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POWER SYSTEMS AND POWER ELECTRONICS

Abstract. Today’s electricity management mainly focuses on smart grid implementation for better power utilization. Supply-demand balancing,
and high operating costs are still considered the most challenging factors in the smart grid. To overcome this drawback, a Markov fuzzy real-time
demand-side manager (MARKOV FRDSM) is proposed to reduce the operating cost of the smart grid system and maintain a supply-demand
balance in an uncertain environment. In addition, a non-linear model predictive controller (NMPC) is designed to give a global solution to
the non-linear optimization problem with real-time requirements based on the uncertainties over the forecasted load demands and current load
status. The proposed MARKOV FRDSM provides a faster scale power allocation concerning fuzzy optimization and deals with uncertainties and
imprecision. The implemented results show the proposed MARKOV FRDSM model reduces the cost of operation of the microgrid by 1.95%,
1.16%, and 1.09% than the existing method such as differential evolution and real coded genetic algorithm and maintains the supply-demand
balance in the microgrid.

Key words: smart grid; non-linear model predictive controller; fuzzy Markov decision process; power scheduling; operating cost.

1. INTRODUCTION

A smart grid is a future power system that combines mod-
ern sensor technologies, control techniques, and communica-
tion technology at both the transmission and distribution levels
to provide electricity in a smart and environmentally beneficial
manner [1]. Consumer-friendly poles are the fundamental qual-
ities of a smart grid, self-repairing in a hack-proof mode and
resistance to attacks, ability for all forms of storage and gener-
ation options, efficient operation on the electricity market, high
power quality, and maximum resources [2]. This complex net-
work is guided by various economic, political, social, and tech-
nological factors.

Demand-side management is a key role in future smart grid
energy management, which supports smart grid functionality
in a variety of sectors including electricity market control, in-
frastructure building, decentralized energy, and electric vehicle
management [3, 4]. The creation of an electric network that is
under-appreciated in terms of power and transmission will the-
oretically prevent demand-side management problems.

Demand-side management also performs an important role in
the electricity market [5,6]. A cluster central control system ad-
vises on the cluster capabilities for load scheduling and load re-
duction available for the system. The centralized controller po-
sition deals with the market so that certain loads are moved due
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to the high demand. Currently, unpredictable as well as chang-
ing existing sources of climates such as solar and wind power
together with spontaneous consumer habits have brought about
major uncertainties in the microgrid system, making it difficult
to control MG energy [7, 8]. Demand-side response (DSR) was
viewed to function as a source of energy storage or backup
power required for the distributed resources. New challenges
and possibilities for the fit operation of the MG system are cre-
ated by the diversified and intelligently designed of DSRs [9].
The DSM development has become an area of significant ongo-
ing research to counter uncertainties and organize DSRs in MG.
This research work proposes a Markov fuzzy real-time demand-
side manager (MARKOV FRDSM) to minimize the cost of op-
eration of the smart grid system. The obtained simulation result
shows that the proposed method reduces the cost of operation
of a smart grid by 35% better than the existing methods such
as differential evolution, or real coded genetic algorithm, and
maintains the supply-demand balance in a smart grid.

This paper is organized as follows: Section 2 gives an
overview of the literature survey; the details of the proposed
Markov fuzzy real-time demand-side manager are explained in
Section 3; in Section 4 the experimental results and analysis are
discussed and finally, Section 5 concludes the paper.

2. LITERATURE SURVEY
This section explains various surveys related to the demand-
side management system in microgrids studied throughout the
years. The present state of production cost and solving the day
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ahead schedule is discussed, and an overview is provided in this
study.

Essiet, et al. presented an improved multi-objective DE algo-
rithm (SDE) inspired by the scavenging strategy of hyenas and
vultures to minimize the cost in the demand-side management
system [10].

Venkatesh et al. presented the antlion optimization which
minimizes the peak demand and decreases the electricity bills.
The load-shifting technique minimizes the demand-side man-
agement problem. The results demonstrated that the proposed
process generates correct results in terms of electrical energy
consumption, as well as supporting the utility of peak load de-
mand and reshaping the demand curve. High-cost operation is
a major drawback [11].

Al Salloum et al. presented the Stackelberg multi-period
multi-provider game the costs and demands for energy are cal-
culated based on a bidirectional communication system be-
tween providers and customers. The simulation results revealed
that the real-time algorithm is highly efficient and utilizes the
least amount of energy. The instability of renewable energy is
a drawback [12].

