Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Road dust should be considered as a secondary source of contamination in the environment, especially when re-suspended. In our study road dust samples were collected from 8 high-capacity urban roads in two districts of Kraków (Krowodrza and Nowa Huta). Total concentration of toxic elements, such as Cd, Cr, Cu, Mn, Zn, Co, Pb, Ni, Ba and Se were determined using ICP –MS ELAN 6100 Perkin Elmer. A fractionation study were performed using VI step sequential extraction, according to the modified method provided by Salomons and Fӧrstner. Appropriate quality control was ensured by using reagent blanks and analysing certified reference material BCR 723 and SRM 1848a. Concentration of metals in the road dust varied as follows [mg/kg]: Cd 1.02-1.78, Cr 34.4-90.3, Cu 65-224, Mn 232-760, Zn 261-365, Co 4.32-6.46, Pb 85.6-132, Ni 32.2-43.9, Ba 98.9-104 and Se 78.3-132. Degree of contamination of road dust from Nowa Huta was very high (Cdeg 54) and considerable for road dust from Krowodrza (Cdeg 25). Results revealed that road dust samples were heavily contaminated with Cd, Cu, Zn, Mn, Co, Pb, Ni, Ba and Se, in amounts exceeding multiple times geochemical background values. The chemical speciation study using VI step sequential extraction, followed by assessing risk assessment code (RAC) revealed that elements in road dust are mostly bound with mobile and easy bioavailable fractions such as carbonates and exchangeable cations, with the exception for Cr and Cu being mostly associated and fixed with residual and organic matter fraction.
Go to article

Bibliography

  1. Adamiec, E., Jarosz-Krzemińska E., Wieszała R. (2016). Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environmental monitoring and assessment 188, 1-11
  2. Adamiec, E. (2017a). Road Environments: Impact of Metals on Human Health in Heavily Congested Cities of Poland. Int J Environ Res Public Health 14(697), 1–17, DOI: 10.3390/ijerph14070697.
  3. Adamiec, E. (2017b). Traffic related metals as sources of urban environment pollution: a case study of Kraków, Poland. WIT Transactions on Ecology and the Environment 214, 87–89.
  4. Ali-Taleshi M. S., Moeinaddini M., Feiznia S., Squizzato S. (2020). Heavy Metal Pollution in Street Dust from Tehran in 2018: Metal Richness and Degree of Contamination Assessment. Journal of Envir. Health Engin. 7 (2) :179-194
  5. Ali-Taleshi, M.S., Feiznia, S., Bourliva, A., Squizzato, S. (2021). Road dusts-bound elements in a major metropolitan area, Tehran (Iran): Source tracking, pollution characteristics, ecological risks, spatiotemporal and geochemical patterns. Urban Climate, 39, 100933.
  6. Ali-Taleshi M.S., Squizzato S., Feiznia S., Carabalí G. (2022). From dust to the sources: The first quantitative assessment of the relative contributions of emissions sources to elements (toxic and non-toxic) in the urban roads of Tehran, Iran. Microchemical Journal, 181, 107817, DOI: 10.1016/j.microc.2022.107817.
  7. AQEG (2012) Fine Particle Matter (PM2.5) in the United Kingdom. Air Quality Expert Group. https://www.gov.uk/goverment/publications/fine-particulate-matter-pm2-5-in-the-uk.
  8. Ayrault S., Catinon M., Boudouma O., Bordier L., Agnello G., Reynaud S., Tissut M. 2013. Street Dust: Source and Sink of Heavy Metals To Urban Environment. E3S Web of Conferences, Vol 1, Proceedings of the 16th International Conference on Heavy Metals in the Environment, DOI:10.1051/e3sconf/2013012000.
  9. Brewer, P. 1997. M.Sc. Thesis: ‘Vehicles as a source of heavy metal contamination in the environment’. University of Reading, Berkshire, UK.
  10. EPA (2020). Smog, Soot, and Other Air Pollution from Transportation, https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution
  11. Filgueiras, A. F., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Environmental Monitoring, 4, 823–857.
  12. Godłowska J., Kaszowski K, Kaszowski W. (2022). Application of the FAPPS system based
  13. on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland. Archives of Environmental Protection. 48 (3), 109-117,
  14. DOI: 10.24425/aep.2022.142695
  15. Gunawardana C., Goonetilleke A., Egodawatta P., Dawes L., Kokot S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 87 (2), 163-170, DOI: 10.1016/j.chemosphere.2011.12.012.
  16. Hakanson L. (1980). An ecological risk index for aquatic pollution control: A sediment ecological approach. Water Res.14:975–1001.
  17. Holnicki P., Kałuszko A., Nahorski Z. (2021) Analysis of emission abatement scenario to improve urban air quality. Archives of Environmental Protection. 47(2) 103–114. DOI 10.24425/aep.2021.137282.
  18. Hu X., Zhang Y., Luo J., Wang T. & Lian H. (2011) Total concentrations and fractionation of heavy metals in road-deposited sediments collected from different land use zones in a large city (Nanjing), China, Chemical Speciation & Bioavailability, 23:1, 46-52, DOI: 10.3184/095422911X12971903458891
  19. Kowalik R., Gawdzik J., Bąk-Patyna P., Ramiączek P., Jurišević N. (2022), Risk Analysis of Heavy Metals Migration from Sewage Sludge of Wastewater Treatment Plants. Int J Environ Res Public Health, 19(18):11829. DOI: 10.3390/ijerph191811829. PMID: 36142102; PMCID: PMC9517408.
  20. Li J.L., He M., Han W., Gu Y.F. (2009). Availability and mobility of metal fractions related to the characteristics of the coastal soils developed from alluvial deposits. Environ Monit Assess 158:459–469, DOI: 10.1007/s10661-008-0596-8
  21. Lis J., Pasieczna A. (1995). Atlas geochemiczny Krakowa i okolic 1:100 000. Państwowy Instytut Geologiczny, Warszawa.
  22. Marin J., Colina M., Ledo H., Gardiner P. H. E. (2022). Ecological risk by potentially toxic elements in surface sediments of the Lake Maracaibo (Venezuela). Environ. Eng. Res, 27(4), 210232, DOI: 10.4491/eer.2021.232.
  23. Matabane D. L., Godeto T. W., Mampa R. M., Ambushe A. A. (2021). Sequential Extraction and Risk Assessment of Potentially Toxic Elements in River Sediments. Minerals, 11(8), 874, DOI: 10.3390/min11080874.
  24. Muschack W. (1990) Pollution of street run-off by traffic and local conditions. Science of The Total Environment, 93, 419-431, DOI: 10.1016/0048-9697(90)90133-f.
  25. Miazgowicz A., Krennhuber K., Lanzerstorfer C. (2020). Metals concentrations in road dust from high traffic and low traffic area: a size dependent comparison. Int. J. Environ. Sci. Technol. 17, 3365–3372, DOI:1007/s13762-020-02667-3.
  26. Michlaski R., Pecyna-Utylska P. (2022). Chemical characterization of bulk deposition in two cities of Upper Silesia (Zabrze, Bytom), Poland. Case study. Archives of Environmental Protection, 48(2),106–116, DOI 10.24425/aep.2022.140784.
  27. Perin G., Craboledda L., Lucchese M., Cirillo R., Dotta L., Zanetta M. L., Oro A. A. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In Heavy Metals in the Environment; LakkasT.D., Ed.; CEP Consultants: Edinburgh, Scotland; 2, 454–456.
  28. Sabouhi, M., Ali-Taleshi, M.S., Bourliva, A., Nejadkoorki, F., Squizzato, S. (2020).Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran.Science of The total Envir.744, 140862.Salomons W. , Förstner (1985). U. Metals in the Hydrocycle (Springer Verlag)
  29. Sutherland R. A., Tack F. M. G, Ziegler A.D. (2012) Road-deposited sediments in an urban environment: A first look at sequentially extracted element loads in grain size fractions. Journal of Hazardous Materials 225– 226, 54– 62.
  30. Świetlik, R., Trojanowska, M., Strzelecka, M., & Bocho-Janiszewska, A. (2015). Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barriers along expressway. A potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environmental Pollution, 196, 404–413
  31. Vlasov D., Ramirez O., Luhar A. (2022). Road dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management. Atmosphere, 13, 607, DOI: 10.3390/atmos13040607.
  32. Zhang, M. & Wang, H. (2009) Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China. J. Environ. Sci., 21, 625 – 631.
Go to article

Authors and Affiliations

Ewa Adamiec
1
ORCID: ORCID
Elżbieta Jarosz-Krzemińska
1
ORCID: ORCID
Robert Brzoza-Woch
1
ORCID: ORCID
Mateusz Rzeszutek
1
ORCID: ORCID
Jakub Bartyzel
1
ORCID: ORCID
Tomasz Pełech-Pilichowski
1
ORCID: ORCID
Janusz Zyśk
1

