solutions resulting from the
potential method, while allowing one to determine an optimal
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Table 21
Comparison of GNU Octave, Matlab, and R

Number GNU Octave Matlab R

1 Object-oriented programming language
Interactive language, visualization tool,

and computing environment
Numerically-oriented programming

language

2
Most numerical experiments are

compatible with Matlab
Matlab is compatible with GNU Octave

but not R
R codes can be integrated with other

programming languages

3
Can be used to solve linear and non-linear

problems numerically
Can be used to solve linear and

non-linear problems numerically
Can be used to simplify complex

mathematical problems

4 Can run on Windows, macOS, and Linux
Can run on Windows, macOS, and

Linux
Can run on Windows, macOS, and Linux

5 GNU Octave is slower than Matlab Matlab is faster than GNU Octave R is faster than Matlab

6
GNU Octave is not a commercial product.

GNU Octave is open-source
Matlab is a commercial product of

MathWorks
R is not a commercial product. R is

open-source

7

GNU Octave offers online support to
programmers, as well as providing

tutorials, documentation, examples, blog,
answers, and community support

Matlab offers online support to
programmers, as well as providing
tutorials, documentation, examples,

blog, answers, and community support

R offers online support to programmers, as
well as providing tutorials, documentation,
examples, blog, answers, and community

support

8 Easy to learn syntax Easy to learn syntax Relatively complex syntax

9
GNU Octave is a programming language

used for numerical computations
Matlab is a programming language used

for technical computations
R is a programming language used for

statistical analysis

10
GNU Octave supports graphics for 2D and

3D data visualization
Matlab supports graphics for 2D and 3D

data visualization
R supports graphics for 2D and 3D data

visualization

11
GNU Octave is not widely used within the

industry
Matlab is widely used within the

industry
GNU Octave is not widely used within the

industry

12
GNU Octave has proper support for

auto-increment and assignment operators

Matlab does not have support for
auto-increment and assignment

operators

R does not have an increment operator in
the base language, but it can be

implemented in the ‘Hmisc‘ package

13
Empty files can be loaded without any

hassle
Empty files cannot be loaded

Empty files can be loaded without any
hassle

14
Commands used to print the result on the

screen in GNU Octave are ‘print’ and
‘fprintf’

Commands used to print the result on
the screen in Matlab is only ‘fprintf’

Commands used to print the result on the
screen in R are ‘print’, ‘message’, and ‘cat’

15 It consumes less memory than Matlab
It consumes more memory than GNU

Octave
It consumes less memory than GNU

Octave

16 It was written in C, C++, and Fortran It was written in C, C++, and Java It was written in C, C++, and Fortran

distribution network over a noticeably brief time, which may be
crucial when the decision time is limited.

Every programming language has its advantages and disad-
vantages. R and GNU Octave are both open-source program-
ming languages oriented towards data science and analysis.
Anyone can work with R and GNU Octave without any license
or fee. Matlab, GNU Octave, and R provide a wide range of
applications. GNU Octave is mainly used for numerical com-
putations, Matlab for technical computations, and R for statisti-
cal analysis. It should be emphasized that Matlab is compat-
ible with GNU Octave but not with R. The increasing com-
puting power of computers provides the ability to solve in-

creasingly complex decision-making problems. Therefore, fur-
ther research will be directed at extending the proposed so-
lutions with the possibility of solving multi-criteria decision
problems.

APPENDIX A
Application of the Matlab environment
tic ()
f = [423; 858; 1209; 1450; 1715; 2246; 2764;
938; 1092; 376; 494; 1968; 765; 1357; 1968; 463;
1104; 1697; 2308; 117]; % A matrix containing

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 3, p. e145570, 2023 11
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the objective function coefficients
(the transport costs)
A=[]; % Linear inequality constraints, specified
as a real matrix
b=[]; % Linear inequality constraints, specified
as a real vector
beq=[36; 29; 23; 42; 55; 46; 37; 53; 49];
% Linear equality constraints, specified as
a real vector
Aeq=[
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1;
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];

lb=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
% Lower bounds, specified as a real vector or
real array
ub=[]; % Upper bounds, specified as a real
vector or real array
[x, fval] = linprog(f,A,b,Aeq,beq,lb,ub)
toc

APPENDIX B
Application of the GNU Octave
tic()
C = [423 858 1209 1450; 1715 2246 2764 938;
1092 376 494 1968; 765 1357 1968 463; 1104
1697 2308 117]; % A matrix containing
the objective function coefficients
(the transportation costs)
s = [36 29 23 42 55]’; % Supply
d = [46 37 53 49]’; % Demand
A = [
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1;
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1]; % A

matrix containing the constraints coefficients
c = C’(:);
b = [s;d]; % A column array containing the
right-hand side value for each constraint in
the constraint matrix
lb = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’;
% An array containing the lower bound on each
of the variables

ub = []; % An array containing the upper
bound on each of the variables. If ub is not
supplied, the default upper bound is assumed to
be infinite
ctype = "UUUUULLLL"; % An array of characters
containing the sense of each constraint in the
constraint matrix. Each element of the array may
be one of the following values: "U" <=; "S" =;
"L" >=
vartype = "CCCCCCCCCCCCCCCCCCCC"; % A column
array containing the types of the variables.
"C" - A continuous variable; "I" - An integer
variable
sense = 1; % If sense is equal 1, the problem
is a minimization; If sense is equal -1, the
problem is a maximization
[xopt,fopt] = glpk(c,A,b,lb,ub,ctype,vartype,1);
xopt = reshape(xopt,4,5)’;
fopt % The optimum value of the objective
function
xopt % The value of the decision variables at
the optimum
toc
tic; toc

APPENDIX C
Application of the R
start_time <- Sys.time()
cost=c(432,858,1209,1450,1715,2246,2764,938,
1092,376,494,1968,765,1357,1968,463, 1104,1697,
2308,117)
cost_matrix <- matrix(cost,nrow = 5, ncol = 4,
byrow = TRUE) # Matrix of costs; ij-th element
is the cost of transporting one item from source
i to destination j
row.rhs <- c(36,29,23,42,55) # Vector of numeric
values for the right-hand sides of the row
constraints
col.rhs <- c(46,37,53,49) # Vector of numeric
values for the right-hand sides of the column
constraints
row.signs <- c("=","=","=","=","=") # Vector of
character strings giving the direction of the
row constraints
col.signs <- c("=","=","=","=") # Vector of
character strings giving the direction of the
column constraints
sol <-
lp.transport(cost_matrix, direction="min",
row.signs, row.rhs, col.signs, col.rhs)
sol
sol$solution # The optimal solution
sol$objval # The objective function
end_time <- Sys.time()
end_time - start_time
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