Lizondo et al. adapted an artificial immune network algo-
rithm to the peak load problem. The method is especially well-
suited to dealing with the peak load problem that arises in tropi-
cal and subtropical regions due to the simultaneous use of thou-
sands of these devices. The method was tested on both syn-
thetic and real-world data. As performance measures, the max-
imal and average tolerance shows that the system keeps the
consumption within 1% of the given load [13]. The low per-
formance of multi-level control of the smart grid is the major
issue.

Muthukumaran et al. presented the elephant herd optimiza-
tion-based firefly evolutionary algorithm that effectively moni-
tors the real power loss in the smart grid network. The simula-
tion results show that the proposed smart controller for demand-
side management reduces power loss and improves the voltage
profile significantly. Cost functions are not maintained [14].

Puttamadappa et al. presented a combination of glow-worm
swarm optimization (GSO) and support vector machine (SVM)
employed in the decision-making process in battery storage.
The simulation result showed that the suggested method re-
duces the energy cost and has an average residual load [15].

In Tang et al., the Stackelberg game was based on their iden-
tified Nash equilibria, and the grid was optimized to reduce the
net profit price and reduce demand fluctuation and also mini-
mize the electricity bills. The results reveal that the proposed
fundamental interaction enhanced net profit by 8% and reduced
demand variation by roughly 40% for the grid, with 2.5–8.3%
savings in electricity bills for the buildings [16]. Furthermore,
the robust interaction proposed significantly mitigated the un-
favorable impacts of prediction uncertainty.

Bharathi et al. [17] presented the genetic algorithm in de-
mand-side management (GA-DSM) was used to find the opti-
mal fitness function of load redistribution in the industry. The
result showed that the suggested method solved the issue of
power demand reduction, and the flexible load shape is main-
tained. Cao et al. [18] presented the cost-oriented optimiza-

tion methodology for cloud-based information and communica-
tion technology that allocates cloud computing resources flex-
ibly. The result showed that the suggested method reduced the
operating cost of the cloud platform of demand-side mana-
gement.

Hashmi et al. [19] presented the Internet of Things and cloud
computing-based energy management system which generated
the load profile of consumers to access remotely. The output
displays the consumer load profiles in terms of current, volt-
age, and power generated. Liu et al. [20] presented the scal-
able and robust demand-side management (SRDSM) approach
which minimizes the problem of smart grid operating costs with
distributed renewable energy resources. The result showed that
the SRDSM algorithm has more scalable and more efficient
in size.

Several works consider the difficulties of scheduling, harmo-
nic loss, uncertainties, power imbalance, computational time,
cost, and other factors were proposed, none of them is suc-
cessful in establishing real-time demand-side management, to
overcome the above challenges this research proposed a novel
Markov fuzzy real-time demand-side management, and its de-
tailed process is presented in next section.

3. PROPOSED MARKOV FUZZY REAL-TIME
DEMAND-SIDE MANAGEMENT MODEL

This work is focused on the online demand-side manager for
a microgrid. It mainly concentrates on real-time uncertainties
rather than forecasting errors of uncertain renewable genera-
tion (URG). In this paper, a proposed Markov fuzzy real-time
demand-side manager (MARKOV FRDSM) is developed.

The process flow is represented in Fig. 1. It is a two-stage
process, with Stage 1 as a fuzzy real-time demand-side manager
controller (FRDSM) and Stage 2 as a predictive Markov real-
time allocator. Stage 1 is mainly designed for reducing the cost
of the operation of the microgrid system and to continue supply
and demand must be balanced under a given environment with
uncertainties.

Fig. 1. Block diagram for proposed Markov fuzzy real time demand-
side management model
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Stage 2 provides a faster scale power allocation concerning
fuzzy optimization. Stage 2 is also subdivided into two parts
in which the scheduling priority of the response executer is de-
cided by fuzzy interference and the decision-making approach
is based on the Markov decision process.

3.1. Fuzzy real-time demand-side manager controller
A fuzzy real-time demand-side manager is proposed for reduc-
ing the cost of the microgrid system. NMPC controller gives
a global solution to the resulting non-linear optimization prob-
lem with real-time requirements based on the uncertainties over
the forecasted load demands and current load status. NMPC-
based fuzzy optimization mainly aims toward cost minimiza-
tion of the microgrid. Figure 2 shows the block diagram for
NMPC-based fuzzy optimization. The uncertainties framework
has difficulties with the ideal activity of the MG, dynamic DSM
was developed the counteract these uncertainties.