  1. AGH – University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the profile of EC (elemental carbon) and OC (organic carbon) temperature fractions in PM1 and PM2.5 samples and in wet deposition samples (material collected on a filter). The research was conducted at the urban background station in Zabrze (southern Poland) in the period of Oct 2020–Oct 2021. PM samples were collected with high-volume samplers; the automatic precipitation collector NSA 181 by Eigenbrodt was used to collect the deposition samples. Concentrations of EC and OC were determined using thermal-optical method (carbon analyzer from Sunset Laboratory Inc., “eusaar_2” protocol). Regardless of the type of research material, organic carbon constituted the dominant part of the carbonaceous matter, and this dominance was more visible in the non-heating season. The profile of temperature fractions of OC and EC was clearly different for dust washed out by precipitation. Noteworthy is a much lower content of pyrolytic carbon (PC) in OC, which can be explained by the fact that PC is most often combined with the water soluble organic carbon. In addition, a high proportion of the OC3 fraction was observed, followed by OC4, which may indicate that these fractions are of a more regional origin. With regard to the EC fractions, the differences are less visible and concern, in particular, the higher share of EC4 and the lower EC2. The obtained results may be a valuable source of information about the actual status of the carbonaceous matter and its transformation in the atmosphere.
Go to article

Bibliography

  1. Aswini, A.R., Hegde, P., Nair, P.R. & Aryasree, S. (2019). Seasonal changes in carbonaceous aerosols over a tropical coastal location in response to meteorological processes. Sci Total Environ, 656, pp. 1261–1279. DOI:10.1016/j.scitotenv.2018.11.366.
  2. Bautista VII, A.T., Pabroa, P.C.B., Santos, F.L., Racho, J.M.D. & Quirit, L.L. (2014). Carbonaceous particulate matter characterization in an urban and a rural site in the Philippines. Atmos Pollut Res, 5(2), pp. 245–252. DOI:10.5094/APR.2014.030.
  3. Błaszczak, B. & Mathews, B. (2020). Characteristics of Carbonaceous Matter in Aerosol from Selected Urban and Rural Areas of Southern Poland. Atmosphere, 11(7), 687. DOI:10.3390/atmos11070687.
  4. Cao, J.J., Lee, S.C., Ho, K.F., Zou, S.C., Fung, K., Li, Y., Chow, J.C. & Watson, J.G. (2004). Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ, 38(27), pp. 4447–4456. DOI:10.1016/j.atmosenv.2004.05.016.
  5. Cao, J.J., Lee, S.C., Ho, K.F., Fung, K., Chow, J.C. & Watson, J.G. (2006). Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res., 6, 106–122. DOI:10.4209/aaqr.2006.06.0001.
  6. Chow, J.C., Lowenthal, D.H., Chen, L.-W.A., Wang, X. & Watson, J.G. (2015). Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health, 8, pp. 243–263. DOI:10.1007/s11869-015-0338-3.
  7. Chief Inspectorate for Environmental Protection, Air quality portal (https://powietrze.gios.gov.pl/pjp/current (07.11.2022)).
  8. Dillner, A.M., Phuah, C.H. & Turner, J.R. (2009). Effects of post-sampling conditions on ambient carbon aerosol filter measurement. Atmos Environ, 43, pp. 5937–5943. DOI:10.1016/j.atmosenv.2009.08.009.
  9. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe (http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (23.09.2022)).
  10. EEA (2022). European Environmental Agency, 2022. Air quality in Europe 2022. Web Report (https://www.eea.europa.eu/publications/air-quality-in-europe-2022/air-quality-in-europe-2022 (24.11.2022).
  11. EN 12341:2014 Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter.
  12. Freney, E.J., Sellegri, K., Canonaco, F., Boulon, J., Hervo, M., Weigel, R., Pichon, J.M., Colomb, A., Prévôt, A.S.H. & Laj, P. (2011). Seasonal variations in aerosol particle composition at the Puy-de-Dôme research station in France. Atmos. Chem. Phys., 11, pp. 13047–13059. DOI:10.5194/ACP-11-13047-2011.
  13. Karanasiou, A., Minguillón, M.C., Alastuey, A., Putaud, J.-P., Maenhaut, W., Panteliadis, P., Močnik, G., Favez, O. & Kuhlbusch, T.A.J. (2015). Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Disciss., 8, pp. 9649–9712. DOI:10.5194/amtd-8-9649-2015.
  14. Kim, K.H., Sekiguchi, K., Furuuchi, M. & Sakamoto, K. (2011). Seasonal variation of carbonaceous and ionic components in ultrafine and fine particles in an urban area of Japan. Atmos Environ, 45, pp. 1581–1590. DOI:10.1016/j.atmosenv.2010.12.037.
  15. Li, H.Z., Dallmann, T.R., Li, X., Gu, P. & Presto, A.A. (2018). Urban organic aerosol exposure: spatial variations in composition and source impacts. Environ. Sci. Technol., 52, pp. 415–426. DOI:10.1021/acs.est.7b03674.
  16. Lim, S., Lee,, M., Lee, G., Kim, S., Yoon, S. & Kang, K. (2012). Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC superstation and their ratios as source signature. Atmos. Chem. Phys., 12, pp. 2007–2024. DOI:10.5194/acp-12-2007-2012.
  17. Michalski, R. & Pecyna-Utylska, P. (2022). Chemical characterization of bulk depositions in two cities of Upper Silesia (Zabrze, Bytom), Poland. Case study. Arch. Environ. Prot., 48(2), pp. 106–116. DOI: 10.24425/aep.2022.140784.
  18. Reizer, M. & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health, 9(5), pp. 517–531. DOI:10.1007/s11869-015-0358-z.
  19. Sahu, M., Hu, S., Ryan, P.H., Le Masters, G., Grinshpun, S.A., Chow, J.C. & Biswas, P. (2011). Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate. Sci Total Environ, 409, pp. 2642–2651. DOI:10.1016/j.scitotenv.2011.03.032.
  20. dos Santos, D.A.M., Brito, J.F., Godoy, J.M. & Artaxo, P. (2016). Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil. Atmos Environ, 144, pp. 226–233. DOI:10.1016/j.atmosenv.2016.08.081.
  21. Tohidi, R., Altuwayjiri, A. & Sioutas, C. (2022). Investigation of organic carbon profiles and sources of coarse PM in Los Angeles. Environ Pollut, 314, 120264. DOI:10.1016/j.envpol.2022.120264.
  22. Vodička, P., Schwarz, J., Cusack, M. & Ždímal, V. (2015). Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Sci Total Environ, 518–519, pp. 424–433. DOI:10.1016/j.scitotenv.2015.03.029.
  23. Zhu, C.-S., Chen, C.-C., Vao, J.-J., Tsai, C.-J., Chou, C.C.-K., Liu, S.-C. & Roam, G.-D. (2010). Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmos Environ, 44, 2668–2673. DOI:10.1016/j.atmosenv.2010.04.042.
  24. Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Han, Y.-M., Liu, S.-X. & Zhao, Z.-Z. (2014). Comparison and implications of PM2.5 carbon fractions in different environments. Sci Total Environ, 466–467, pp. 203–209. DOI:10.1016/j.scitotenv.2013.07.029.
  25. Zioła, N., Błaszczak, B. & Klejnowski, K. (2021). Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere 12, 119. DOI:10.3390/atmos12010119.
Go to article

Authors and Affiliations

Barbara Błaszczak
1
Barbara Mathews
1
Krzysztof Słaby
1
Krzysztof Klejnowski
1

  1. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article focuses on discussing the adsorption process of phenol and its chloro-derivatives on the HDTMA-modified halloysite. Optimized chemical structures of phenol, 2-, 3-, 4-chlorophenol, 2,4-dichloro-, and 2,4,6-trichlorophenol were obtained with computational calculation (the Scigress program). Charge distributions and the hypothetical structure of the system HDTMA-modified halloysite are among their key features. The above-mentioned calculations are applied in order to explain adsorption mechanism details of chlorophenols on the HDTMA-modified halloysite in aqueous solutions. The results of electron density distribution and solvent accessible surface area calculations for phenol and chlorophenols molecules illustrate the impact of chlorine substitution position in a phenol molecule, both on the mechanism and the kinetics of their adsorption in aqueous solutions. Experimental adsorption data were sufficiently represented using the Langmuir multi-center adsorption model for all adsorbates. In addition, the relations between adsorption isotherm parameters and the adsorbate properties were discussed. This study also targets at explaining the role of meta position as a chlorine substituent for mono-chloro derivatives. Given the above findings, two possible mechanisms were utilized as regards chlorophenol adsorption on the HDTMA-modified halloysite, i.e., electrostatic and partition interactions when the chlorophenols exist in a molecular form.
Go to article