Fig. 2. Block diagram for NMPC-based fuzzy optimization

To manage the dynamic DSM, an NMPC-dependent fuzzy
optimization is suggested so that it can make the decisions for
the response executers based on the uncertainties within a stage.
It has the capability of updating the current status as well as the
predicted range of the microgrid (MG).

Let us consider a nonlinear discrete-time state-space model
that must be controlled to get an optimal scheduling plan as
stated in equations (1) and (2)

a(x+1) = f (a(x),b(x)) , (1)
a(x+ t) = g(a(x)) , (2)

where, a(x) ∈ Rnr×1, b(x) ∈ Rnr+t×1 and x(r+ t) ∈ Rnx×1 states
with the vectors of the corresponding state, control input, and
output at sampling time x. f and g state the uncertainties. By in-
creasing the output index, the optimal control sequence is cal-
culated. Often this is a quadratic function that involves future
control entries and tracking errors by considering equation (3)

e(x+ i |x) = ad (x+ i |x)− â(x+ i|x), (3)

where xd (x+ i |x) indicates the reference sequence to be fol-
lowed that must be known as priori. The cost function 1 is given
in the equation

quali =
hp

∑
i=1
‖e(x+ i|x)‖2

Q +
hC

∑
j=1
‖b(x+ i|x)‖2

R , (4)

where ‖x‖2
M = xT Mx.Q and R defines positive weighing matri-

ces, Q ≥ 0 and R ≥ 0. The J minimization is often carried out
subject to certain control input constraints and status variables.
The limitations can be defined in the following form as stated
in equations (5) and (6)

U=
{

v ∈ Rnv×1| vmin ≤ v≤ vmax
}
, (5)

X=
{

x ∈ Rnx×1| xmin ≤ x≤ xmax
}
, (6)

vmax, vmin, xmax, xmin are known to be constant vectors. U and
X are said to be constraint subsets. An NMPC controller aims
towards obtaining an output response closest to the referred
response such as [b(x|x),b(x+ 1|x), . . . ,v(r + hc− 1)|r)]. The
membership function includes lower and high limits along with
a purely monotonous function that decreases continuously.

Incremental fuel costs are not precise, as the cost of fuel may
change over time and the type of fuel may be different for each
unit. As a result, the membership functions can be used to de-
scribe the objective position

U f i =


0 if fi ≥ fimax ,

fimax− fi

fimax− fimin
if fimin < fi < fimax ,

1 if fi ≤ fimin ,

(7)

where fi and fimax are the minimum and maximum values of the
i-th target function, respectively. It is calculated by individually
optimizing each target.

3.2. Objective function
The microgrid optimal scheduling problem would commence
with the detailed representation of the cost objective function
followed by operational constraints of distributed generation
(DG) units that are interconnected to the utility. The main ob-
jective of this work is to find the best generation set points for
DG units in order to reduce total cost when dealing with de-
mand response. Total cost includes DG fuel consumption, unit
startup costs, and the market price for a power exchange be-
tween the MG and the grid. The following equations express
the objective functions and constraints of the proposed work.

minF(γ) =
X

∑
x=1

XCx

=
X

∑
x=1

{
NG

∑
i=1

[
vx

i Ax
DGiS

x
DGi +UDGi

∣∣V x
i −V x−1

i

∣∣]
+

NS

∑
j=1

[
vx

jA
x
ES jS

x
ES j +UES j

∣∣∣V x
j −V x−1

j

∣∣∣]+Ax
vxSx

grid

}
, (8)

γ =

[
Ax

DG1,A
x
DG2, . . . ,A

x
NG,A

x
ES1,A

x
ES2, . . . ,A

x
NS,A

x
vx,

vx
1,v

x
2, ...,v

x
NG+NS

]
, (9)

The vector denotes γ decision variables such as the active power
of the ith DG unit and the j-th storage unit, as well as their
ON/OFF states. Equation (8) shows the cost operating formula.
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Sx
DGi and Sx

ES j are the bids of DG and storage units at hour x,
Ax

vx is the active power exchange from/to utility at hour x, and
Sx

grid is the utility bid cost at hour x.

Power balance. The active power balancing constraint is one
of the most essential constraints in the EMS problem since it
ensures that the total active power generated by the DG units,
BESS, and utility is sufficient to meet the overall load demand.

x

∑
i=1

Ax
DGi +

x

∑
j=1

Ax
ES j +Ax

vx =
x

∑
x=1

Ax
load . (10)

Uncertain load constraints. In real-time, there is no crisp
load; the load value changes every minute. For load demand,
all load demands are assumed to be fluid in nature and can be
expressed via Gaussian distribution. As Fig. 3 shows, Qd never
will be less than Qi or greater than Qi. This is the best Qd esti-
mate. In this proposed work, the Gaussian membership function
is used. The degree of satisfaction is stated by µQdQi which rep-
resents the membership function w.r.t to the i-th constraint and
Qd + 1 is the maximum tolerable error in the forecasted peak
loads.

Fig. 3. Gaussian membership functions for load demand

Response executer constraints. The constraint of the RE is
stated as follows in equations (8), (9), and (10)

Tj,k =
S j.k−1 +

(
v j.kPj,k−

(
1− v j,k

)
p j.k
)

η
p
j,k∆t

Qnom
j

, (11)

Smin
J ≤ S j,k ≤ Smax

j , (12){
0≤ Pj,k ≤ PC

j , v j,k = 1,

0≤ Pj,k ≤ Pd
j , v j,k = 0,

(13)

Sini
i +

∑
K∈K

(
v j.kPj,k−

(
1−v j,k

)
Pj,k
)
η

P
j,k∆t

Qnom
j

≥ SE
j , ∀ j ≤ n. (14)

Power charging and discharging at all times, as specified in
(12); Smin

J and Smax
j indicate RE j minimum and maximum

allowable SOC levels, respectively; Qnom
j indicates RE j bat-

tery capacity. ηP
j,k represents the efficiency of power exchange,

ηP
j,k = ηc

j , vi,k = 1 and ηP
j,k = 1/ηd

j with v j,k = 0, where ηd
j and

ηc
j represents charging as we ll as discharging.

3.3. Predictive Markov real-time power allocator
Markov decision process (MDP) provides a decision-based re-
sult for the allocated plan based on the current time under
a stochastic environment an agent is required to take action in
order to attain a goal [21]. The decision-making process mainly
takes place under the shorter sampling period Ts so as to acti-
vate an action within a state a ∈ s which is defined as a policy
ϕ : s→ a. Additionally, to obtain an optimal policy the time
samples were divided further into sub-steps ς with an ∆T and
kt ∈ {1,2, . . . ,ζ} at any step-in time. Point a vigorous sequen-
tial for the corresponding action using a dynamic programming
equation that is iteratively solved to provide an optimal solu-
tion. This process is combined with the scheduling plan that
was obtained in Stage 1.

Initially, the power compensation at the time step is calcu-
lated for MG. Ptot

k j is obtained by equation (15)

Ptot
k j = PWT

kt +PPV
kt −LB

kt , (15)

where PWT
kt , PPV

kt and LB
kt states an output of windmill, solar,

and load demand. Based on the overall power compensation
the MDP decides the compensation state at time t,

φ
V 2G (Ptot

kt
)
=

{
1, Ptot

kt < 0,

0, Ptot
kt ≥ 0,

φ
G2V (Ptot

kt
)
=

{
0, Ptot

kt < 0,

1, Ptot
kt ≥ 0,

(16)

where φV 2G and φ G2V represents a vehicle-to-grid and grid- to-
vehicle compensation state, respectively

φ
V 2G(Ptot

kt ) ·φ G2V (Ptot
kt ) = 0.

Space of the state. The power compensation is believed to be
known to the operator. We describe the state space as the sum
of the WT and PV system on moving state information centered
on the MG. And each phase is built on a horizon of prediction.

Transition and recompense functions. Transition and rec-
ompense functions are provided below. The transition func-
tions are established in relation to the WT and PV state quan-
tities, and fuzzy threat estimation determines the entries. The
sampling time is increased in the sum changed with M + 1 =
M + ∆(M). The likelihood entries are updated based on WT
and PV state quantity, at a given status value

T (s(k+1),a(k),s(k))=

{
1−Li j(k), transisting a SA,

Li j(k), studying in SA,
(17)

where the logistic weight is Li j(k), i.e., with a logistic feature
axis in mind that only one scheduling ability change is con-
sidered, and if once the SA is fixed by the MDP then it can
be changed based on RE feedback, or can remain in the same
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SA [22]. Reward function based on the correct SA is defined in
the following way

ℜ(s(M+1),a(M),s(M)) = o1Di j(k)+o2Fi j(k), (18)

where o1 and o2 are the user feature, Di j is the long-term secure
space, and Fi j is the scheduling capability.