Bibliography

  1. Ali, I., Asim M. & Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170. DOI:10.1016/j.jenvman.2012.08.028
  2. Berland, K., Cooper, V.R., Lee, K., Schröder, E., Thonhauser, T., Hyldgaard, P. & Lundqvist, B. I. (2015). Van der Waals forces in density functional theory: A review of the vdW-DF method. Rep. Prog. Phys. 78, 066501. DOI:10.1088/0034-4885/78/6/066501
  3. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review. Arch. Environ. Protect. 47, pp. 3–27. DOI:10.24425/aep.2021.138460
  4. Cavallaro, G. Lazzara, G. Milioto, S. & Parisi, F. (2015). Hydrophobically Modified Halloysite Nanotubes as reverse Micelles for Water-in-Oil Emulsion. Langmuir 31, 7472–8. DOI:10.1021/acs.langmuir.5b01181
  5. Chen, C., Geng, X. & Huang W. (2017). Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem. Eng. J. 327, 941. DOI:10.1016/j.cej.2017.06.183
  6. Cruz-Guzmán, M., Celis, R., Hermosín, M.C., Koskinen, W.C. & Cornejo, J. (2005). Adsorption of pesticides from water by functionalized organobentonites. J. Agric. Food. Chem. 53, pp. 7502–7511. DOI:10.1021/jf058048p
  7. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21. DOI:10.1016/j.scitotenv.2003.09.015
  8. Czaplicka M. & Czaplicki, A. (2006). Photodegradation of 2,3,4,5-tetrachlorophenol in water/methanol mixture. J. Photochem. Photobiol. A 178, 90. DOI:10.1016/j.jphotochem.2005.07.005
  9. Damjanović, L., Rakić, V., Rac, V., Stošić, D. & Auroux, A. (2010). The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J. Hazard. Mater. 184, 477. DOI:10.1016/j.jhazmat.2010.08.059
  10. Djebbar, M., Djafri, F., Bouchekara, M. & Djafri, A. (2012). Adsorption of phenol on natural clay. Appl. Water Sci. 2, 77. Doi: 10.1007/s13201-012-0031-8
  11. Garba, Z.N., Zhou, W., Lawan, I., Xiao, W., Zhang, M., Wang, L., Chen, L. & Yuan Z. (2019). An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J. Environ. Manage. 241, 59. DOI:10.1016/j.jenvman.2019.04.004.
  12. Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787. DOI:10.1002/jcc.20495
  13. Honda, M. & Kannan, K. (2018). Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ. Pollut. 232, 487. DOI:10.1016/j.envpol.2017.09.073
  14. Hu, X., B. Wang, Yan, G. & Ge B. (2012). Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite. Arch. Environ. Protect. 48, pp. 37–47. DOI:10.24425/aep.2022.142688
  15. Huang, J., Jin, X. & Deng, S. (2012). Phenol adsorption on an N-methylacemetamide-modified hypercrosslinked resin from aqueous solutions. Chem. Eng. J. 192, 192. DOI:10.1016/j.cej.2012.03.078
  16. Issabayeva, G., Hang, S.Y., Wong M.C. & Aroua, M. K. (2018). A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev. Chem. Eng. 34, pp. 855–873. DOI:10.1515/revce-2017-0007
  17. Joussein, E., Petit, S., Churchman, G. J., Theng, B. K. G., Righi, D. & Delvaux, B. (2005). Halloysite clay minerals-a review. Clay Clay Miner. 40, 383. DOI:10.1180/0009855054040180
  18. Lin, S.S., Chang, D.J., Wang, C.H. & Chen, C.C. (2003). Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions. Water Res. 37, pp. 793–800. DOI:10.1016/s0043-1354(02)00422-0
  19. Madannejad, S., Rashidi, A., Sadeghhassani, S., Shemirani, F. & Ghasemy, E. (2018) Removal of 4-chlorophenol from water using different carbon nanostructures: a comparison study. J. Mol. Liq. 249, 877. DOI:10.1016/j.molliq.2017.11.089
  20. Majlesi, M. & Hashempour Y. (2017). Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling. Arch. Environ. Protect. 43, pp. 13–25. DOI:10.1515/aep-2017-0035
  21. Nafees, M. & Waseem, A. (2014). Organoclays as Sorbent Material for Phenolic Compounds: A Review. Clean – Soil, Air, Water 41, pp. 1-9. DOI:10.1002/clen.201300312
  22. Ocampo-Perez, R., Leyva-Ramos, R., Mendoza-Barron, J. & Guerrero-Coronado, R. M. (2011). Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models. J. Colloid Interf. Sci. 364, 195. DOI:10.1016/j.jcis.2011.08.032
  23. Pandey, G., Munguambe, D. M., Tharmavaram, M., Rawtani, D. & Agrawal, Y.K. (2017). Halloysite nanotubes - An efficient ‘nano-support’ for the immobilization of α-amylase. App. Clay Sci. 136, pp. 184–191. DOI:10.1016/j.clay.2016.11.034
  24. Pandey, G., Tharmavaram, M., Khatri, N. & Rawtani, D. (2022). Mesoporous halloysite nanotubes as nano-support system for cationic dyes: An equilibrium, kinetic and thermodynamic study for latent fingerprinting. Micropor. Mesopor. Mat. 346, 112288. DOI:10.1016/j.micromeso.2022.112288
  25. Pandey, G., Tharmavaram, M., Phadke, G., Rawtani, D., Ranjan, M. & Sooraj K.P. (2022). Silanized halloysite nanotubes as ‘nano-platform’ for the complexation and removal of Fe(II) and Fe(III) ions from aqueous environment. Sep. Purif. Technol. 29, 121141. DOI:10.1016/j.seppur.2022.121141
  26. Park, Y., Ayoko, G.A., Kurdi, R., Horváth, E., Kristóf, J. & Frost, R.L. (2013). Adsorption of phenolic compounds by organoclays: Implications for the removal of organic pollutants from aqueous media, J. Colloid Interf. Sci. 406, 196. DOI:10.1016/j.jcis.2013.05.027
  27. Pasbakhsh, P.. Churchman, G.J. & Keeling, J.L. (2013). Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 74, 47. DOI:10.1016/j.clay.2012.06.014
  28. Paul, D.R., Zeng, Q.H., Yu, A.B. & Lu, G.Q. (2005). The interlayer swelling and molecular packing in organoclays, J. Colloid Interface Sci. 292, pp. 462–468. DOI:10.1016/j.jcis.2005.06.024
  29. Qiu, X., Li, N., Ma, X., Yang, S., Xu, Q., Li, H. & Lu, J. (2014). Facile preparation of acrylic ester-based crosslinked resin and its adsorption of phenol at high concentration. J. Environ. Chem. Eng. 2, 745. DOI:10.1016/j.jece.2013.11.016
  30. Raczyńska-Żak, M. PhD Thesis, supervisor P. Słomkiewicz, Kielce, Poland, 2018
  31. Rawajfih, Z. & Nsour, N. (2006). Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J. Colloid Interface Sci. 298, pp. 39–49. DOI:10.1016/j.jcis.2005.11.063
  32. Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G.S.M., Rajarathnam, D. & Naidu, R. (2010). Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J. Hazard. Mater. 183, 87. DOI:10.1016/j.jhazmat.2010.06.110
  33. Setter, O. P., Dahan, L., Hamad, H. A. & Segal, E. (2022). Acid-etched Halloysite nanotubes as superior carriers for ciprofloxacin. App. Clay Sci. 228, 106629. DOI:10.1016/j.clay.2022.106629
  34. Sinha, B,. Ghosh, U.K., Pradhan, N.C. & Adhikari, B. (2006). Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes. J. Appl. Polym. Sci. 10, pp. 1857–1865. DOI:10.1002/app.23566
  35. Słomkiewicz, P., Szczepanik, B. & Czaplicka, M. (2020). Adsorption of Phenol and Chlorophenols by HDTMA Modified Halloysite Nanotubes, Materials 13, 3309 DOI:10.3390/ma13153309
  36. Smith, J.A. & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environ. Sci. Technol. 29, pp. 685–692. DOI:10.1021/es00003a016
  37. Su, J., Lin, H.-F., Wang, Q.-P., Xie, Z.M. & Chen, Z.L. (2011). Adsorption of phenol from aqueous solutions by organomontmorillonite, Desalination, 269, 163. DOI:10.1016/j.desal.2010.10.056
  38. Tamijani, A.A., Salam, A. & de Lara-Castells, M. P. (2016). Adsorption of Noble-Gas Atoms on the TiO2(110) Surface: An Ab Initio-Assisted Study with van der Waals-Corrected DFT. J. Phys. Chem. C. 120, 18126. DOI:10.1021/acs.jpcc.6b05949
  39. Tana, D., Yuan, P., Liu, D. & Du, P. Modifications of Halloysite, Chapter 8 in Developments in Clay Science, December 2016
  40. Tharmavaram, M., Pandey, G. & Rawtani, D. (2018). Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv. Colloid Interface Sci. 261, 82–101. DOI:10.1016/j.cis.2018.09.001
  41. Tharmavaram, M., Pandey, G., Bhatt, P., Prajapati, P., Rawtani, D., Sooraj, K.P. & Ranjan, M. (2021). Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment. Int. J. Biol. Macromol. 191, pp. 1046–1055. DOI:10.1016/j.ijbiomac.2021.09.098
  42. Tharmavaram, M., Pandey, G., Khatri, N. & Rawtani, D. (2023). L-arginine-grafted halloysite nanotubes as a sustainable excipient for antifouling composite coating. Mater. Chem. Phys. 293, 126937. DOI:10.1016/j.matchemphys.2022.126937
  43. Wu, J. & Yu, H.Q. (2006). Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics. J. Hazard. Mater. 137, pp. 498–508. DOI:10.1016/j.jhazmat.2006.02.026
  44. Xie, J., Meng, W., Wu, D., Zhang, Z. & Kong, H. (2012). Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non‐ionizable organic compounds. J. Hazard. Mater. 231, 57. DOI:10.1016/j.jhazmat.2012.06.035
  45. Yang, Q., Gao, M. & Zang, W. (2017). Comparative study of 2,4,6-trichlorophenol adsorption by montmorillonites functionalized with surfactants differing in the number of head group and alkyl chain. Colloid. Surf. Physicochem. Eng. Asp. 520, 805. DOI:10.1016/j.colsurfa.2017.02.057
  46. Yousef, R.I. & El-Eswed B. (2009). The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloid Surf. A 334, pp. 92–99. DOI:10.1016/j.colsurfa.2008.10.004
  47. Yu, J.-Y., Shin, M.Y., Noh, J.-H. & Seo, J.J. (2004). Adsorption of phenol and chlorophenols on Ca-montmorillonite in aqueous. Geosci. J. 8, 185. DOI:10.1007/BF02910194
  48. Yuan, G. (2004). Natural and modified nanomaterials as sorbents of environmental contaminants. J. Environ. Sci. Health. Part A 39, pp. 2661–2670. DOI:10.1081/ESE-200027022
  49. Zhang, L., Zhang, B., Wu, T., Sun, D. & Li, Y. (2015). Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 484, 118. DOI:10.1016/j.colsurfa.2015.07.055
  50. Zhou, Q., Frost, R.L., He, H., Xi, Y. & Zbik, M. (2007). TEM, XRD, and thermal stability of adsorbed paranitrophenol on DDOAB organoclay. J. Colloid Interface Sci. 311, pp. 24–37. DOI:10.1016/j.jcis.2007.02.039
Go to article