Fuzzy optimization is described as

S∗j,k = Sini
i +

k

∑
k′

(
v∗j,k,P

∗
j,k′ −

(
1− v∗j,k′

)
P∗j,k′

)
η

p
j,k′ ,∆t

Qnom
i

, (19)

where P∗j,k′ and v∗j,k are the first stage yielded the scheduling
plan and the status of RE i at time step k, respectively.

Utility of agent system for scheduling ability. The REs have
different abilities to reduce the power balance using MG tech-
nology due to a different online status (for example, payment
level and needed energy in the current stage) and background
information.

Our work shows that REs can manage the imbalance of
power based on the SA concept, and we provide an assessment
system to determine SA values based on the online status of
each RE as well as the history of each RE. The assessment in-
dices we are going to consider are:

Insufficient storage. Pcom
kt > 0 insufficient storage states can-

not store the excess power that may be generated RE and cannot
absorb that which causes the problem of imbalance even though
consisting of excess power. Thus, the power storage lag was ex-
pressed as

I1
S = QG2V (Ptot

kt
) Pc

I ηc (∆t− kt∆T )

Qnom
(

s∗j − sikt −1
) . (20)

where I2
S express the insufficient storage.

Irregular supply. Ptot
kt < 0 means that URG generations can-

not meet the MG demand for the load. In other words, MG re-
quires V2 G energy. The REs must therefore discharge its stored
energy in order to satisfy the MG compensation requirement.
An RE that is very keen to pay will usually be very reluctant to
unlock it. Thus, the capacity of the power supply index and the
charging urgent level index are mutually interrelated. The REI
power supply capacity can then be defined as

I2
S = QG2V (Ptot

kt )
Pc

I ηc(∆t−kt∆T )−Qnom
(

s∗j−sikt−1
)

Pc
I ηc (∆t−kt∆T )

. (21)

Online prediction loss. Ptot+
kt ≤ 0 states that during online

demand management, there may be a chance of uncertainties
which may cause energy loss as well as load imbalance. Uncer-
tainties such as environmental disasters, charge-discharge prob-
lems of batteries, and the depth of discharge may lead to ineffi-
cient management by the RE as well as MG. Online prediction

loss is expressed by

I3+
s = QG2V (Ptot

kt )

∑
k′

(
v∗j,k,P

∗
j,k′−

(
1−v∗j,k′

)
P∗j,k′

)
η

p
j,k′ ,∆t

Qnom
i

. (22)

3.4. Fuzzy interference-based schedule priority
Fuzzy interference provides optimal schedule priority (policy)
to the MDP to decide on it. A fuzzy interference provides con-
trol over the decision made by the MDP on schedule prior-
ity. Consider the fuzzy system evolving the transition matrix
P∗j,k = [PT

IS(1)
, . . . ,PT

IS(n)
], where PT

IS(1)
states the row vector repre-

senting a fuzzy transition under the action of In
s . Therefore, the

initial fuzzy transition for state S(0) is given by

St = S0oP
(
P0

j,k
)
oP
(
P1

j,k
)
o . . . . . . .P(Pt−1

j,k ). (23)

Now the major role of MDP is to reach the goal set by fuzzy,
which is g = {g(1), . . . ,g(n)} where g states the optimal value
to maximize the following quantity

St∗og→ w.r.t.
[
P0

j,k, . . . ,P
(t−1)∗
j,k

]
, (24)

where S is a transition state, t∗ is the number of steps in which
the scheduled plan on the prior base should be achieved.

4. RESULT AND DISCUSSION
This section illustrates the result analysis of different opera-
tion modes taken in the proposed demand-supply model. The
simulation analyzed different load-shifting points under opti-
mal scheduling. The net load calculation of real-time DSM
is evaluated under different uncertainties. The real-time sce-
nario from two household electricity utilization and financial
saving is derived under MARKOV FRDSM scheduling tech-
nique. The proposed MARKOV FRDSM scheduling technique
is compared with the existing algorithms such as differential
evolution (DE) [10] and real-coded genetic algorithm [17].

4.1. Load shifting using optimal scheduling
Residential electricity using the two previously indicated sche-
duling methods in an uncoordinated charging framework is an-
alyzed. Based on their electricity usage trends, electricity cus-
tomers were divided into clusters like Household 1 and House-
hold 2. The power habits of two houses from two nearby clus-
ters are depicted in Fig. 4.