Authors and Affiliations

Beata Szczepanik
1
Anna Kołbus
1
Piotr Słomkiewicz
1
Marianna Czaplicka
2
ORCID: ORCID

  1. Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
  2. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study mainly focused on the current situation of antibiotic pollution in coastal wetlands by screening for four common antibiotics (norfloxacin - NOR, ofloxacin - OFL, azithromycin - AZM, and roxithromycin - RXM) and two coastal wetland plants (Suaeda and Nelumbo nucifera), to determine the removal of antibiotic pollution by phytoremediation technology and its mechanism. We aimed to provide ideas for the remediation of antibiotics in coastal wetlands and their mechanisms of action in the context of intensive farming. The results showed that both plants had remediation effects on all four antibiotics, the phytoremediation of NOR and OFL was particularly significant, and the remediation effect of N. nucifera was better than that of Suaeda . The removal rates of the four antibiotics by Suaeda and N. nucifera at low antibiotic concentrations (10–25 μg/L) reached 48.9%–100% and 77.3%–100%, respectively. The removal rates of the four antibiotics at high antibiotic concentrations (50–200 μg/L) reached 7.5%–73.2% and 22%–84.6%, respectively. Moreover, AZM was only detected in trace amounts in the roots of N. nucifera, and RXM was not detected in either plant body.
Go to article

Bibliography

  1. Blasco, D. (1994). The Ramsar Convention manual: a guide to the Convention on Wetlands of International Importance especially as Waterfowl Habitat. Water 1994.
  2. Burken, J.G. & Schnoor, J.L. (1998). Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 32 (21), 3379-3385. DOI:10.1021/es9706817.
  3. Calheiros, C., Rangel, A.& Castro, P. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res. 41(8), pp. 1790-1798. DOI:10.1016/j.watres.2007.01.012.
  4. Chen, X.J., Li, F.Y. & He, Y.B. (2012). Remediation effect of two kinds of aquatic plants on water contaminated by antibiotics. Subtrop. Plant Sci. 41 (4), 1-7. (in Chinese).
  5. Chiou, C.T., Sheng, G. & Manes, M. (2001). A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 35 (7), pp. 1437-1444. DOI:10.1021/es0017561.
  6. Dettenmaier, E.M., Doucette, W.J. & Bugbee, W.J. (2009). Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 43 (2), pp. 324-329. DOI:https://doi.org/10.1021/es801751x.
  7. Ellis, J.B. (2006). Pharmaceutical and personal care products in urban receiving waters. Environ. Pollut. 144, pp. 184-189. DOI:10.1016/j.envpol.2005.12.018.
  8. Geng, J., Liu, X., Wang, J. & Li, S. (2022). Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: A review. Sci. Total Environ. 853, 158616. DOI:10.1016/J.SCITOTENV.2022.158616.
  9. Grote, M., Schwake, A.C., Michel, R., Stevens, H., Heyser, W., Langenkamper, G., Betsche, T. & Freitag, M. (2007). Incorporation of veterinary antibiotics into crop-s from manured soil. Federal Res. Centre Agric. 1 (1), pp. 25-32.
  10. Hoang, T.T.T., Tu, L.T.C., Le, N.P. & Dao, Q.P. (2013). A preliminary study on the phytoremediation o-f antibiotic contaminated sediment. Int. J. Phytoremediat. 15 (1), 65-76. DOI:10.1080/15226514.2012.670316.
  11. Hu, D.F. & Coats, J.R. (2007). Aerobic degradation and photolysis of tylosin in water and soil. Environ. Tech. Chem. 26, pp. 884-889. DOI:10.1897/06-197R.1.
  12. Jiang, L., Hu, X., Yin, D., Zhang, H. & Yu, Z. (2011). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 82 (6), pp. 822-828. DOI:10.1016/j.chemosphere.2010.11.028.
  13. KasprZyk-Hordern, B. & Dinsdsle, R. (2008). The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 42 (13), pp. 3498-3518. DOI:10.1016/j.watres.2008.04.026.
  14. Kay, P., Blackwell, P.A. & Boxall, A.B.A. (2005). A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data. Environ. Pollut. 134 (2), pp. 333-341. DOI:10.1016/j.envpol.2004.07.021.
  15. Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. & Buxton, H.T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. stream, 1999-2000. A national reconnaissance. Environ. Sci. Technol. 36 (6), pp. 1202-1211. DOI:10.1021/ES011055J.
  16. Kumar, K., Gupta, S.C., Baidoo, S., Chander, Y. & Rosen, C.J. (2005). Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual. 34 (6), pp. 2082-2085. DOI:10.2134/jeq2005.0026.
  17. Maier, M.L.V. & Tjeerdema, R.S. (2018). Azithromycin sorption and biodegradation in a simulated California river system. Chemosphere, 190, pp. 471-480. DOI:10.1016/j.chemosphere.2017.10.008.
  18. Managaki, S., Murata, A., Takada, H., Tuyen, B.C. & Chiem, N.H. (2007). Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environ. Sci. Technol. 41 (23), pp. 8004-8010. DOI:10.1021/es0709021.
  19. Mauricio, C.H. & Francis, J. (2017). Mangroves enhance local fisheries catches: a global meta-analysis. Fish. 18 (1), pp. 79-93. DOI:10.1111/faf.12168.
  20. Ostrowski, A., Connolly, R.M. & Sievers, M. (2021). Evaluating multiple stressor research in coastal wetlands: a systematic review. Mar. Environ. Res. 164, 105239. DOI:10.1016/j.marenvres.2020.105239.
  21. Peng, X.Z., Yu, Y.J., Tang, C.M., Tan, J.H., Huang, Q.X., Wang, Z.D. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Sci. Total Environ. 397 (1-3), pp/ 158-166. DOI:10.1016/j.scitotenv.2008.02.059.
  22. Sun, Q.Y., Peng, Y.S., Liu, Y., Xu, J.R., Ren, K.J. & Fang, X.T. (2017). Residues and migration characteristics of antibiotics ciprofloxacin(CIP) in two mangrove wetlands. J. Environm. Sci. (China) 37 (03), pp. 1057-1064. DOI:10.13671/j.hjkxxb.2016.0327.
  23. Thuy, H.T.T. & Tu, T.C.L. (2014). Degradation of Selected Pharmaceuticals in Coastal Wetland Water and Sediments. Water Air Soil Poll. 225 (5), pp. 1-9. DOI: 10.1007/s11270-014-1940-y.
  24. Yan, C.X., Yang, Y., Zhou, J. L., Liu, M., Nie, M.H., Shi, H. & Gu, L.J. (2013). Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 175, pp. 22-29. DOI:10.1016/j.envpol.2012.12.008.
  25. Yao, L.I., Zhang, J.R., Yu-Huang, W.U., Cai, J. & Cui, Y.B. (2017). Review on Antibiotic Pollution and Phytoremediation in Coastal Wetland. DEStech Transac. Environ. Ener. Ear. Sci.(ese). DOI:10.12783/dteees/ese2017/14358.
Go to article

Authors and Affiliations

Junwen Ma
1 4
Yubo Cui
1
Peijing Kuang
1
Chengdong Ma
2
Mingyue Zhang
1
Zhaobo Chen
1
Ke Zhao
3

  1. College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
  2. Department of Marine Ecological Environment Information,National Marine Environmental Monitoring Center, Dalian, 116023, China
  3. Key Laboratory of Songliao Aquatic Environment, Ministry of Education,Jilin Jianzhu University, Changchun, 130118, China
  4. Product and Technology Development Center,Beijing Enterprises Water Group Limited, Beijing, 100102, China
Download PDF Download RIS Download Bibtex

Abstract

This article presents the validity, advisability and purposefulness of using a gas sensor matrix to monitor air deodorization processes carried out in a peat-perlite-polyurethane foam-packed biotrickling filter. The aim of the conducted research was to control the effectiveness of air stream purification from vapors of hydrophobic compounds, i.e., n-hexane and cyclohexane. The effectiveness of hydrophobic n-hexane and cyclohexane removal from air was evaluated using gas chromatography as the reference method and a custom-built gas sensor matrix consisting of seven commercially available sensors. The influence of inlet loading (IL) of n-hexane and cyclohexane on the biotrickling filtration performance was investigated. The prepared sensor matrix was calibrated with use of two statistical techniques: Multiple Linear Regression (MLR) and Principal Component Regression (PCR). The developed mathematical models allowed us to correlate the multidimensional signal from the sensor array with the concentration of the removed substances. The results based on gas chromatography analyses indicated that the elimination efficiencies of n-hexane and cyclohexane reached about 40 and 30 g m-3 h-1, respectively. The results obtained using a gas sensor matrix revealed that it was possible not only to determine concentration reliably of investigated hydrophobic volatile organic compounds in the gas samples, but also to obtain results of a similar high level of quality as the chromatographic ones. A gas-sensor matrix proposed in this work can be used for on-line real-time monitoring of biofiltration process performance of air polluted with n-hexane and cyclohexane.
Go to article

Bibliography

  1. Arnold, M., Reittu, A., von Wright, A., Martikainen, P.J. & Suihko, M-L. (1997). Bacterial degradation of styrene in waste gases using a peat filter. Applied Microbiology and Biotechnology, 48, pp.738-744. DOI:10.1007/s002530051126
  2. Brattoli, M., De Gannero, G., De Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: olfactometry and chemical sensors. Sensors, 11, 5, pp. 5290-5322. DOI:10.3390/s110505290
  3. Buliner, E.A., Koziel, J.A., Cai, L. & Wright, D. (2012). Characterization of livestock odors using steel plates solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Journal of the Air & Waste Management Association, 56, 10, pp. 1391-1403. DOI:10.1080/10473289.2006.10464547
  4. Cabeza, I.O., Lopez, R., Giraldez, I., Stuetz, R.M. & Diaz, M.J. (2013). Biofiltration of α-piene vapours using municipal solid waste (MSW) – Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, pp. 149-158. DOI:10.1016/j.cej.2013.08.032
  5. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H_2 S from air. Journal of Environmental Management, 165, 1, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  6. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G. & Qian, H. (2016a). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, pp. 248-253. DOI:10.1016/j.chemosphere.2016.02.027
  7. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 6, pp. 1091-1102. DOI:10.1016/j.biotechadv.2016.06.007
  8. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, pp. 1038-1044. DOI:10.1016/j.scitotenv.2018.08.230
  9. Chou, M-S. & Shiu, W-Z. (2011). Bioconversion of Methylamine in Biofilters. Journal of the Air & Waste Management Association, 47, 1, pp. 58-65. DOI:10.1080/10473289.1997.10464408
  10. Fang, J-J., Yang, N., Cen, D-Y., Shao, L-M. & He, P-J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Management, 32, 7, pp. 1401-1410. DOI:10.1016/j.wasman.2012.02.013
  11. Giungato, P., Gilo, A.D., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R. & de Gennaro, G. (2018). Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends in Analytical Chemistry, 107, pp. 116-129. DOI:10.1016/j.trac.2018.07.019
  12. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G. & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253, pp. 120019. DOI:10.1016/j.jclepro.2020.120019
  13. Lopez, R., Cabeza, I.O., Giraldez, I. & Diaz, M.J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102, 17, pp. 7984-7993. DOI:10.1016/j.biortech.2011.05.085
  14. Marycz, M., Rodriguez, Y., Gębicki, J. & Munoz, R. (2022). Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, pp. 135608. DOI:10.1016/j.chemosphere.2022.135608
  15. Maurer, D., Bragdon, A., Short, B., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107. DOI:10.24425/119699
  16. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofiltration. Archives of Environmental Protection, 46, 2, pp. 53-57. DOI:10.24425/aep.2020.133474
  17. Munoz, R., Sivert, E., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44, 18, pp. 5129-5149. DOI:10.1016/j.watres.2010.06.013
  18. Nagata, E., Yoshio, Y. & Takeuchi, N. (2003). Measurement of Odor Threshold by Triangular Odor Bag Method. Odor measurement review, 118, pp. 118-127.
  19. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48, 3, pp. 3-20. DOI:10.24425/aep.2022.142685
  20. Rolewicz-Kalińska, A., Lelicińska-Serafin, K. & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, pp. 69-80. DOI:10.1016/j.cherd.2020.10.017
  21. Rybarczyk, P. (2022). Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes, 10, 12, pp. 2531. DOI:10.3390/pr10122531
  22. Rybarczyk, P., Marycz, M., Szulczyński, B., Brillowska-Dąbrowska, A., Rybarczyk, A. & Gębicki, J. (2021). Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Archives of Environmental Protection, 47, 1, pp. 26-34. DOI. 10.24425/aep.2021.136445
  23. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous removal of hexane and ethanol from air in biotrickling filter – process performance and monitoring using electronic-nose. Sustainability, 12, 1, pp. 387. DOI:10.3390/su12010387
  24. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019). Effects of n-butanol presence, inlet loading, empty residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapours from air. Chemical Papers, 74, pp. 1039-1047. DOI:10.1007/s11696-019-00943-2
  25. Sabilla, S.I., Sarno, R. & Siswantoro, J. (2017). Estimating Gas Concentration using Artificial Neural Network for Electronic Nose. Procedia Computer Science, 124, pp. 181-188. DOI:10.1016/j.procs.2017.12.145
  26. Salamanca, D., Dobslaw, D. & Engesser, K-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, pp. 97-107. DOI:10.1016/j.chemosphere.2017.02.078
  27. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25, 9, pp. 928-939. DOI:10.1016/j.wasman.2005.07.006
  28. Sohn, J.H., Dunlop, M., Hudson, N., Kim, T.I. & Yoo, Y.H. (2009). Non-specific conducting polimer-based array capable of monitoring odour emissions from a Biofiltration system in a piggery building. Sensors and Actuators B: Chemical, 135, 2, pp. 455-464. DOI:10.1016/j.snb.2008.10.007
  29. Szulczyński, B., Gębicki, J. & Namieśnik, J. (2018a). Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 72, pp. 527-532. DOI:10.1007/s11696-017-0310-9
  30. Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2018b). Monitoring of n-butanol vapours biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie, 149, pp. 1693-1699. DOI:10.1007/s00706-018-2243-6
  31. Szulczyński, B., Rybarczyk, P., Gospodarek, M. & Gębicki, J. (2019). Biotrickling filtration of n-butanol vapours: process monitoring using electronic nose and artificial neural network. Monatshefte fur Chemie, 150, pp. 1667-1673. DOI 10.1007/s00706-019-02456-w
  32. Vergara-Fernandez, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36, 4, pp. 1079-1093. DOI:10.1016/j.biotechadv.2018.03.008
  33. Wiśniewska, M., Kulig, A. & Lelecińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46, 3, pp. 60-68. DOI:10.24425/aep.2020.134536
  34. Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X. & Yang C. (2022). Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. Environmental Science & Technology, 56, 14, pp. 10349-10360. DOI:10.1021/acs.est.2c02022
  35. Wysocka, I., Gębicki, J. & Namieśnik, J. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409-9434, DOI:10.1007/s11356-019-04195-1
  36. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28, 4, pp. 531-540, DOI:10.1016/j.biotechadv.2010.04.002