The highest-priority electrical loads in the house must be met
first, according to a fuzzy interference-based policy. House-
hold 1 is scheduled ahead of Household 2 in the proposed
MARKOV FRDSM. The electricity supplier has changed both
the provided power usage patterns by Household 1 and House-
hold 2 as displayed in Fig. 5. The electricity provider will
move the customer power use to different times. As an outcome
of fuzzy scheduling, the degree of shifted electricity for each
timeslot is shown in Fig. 6. When compared to Household 1, it
can be seen that Household 2 has the majority of loads moved.
In fact, Household 1 received 91.2% of the power. As a result,
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Fig. 4. A sample of load consumption profiles from two households

Fig. 5. Modified electricity profile with FCFS policy

8.8% of the load was moved. However, Household 2 electri-
cal demand was altered significantly with 73.9% of its targeted
power usage scheduled being implemented.

Furthermore, comparison of two household financial savings
on power bills demonstrates that Household 1 saves far more
than Household 2. Household 1 used to have a savings rate of
24.57%, whereas Household 2 had a savings rate of 17.10%.
The fuzzy Markov scheduling policy seeks to handle the level
of shifting electricity demand associated with fuzzy interfer-
ence by ensuring electricity to all appliances in order to offset
the enormous gap in financial savings amongst customers. The
new power supply profiles of two households created with the
fuzzy Markov scheduling approach are shown in Fig. 7. Fig-
ure 8 also shows the degree of shifting client loads. As a result

Fig. 6. Electricity demand shifts as a result of the FCFS policy

Fig. 7. Power supply profile for two household realized with fuzzy
Markov scheduling policy

of this, Fig. 9 depicts the overall load demands and the output
of the URGs under the four control techniques described previ-
ously.

Figure 10 depicts the system net loads for uncoordinated con-
trol (UC), real-time demand-side management (RDSM) with-
out real-time power allocation (RTAC), RDSM with RTAC, and
real-time control (RTC) techniques. The characteristics of the
system net load, such as the peak-valley difference, the fluc-
tuation rate, and the relative peak reduction (RPR) [15] were
clearly enhanced after considering the optimum scheduling of
the REs in the later three techniques, as shown in Fig. 10. In par-
ticular, the suggested RDSM with RTAC outperforms existing
approaches in terms of improving the system net load charac-
teristics.
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Fig. 8. Modified power profile with AF policy

Fig. 9. Curves showing total load under four approaches
and the output of the URG

Fig. 10. Curves of system net load under four different ways

The RTC method is intended for MGs on a smaller scale.
It is difficult to properly analyze the realistic expression of the
charging and discharging urgency level and power allocation

due to its limited operating mechanism. As a result, the RTC
methodology has a lower ability to respond to system compen-
sation needs than the fuzzy Markov RDSM method.

Table 1
Microgrid operating cost

Algorithm Operating cost (%)

Differential Evolution [10] 1.95%

Real Coded Genetic Algorithm [17] 1.16%

Proposed MARKOV FRDSM 1.09%

According to Fig. 11, the proposed MARKOV FRDSM
method takes less time (56 seconds) to solve this problem.

Fig. 11. Comparative analysis of computational time

This is less time when compared with the existing technique
as described in the literature [10, 14]. The operation cost of
the proposed and existing is evaluated from equation 8 in this
analysis. The proposed MARKOV FRDSM reduces the cost
of operation of the microgrid which is shown in Table 1. The
proposed MARKOV FRDSM t is compared to popular state-
of-the-art algorithms like differential evolution (DE) and real-
coded genetic algorithms to demonstrate its efficacy.

5. CONCLUSIONS
In this research, a two-stage MARKOV FRDSM that can con-
centrate on real-time uncertainties is proposed. It mainly con-
sists of two stages. The first stage provides a minimized oper-
ation cost as well as maintains a supply-demand balance under
uncertain situations. Moreover, it provides an optimal plan for
the current time. In the second stage based on the plan, it pro-
vides a priority-wise decision to obtain a schedule for allocat-
ing the power according to their demand. In addition, a non-
linear model predictive controller (NMPC) is designed to give
a global solution to the non-linear optimization problem with
real-time requirements based on the uncertainties over the fore-
casted load demands and current load status. Finally, the pro-
posed work was tested on a random basis under various energy
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usage, resulting in lower home appliance electricity bills. The
overall cost reduction of the microgrid differential evolution,
real coded genetic algorithm, and proposed MARKOV FRDSM
are 1.95%, 1.16%, and 1.09%, respectively without demand-
side management participation.
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