  37. Yu, G., Wang, G., Wang, S., Yang, C., Chen, H., Zhu, Y., Yu, L., Li, J. & Kazemian, H. (2021). Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 152, pp. 654-662. DOI:10.1016/j.psep.2021.06.029
  38. Zarra, T., Reiser, M., Naddeo, V., Belgiorno, V. & Kranert, M. (2014). Odor Emissions Characterization from Wastewater Treatment Plants by Different Measurement Methods. Chemical Engineering Transaction, 40, pp. 37-42. DOI:10.3303/CET1440007
  39. Zhang, S., Cai. L., Koziel, J.A., Hoff, S.J., Schmidt, D.R., Clanton, C.J., Jacobson, L.D., Parker, D.B. & Heber, A.J. (2010). Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sensors and Actuators B: Chemical, 146, 2, pp. 427-432. DOI:10.1016/j.snb.2009.11.028
  40. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, pp. 771-780. DOI:10.1016/j.wasman.2021.03.055
  41. Arnold, M., Reittu, A., von Wright, A., Martikainen, P.J. & Suihko, M-L. (1997). Bacterial degradation of styrene in waste gases using a peat filter. Applied Microbiology and Biotechnology, 48, pp.738-744. DOI:10.1007/s002530051126
  42. Brattoli, M., De Gannero, G., De Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: olfactometry and chemical sensors. Sensors, 11, 5, pp. 5290-5322. DOI:10.3390/s110505290
  43. Buliner, E.A., Koziel, J.A., Cai, L. & Wright, D. (2012). Characterization of livestock odors using steel plates solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Journal of the Air & Waste Management Association, 56, 10, pp. 1391-1403. DOI:10.1080/10473289.2006.10464547
  44. Cabeza, I.O., Lopez, R., Giraldez, I., Stuetz, R.M. & Diaz, M.J. (2013). Biofiltration of α-piene vapours using municipal solid waste (MSW) – Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, pp. 149-158. DOI:10.1016/j.cej.2013.08.032
  45. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H_2 S from air. Journal of Environmental Management, 165, 1, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  46. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G. & Qian, H. (2016a). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, pp. 248-253. DOI:10.1016/j.chemosphere.2016.02.027
  47. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 6, pp. 1091-1102. DOI:10.1016/j.biotechadv.2016.06.007
  48. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, pp. 1038-1044. DOI:10.1016/j.scitotenv.2018.08.230
  49. Chou, M-S. & Shiu, W-Z. (2011). Bioconversion of Methylamine in Biofilters. Journal of the Air & Waste Management Association, 47, 1, pp. 58-65. DOI:10.1080/10473289.1997.10464408
  50. Fang, J-J., Yang, N., Cen, D-Y., Shao, L-M. & He, P-J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Management, 32, 7, pp. 1401-1410. DOI:10.1016/j.wasman.2012.02.013
  51. Giungato, P., Gilo, A.D., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R. & de Gennaro, G. (2018). Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends in Analytical Chemistry, 107, pp. 116-129. DOI:10.1016/j.trac.2018.07.019
  52. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G. & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253, pp. 120019. DOI:10.1016/j.jclepro.2020.120019
  53. Lopez, R., Cabeza, I.O., Giraldez, I. & Diaz, M.J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102, 17, pp. 7984-7993. DOI:10.1016/j.biortech.2011.05.085
  54. Marycz, M., Rodriguez, Y., Gębicki, J. & Munoz, R. (2022). Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, pp. 135608. DOI:10.1016/j.chemosphere.2022.135608
  55. Maurer, D., Bragdon, A., Short, B., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107. DOI:10.24425/119699
  56. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofiltration. Archives of Environmental Protection, 46, 2, pp. 53-57. DOI:10.24425/aep.2020.133474
  57. Munoz, R., Sivert, E., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44, 18, pp. 5129-5149. DOI:10.1016/j.watres.2010.06.013
  58. Nagata, E., Yoshio, Y. & Takeuchi, N. (2003). Measurement of Odor Threshold by Triangular Odor Bag Method. Odor measurement review, 118, pp. 118-127.
  59. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48, 3, pp. 3-20. DOI:10.24425/aep.2022.142685
  60. Rolewicz-Kalińska, A., Lelicińska-Serafin, K. & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, pp. 69-80. DOI:10.1016/j.cherd.2020.10.017
  61. Rybarczyk, P. (2022). Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes, 10, 12, pp. 2531. DOI:10.3390/pr10122531
  62. Rybarczyk, P., Marycz, M., Szulczyński, B., Brillowska-Dąbrowska, A., Rybarczyk, A. & Gębicki, J. (2021). Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Archives of Environmental Protection, 47, 1, pp. 26-34. DOI. 10.24425/aep.2021.136445
  63. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous removal of hexane and ethanol from air in biotrickling filter – process performance and monitoring using electronic-nose. Sustainability, 12, 1, pp. 387. DOI:10.3390/su12010387
  64. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019). Effects of n-butanol presence, inlet loading, empty residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapours from air. Chemical Papers, 74, pp. 1039-1047. DOI:10.1007/s11696-019-00943-2
  65. Sabilla, S.I., Sarno, R. & Siswantoro, J. (2017). Estimating Gas Concentration using Artificial Neural Network for Electronic Nose. Procedia Computer Science, 124, pp. 181-188. DOI:10.1016/j.procs.2017.12.145
  66. Salamanca, D., Dobslaw, D. & Engesser, K-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, pp. 97-107. DOI:10.1016/j.chemosphere.2017.02.078
  67. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25, 9, pp. 928-939. DOI:10.1016/j.wasman.2005.07.006
  68. Sohn, J.H., Dunlop, M., Hudson, N., Kim, T.I. & Yoo, Y.H. (2009). Non-specific conducting polimer-based array capable of monitoring odour emissions from a Biofiltration system in a piggery building. Sensors and Actuators B: Chemical, 135, 2, pp. 455-464. DOI:10.1016/j.snb.2008.10.007
  69. Szulczyński, B., Gębicki, J. & Namieśnik, J. (2018a). Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 72, pp. 527-532. DOI:10.1007/s11696-017-0310-9
  70. Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2018b). Monitoring of n-butanol vapours biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie, 149, pp. 1693-1699. DOI:10.1007/s00706-018-2243-6
  71. Szulczyński, B., Rybarczyk, P., Gospodarek, M. & Gębicki, J. (2019). Biotrickling filtration of n-butanol vapours: process monitoring using electronic nose and artificial neural network. Monatshefte fur Chemie, 150, pp. 1667-1673. DOI 10.1007/s00706-019-02456-w
  72. Vergara-Fernandez, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36, 4, pp. 1079-1093. DOI:10.1016/j.biotechadv.2018.03.008
  73. Wiśniewska, M., Kulig, A. & Lelecińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46, 3, pp. 60-68. DOI:10.24425/aep.2020.134536
  74. Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X. & Yang C. (2022). Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. Environmental Science & Technology, 56, 14, pp. 10349-10360. DOI:10.1021/acs.est.2c02022
  75. Wysocka, I., Gębicki, J. & Namieśnik, J. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409-9434, DOI:10.1007/s11356-019-04195-1
  76. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28, 4, pp. 531-540, DOI:10.1016/j.biotechadv.2010.04.002
  77. Yu, G., Wang, G., Wang, S., Yang, C., Chen, H., Zhu, Y., Yu, L., Li, J. & Kazemian, H. (2021). Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 152, pp. 654-662. DOI:10.1016/j.psep.2021.06.029
  78. Zarra, T., Reiser, M., Naddeo, V., Belgiorno, V. & Kranert, M. (2014). Odor Emissions Characterization from Wastewater Treatment Plants by Different Measurement Methods. Chemical Engineering Transaction, 40, pp. 37-42. DOI:10.3303/CET1440007
  79. Zhang, S., Cai. L., Koziel, J.A., Hoff, S.J., Schmidt, D.R., Clanton, C.J., Jacobson, L.D., Parker, D.B. & Heber, A.J. (2010). Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sensors and Actuators B: Chemical, 146, 2, pp. 427-432. DOI:10.1016/j.snb.2009.11.028
  80. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, pp. 771-780. DOI:10.1016/j.wasman.2021.03.055
Go to article

Authors and Affiliations

Dominik Dobrzyniewski
1
ORCID: ORCID
Bartosz Szulczyński
1
ORCID: ORCID
Piotr Rybarczyk
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years, there has been a marked increase in the amount of municipal waste generated in Poland. In 2020, 21.6% of all municipal waste was subjected to a thermal treatment process. Consequently, the amount of ashes generated is significant. Due to their properties, it is difficult to utilize this type of waste within concrete production technology. One of the waste utilization methods is to add it to hardening slurries used in, among others, cut-off walls. The article assesses the possibility of using ashes from municipal waste incineration as an additive to hardening slurries. It also discusses the technological properties of hardening slurries with the addition of the ashes in question. The experiment showed that it is possible to compose a hardening slurry based on tested ashes with technological properties suitable for use as a cut-off wall. Further research directions were proposed.
Go to article

Bibliography

  1. Almahdawi, F.H.M.; Al-Yaseri, A.Z. & Jasim, N. (2014). Apparent viscosity direct from Marsh funnel test. Iraqi Journal of Chemical and Petroleum Engineering, 15(1), pp. 51-57, ISSN: 1997-4884
  2. Alwaeli, M.; Alshawaf, M. & Klasik, M. (2022). Recycling of selected fraction of municipal solid waste as artificial soil substrate in support of the circular economy. Archives of Environmental Protection, 48(4), pp. 68–77. DOI:10.24425/aep.2022.143710
  3. Borys, M. (2012). Hardening slurry cut-off walls in dyke bodies and bases. Wiadomości melioracyjne i łąkarskie, 55(2), pp. 89-95. (in Polish).
  4. Borys, M.; Rycharska, J. (2006). Parameters of hardening slurries used for the construction of cut-off walls in dykes. Woda-Środowisko-Obszary Wiejskie, 6(1), pp.47-56. (in Polish)
  5. Chomkhamsri, K. & Pelletier, N. (2011). Analysis of existing environmental footprint methodologies for products and organizations: recommendations, rationale, and alignment. Institute for Environment and Sustainability, pp. 1-61.
  6. Domańska, W.; Bochenek, D.; Dawgiałło, U.; Gorzkowska, E.; Hejne, J.; Kiełczykowska, A.; Kruszewska, D.; Nieszałą, A.; Nowakowska, B.; Sulik, J.; Wichniewicz, A.; Wrzosek, A. (2022). Environment 2022. Statistics Poland. Warsaw, 157–158p.
  7. Falacinski, P. & Szarek, Ł. (2016). Possible applications of hardening slurries with fly ash from thermal treatment of municipal sewage sludge in environmental protection structures. Archives of Hydro-Engineering and Environmental Mechanics, 63, pp. 47-61.DOI: 10.1515/heem-2016-0004
  8. Falaciński, P. (2012). Possible applications of hardening slurries with fluidal ashes in environment protection structures. Archives of Environmental Protection 38, pp. 91-104. DOI:10.2478/v10265-012-0031-7
  9. Falaciński, P.; Kledyński, Z. (2006). Influence of aggressive liquids on hydraulic conductivity of hardening slurries with the addition of different fluidal fly ashes. Environmental Engineering: Proceedings of the 2nd National Congress on Environmental Engineering, 4-8 September 2005. CRC Press, pp. 295-300.
  10. Ferreira, C.; Ribeiro, A.; Ottosen, L. (2003). Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials, 96(2-3), pp. 201-216.
  11. Garvin, S.L.; Hayles, C.S. (1999). The chemical compatibility of cement–bentonite cut-off wall material. Construction and Building Materials, 13(6), pp. 329-341.
  12. Jefferis, S. (2012). Cement-bentonite slurry systems. In Grouting and Deep Mixing 2012, pp.1-24.
  13. Jefferis, S. (2013). Grouts and slurries. In Construction Materials Reference Book. Routledge, pp. 173-202.
  14. Jefferis, S.A. (2008). Reactive transport in cut-off walls and implications for wall durability. In GeoCongress 2008: Geotechnics of Waste Management and Remediation, pp. 652-659.
  15. Kledynski, Z.; Machowska, A. (2013). Hardening slurries with ground granulated blast furnace slag activated with fluidal fly ash from lignite combustion. Przemysł Chemiczny 92(4), pp.490-497. (in Polish)
  16. Kledyński, Z. (1989). The use of statistical planning of experiments in the search for a frost resistant hardening slurry. Gospodarka Wodna, 9, pp. 181-184. (in Polish)
  17. Kledyński, Z. (2000). Corrosion resistance of hardening slurries in environmental facilities. Prace Naukowe Politechniki Warszawskiej. Inżynieria Środowiska, 33, pp. 3-101. (in Polish)
  18. Kledyński, Z.; Rafalski, L. (2009). Hardening slurries. Komitet Inżynierii Lądowej i Wodnej Polskiej Akademii Nauk Instytut Podstawowych Problemów Technicznych. Studia z Zakresu Inżynierii, 66. Warszawa. pp.1-234. (in Polish)
  19. Kledyński, Z.; Falaciński, P.; Machowska, A.; Dyczek, J. (2016). Utilisation of CFBC fly ash in hardening slurries for flood-protecting dikes. Archives of Civil Engineering, 62, pp. 75-88.
  20. Kledyński, Z.; Falaciński, P.; Machowska, A.; Szarek, Ł.; Krysiak, Ł. (2021). Hardening Slurries with Fluidized-Bed Combustion By-Products and Their Potential Significance in Terms of Circular Economy. Materials, 14(9). DOI: 10.3390/ma14092104
  21. Kumar, A.; Mittal, A. (2019). Utilization of municipal solid waste ash for stabilization of cohesive soil. In Environmental Geotechnology: Proceedings of EGRWSE 2018, Springer. Singapore, pp .133-139.
  22. Lam, C.H.K.; Barford, J.P.; McKay, G. (2011). Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean technologies and environmental policy, 13, pp. 607-615.
  23. Liang, S.; Chen, J.; Guo, M.; Feng, D.; Liu, L.; Qi, T. (2020). Utilization of pretreated municipal solid waste incineration fly ash for cement-stabilized soil. Waste Management, 105:, pp. 425-432. DOI: 10.1016/j.wasman.2020.02.017
  24. Marsh, H.N. (1931). Properties and treatment of rotary mud. Transactions of the AIME, 92, pp. 234-251.
  25. Mewis, J. (1979). Thixotropy-a general review. Journal of Non-Newtonian Fluid Mechanics, 6, pp. 1-20.
  26. Opdyke, S.M.; Evans, J.C. (2005). Slag-Cement-Bentonite Slurry Walls. Journal of Geotechnical and Geoenvironmental Engineering, 131, pp. 673-681.
  27. Orr, J.; Gibbons, O.; Arnold, W. (2020). A brief guide to calculating embodied carbon.
  28. Pawnuk, M.; Szulczyński, B.; den Boer, E.; Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48(3), pp. 3-20. DOI: 10.24425/aep.2022.142685
  29. Peters, G.P. (2010). Carbon footprints and embodied carbon at multiple scales. Current Opinion in Environmental Sustainability, 2, pp. 245-250.
  30. Primus, A.; Chmielniak, T.; Rosik-Dulewska, C. (2021). Concepts of energy use of municipal solid waste. Archives of Environmental Protection, 47(2), pp. 70-80. DOI: 10.24425/aep.2021.137279
  31. Rafalski, L. (1995). Właściwości i zastosowanie zawiesin twardniejących. Instytut Badawczy Dróg i Mostów.
  32. Ruffing, D.; Evans, J. (2019). Soil Mixing and Slurry Trench Cutoff Walls for Coal Combustion Residue Sites. 2019 World of Coal Ash.
  33. Siddique, R. (2010)a. Use of municipal solid waste ash in concrete. Resources. Conservation and Recycling, 55, pp. 83-91.
  34. Siddique, R. (2010)b. Utilization of municipal solid waste (MSW) ash in cement and mortar. Resources, Conservation and Recycling, 54, pp. 1037-1047.
  35. Stanisz, A. (2007). Przystępny kurs statystyki: z zastosowaniem STATISTICA PL na przykładach z medycyny. Analizy wielowymiarowe. StatSoft.
  36. Szarek, Ł. (2019). The influence of addition fly ash from thermal treatment of municipal sewage sludge on selected hardening slurries properties. In Monitoring and Safety of Hydrotechnical Constructions, pp.329-340. (in Polish)
  37. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46(3), pp. 49-59. DOI: 10.24425/aep.2020.134535
  38. Talefirouz, D.; Çokça, E.; Omer, J. (2016). Use of granulated blast furnace slag and lime in cement-bentonite slurry wall construction. International journal of geotechnical engineering, 10, pp. 81-85.
  39. Uliasz-Bocheńczyk, A.; Deja, J.; Mokrzycki, E. (2021). The use of alternative fuels in the cement industry as part of circular economy. Archives of Environmental Protection, 47(4), pp. 109-117. DOI: 10.24425/aep.2021.139507
  40. Wiedmann, T.; Minx, J. (2008). A definition of ‘carbon footprint.’ Ecological economics research trends, 1, pp. 1-11.
  41. Wielgosiński, G. (2016). Spalarnie odpadów komunalnych w perspektywie 2020 r. Przegląd Komunalny, pp. 30-32.
  42. Wojtkowska, M.; Falaciński, P.; Kosiorek, A. (2016). The release of heavy metals from hardening slurries with addition of selected combustion by-products. Inżynieria i Ochrona Środowiska, 19, pp. 479-491. (in Polish)
  43. EN 450-1:2012 Fly ash for concrete. Definition, specifications and conformity criteria.
  44. ISO/TS 14067:2013 Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification and communication. .
  45. Regulation of the Minister of Climate of 2 January 2020 on the waste catalogue (Journal of Laws from 2020, item. 10 - Dz.U. 2020 poz. 10). (in Polish)
  46. Waste Act of 14 December 2012 r. (Journal of Laws from 2013, item. 21 - Dz.U. 2013 poz. 21). (in Polish)
  47. PN-EN 196-2:2013-11 Methods of testing cement -- Part 2: Chemical analysis of cement. (in Polish)
  48. PN EN 451-2:2017-06 Method of testing fly ash - Part 2: Determination of fineness by wet sieving. (in Polish)
  49. BN-90/1785-01:1990. Drilling mud. Field test methods. (in Polish)
  50. PN-85/G-02320:1985. Drilling. Cements and grouts for cementing in boreholes. (in Polish)
Go to article

Authors and Affiliations

Łukasz Szarek
1
ORCID: ORCID
Paweł Falaciński
1
ORCID: ORCID
Piotr Drużyński
1

  1. Faculty of Building Services, Hydro and Environmental Engineering,Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study describes the creation of a low-cost silica material using a silicate extract as a precursor. This precursor is made from inexpensive palm frond waste ash through a simple calcination process at 500°C and a green extraction with water. Nitrogen adsorption-desorption, FTIR analyses, and transmission electron microscopy were used to characterize the samples. The surface area of the obtained mesoporous silica ash material was 282 m2/g1, and the pore size was 5.7 nm. For the adsorption of copper ions, an excellent adsorbent was obtained. The maximum copper ion adsorption capacity of this inexpensive silica ash-based adsorbent for removing heavy metal ions Cu(II) from aqueous solutions was 20 mg/g, and the effect of pH, temperature, and time on its adsorption capacity were also investigated. In addition, the adsorption isotherms were fi tted using Langmuir and Freundlich models, and the adsorption kinetics were evaluated using pseudo-fi rst-order and pseudo-secondorder models. The results demonstrated that the synthesized adsorbent could effectively remove heavy metal ions from aqueous solutions at pH levels ranging from 2 to 5. The adsorption isotherms followed the Langmuir model, and the kinetic data fi t the pseudo-second-order mode well. The thermodynamic results Negative values of G° indicate that the adsorption process was spontaneous, and negative values of entropy S° indicate that the state of the adsorbate at the solid/solution interface became less random during the adsorption process. According to the findings, prepared silica from palm waste ash has a high potential for removing heavy contaminating metal ions Cu (II) from aqueous solutions as a low-cost alternative to commercial adsorbents.
Go to article

Bibliography

  1. Akin Aksu, A. & C. Deniz, Köksal, (2005). Perceptions and attitudes of tourism students in Turkey. International Journal Of Contemporary Hospitality Management 17, 5, pp. 436-447.‏ DOI:10.1108/09596110510604869
  2. Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G. & Ahmad, M.N.M. (2010). Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176, pp. 510–520. DOI:10.1016/j.jhazmat.2009.11.059.
  3. Ang, X. W., Sethu, V. S., Andresen, J. M., & Sivakumar, M. J. C. T. (2013). Copper (II) ion removal from aqueous solutions using biosorption technology: thermodynamic and SEM–EDX studies. Clean Technologies and Environmental Policy, 15(2), pp. 401-407. DOI:10.1038/s41598-020-73570-7
  4. Aregawi, B.H. & Mengistie, A.A. (2013) Removal of Ni (II) from aqueous solution using leaf, bark and seed of moringa stenopetala adsorbents. Bulletin of the Chemical Society of Ethiopia, 27:35. DOI:10.4314/bcse.v27i1.4
  5. Ayob, S., Othman, N., Altowayti, W. A. H., Khalid, F. S., Bakar, N. A., Tahir, M., & Soedjono, E. S. (2021). A review on adsorption of heavy metals from wood-industrial wastewater by oil palm waste. Journal of Ecological Engineering, 22(3). DOI :10.12911/22998993/132854 ‏
  6. Baaloudj, O., Kenfoud, H., Badawi, A. K., Assadi, A. A., El Jery, A., Assadi, A. A. & Amrane, A. (2022). Bismuth sillenite crystals as recent photocatalysts for water treatment and energy generation: A critical review. Catalysts, 12(5), 500. :|DOI 10.1016/j.jclepro.2021.129934
  7. Baaloudj, O., Nasrallah, N., Kebir, M., Guedioura, B., Amrane, A., Nguyen-Tri, P., Nanda, S. & Assadi, A.A. (2020). Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles. Environ. Sci. Pollut. Res. 28, pp. 15436–15452. DOI:10.1007/s11356-020-11716-w
  8. Benrighi, Y., Nasrallah, N., Chaabane, T., Sivasankar, V., Darchen, A. & Baaloudj, O. (2021). Photocatalytic performances of ZnCr2O4 nanoparti cles for cephalosporins removal: Structural, optical and electrochemical properties. Opt. Mater. 115, 111035.
  9. Blitz, I. P.; Blitz, J. P.; Gun’ko, V. M.; Sheeran, D. J Functionalized silicas: Structural characteristic and adsorption of Cu(II) and Pb(II). Colloids Surf. A: Physicochem. Eng. Aspects 2007, 307, 83. DOI:10.1016/j.colsurfa.2007.05.016
  10. Boyd, C.E. (2020). Water Quality Protection. In Water Quality: An Introduction, Springer International Publishing: Cham, Switzerland, pp. 379–409, ISBN 978-3-030-23335-8. DOI:10.1007/978-3-030-23335-8
  11. Chao, C.C.T. & Krueger, R.R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience, 42, pp. 1077–1082. DOI:10.21273/HORTSCI.42.5.1077
  12. Chandara, C., Azizli, K. A. M., Ahmad, Z. A., Hashim, S. F. S., & Sakai, E. (2011). Analysis of mineralogical component of palm oil fuel ash with or without unburned carbon. In Advanced materials research (Vol. 173, pp. 7-11). Trans Tech Publications Ltd.‏ DOI:10.4028/www.scientific.net/AMR.173.7
  13. Das, T., Roy, A., Uyama, H., Roy, P. & Nandi, M. (2017) 2-Hydroxy-naphthyl functionalized mesoporous silica for fluorescence sensing and removal of aluminum ions, Dalton Trans., 46 (22), pp. 7317–7326. DOI:10.1039/c7dt00369b
  14. El-Araby, H. A., Ibrahim, A. M. M. A., Mangood, A. H., & Adel, A. H. (2017). Sesame husk as adsorbent for copper (II) ions removal from aqueous solution. Journal of Geoscience and Environment Protection, 5(07), 109. DOI:10.4236/gep.2017.57011
  15. Elsayed, A., Osman, D., Attia, S., Ahmed, H., Shoukry, E., Mostafa, Y. & Taman, A. (2020). A Study on the Removal Characteristics of Organic and Inorganic Pollutants from Wastewater by Low Cost Biosorbent. Egyptian Journal of Chemistry, 63(4), pp. 1429-1442. DOI:10.21608/ejchem.2019.15710.1950.
  16. Faiad, A., Alsmari, M., Ahmed, M. M., Bouazizi, M. L., Alzahrani, B. & Alrobei, H. (2022). Date palm tree waste recycling: treatment and processing for potential engineering applications. Sustainability, 14(3), 1134.‏ DOI:10.3390/su14031134
  17. Fernandes, I.J., Calheiro, D.F., Sάnchez, A.L., Camacho, A.L.D., de Campos Rocha, T.L.A., Moraes, C.B.A.M. & de Sousa, V.C. (2016). Characterization of Silica Produced from Rice Husk Ash: Comparison of Purification and Processing Methods. Materials Research, Vol 20(2), pp. 512–518. DOI:10.1590/1980-5373-MR-2016-1043
  18. Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), pp. 385-470 (in Germany). DOI:10.1515/zpch-1907-5723
  19. Gökku¸ S. Ö. & Yıldız, Y.S. (2016) Application of electro-Fenton process for medical waste sterilization plant wastewater. Desalin. Water Treat. 57, pp. 24934–24945. DOI:10.1080/19443994.2016.1143882
  20. Gupta, V. K., Gupta, M. & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water research, 35(5), 1125-1134.‏., 2001, 35, 1125–1134. DOI:10.1016/S0043-1354(00)00389-4
  21. Habbache, N., Alane, N., Djerad, S. & Tifouti, L. (2009). Leaching of copper oxide with different acid solutions. Chemical Engineering Journal 152, 2-3, 503-508.‏ DOI:10.1016/j.cej.2009.05.020
  22. Hosseinkhani, H., Euring, M. & Kharazipour, A. (2014). Utilization of Date palm (Phoenix dactylifera L.) Pruning Residues as Raw Material for MDF Manufacturing. J. Mater. Sci. Res. 2014, 4, 46–61. DOI:10.5539/jmsr.v4n1p46
  23. Kushairi, A., Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., Bidin, M. N. I. Z., Ghazali, R. & Parveez, G. K. A. (2019). Oil palm economic performance in Malaysia and R&D progress in 2018. Journal of Oil Palm Research, 31(2), 165-194. DOI:10.21894/jopr.2019.0026.
  24. Khan, S.T. & Malik, A. (2019). Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 363, 295–308. DOI:10.1016/j.jhazmat.2018.09.091
  25. Kimbrough, D.E., Cohen, Y., Winer, A.M., Creelman, L. & Mabuni, C.A. (1999). Critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 29 (1), pp. 1-46. DOI:10.1080/10643389991259164
  26. KKIU ,Arunakumara Buddhi Charana Walpola,Min-Ho Yoon.( 2013) Banana Peel: A Green Solution for Metal Removal from Contaminated WatersI., Korean J Environ Agric., Vol. 32, No. 2, pp. 108-116. DOI:10.1080/10643389991259164
  27. Langmuir, I. (1916) The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221-2295. DOI:10.1021/ja02268a002
  28. Lin, S.H. & Juang, R.S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater, 92, pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  29. Mahmudi, M., Arsad, S., Amelia, M.C., Rohman-ingsih, H.A. & Prasetiya, F.S. (2020). An alternative activated carbon from agricultural waste on chromium removal. Journal of Ecological Engineering, 21(8), 1-9. DOI:10.12911/22998993/127431
  30. Namasivayam, C., Prabha, D. & Kumutha, M. (1998). Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresource Technol. 64, pp. 77–79. DOI:10.1016/S0960-8524(97)86722-3
  31. Owoeye, S. S., Toludare, T. S., Isinkaye, O. E. & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of porcelain ceramics. Boletín de la Sociedad Española de Cerámica y Vidrio, 58(2), 77-84.‏ DOI:10.1016/j.bsecv.2018.07.002
  32. Park, D., Lim, S.R., Yun, Y.S. & Park, J.M. (2008). Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresource Technol. l 99: 8810–8818. DOI:10.1016/j.biortech.2008.04.042
  33. Sharaf, G. & Hassan, H. (2014). Removal of copper ions from aqueous solution using silica derived from rice straw: comparison with activated charcoal. International Journal of Environmental Science and Technology. DOI:10.1007/s13762-013-0343-8
  34. Taha, A.A., Ahmed, A.M., Abdel Rahman, H.H., Abouzeid, F.M. & Abdel Maksoud, M.O. (2017).Removal of nickel ions by adsorption on nano-bentonite: Equilibrium, kinetics, and thermodynamics. J. Dispers. Sci. Technol., 38, 757–767. DOI:10.1080/01932691.2016.1194211
  35. Umeda, J. & Kondoh, K. (2010). High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Industrial Crops and Products, 32 (3): 539-544. DOI:10.1016/j.indcrop.2010.07.002.
  36. Zhu, W., Wang, J., Wu, D., Li, X., Luo, Y., Han, C. & He, S. (2017). Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis. Nanoscale research letters, 12(1), 1-9.‏A.A. DOI:10.1186/s11671-017-2070-4
  37. Zuraidah, Y., Haniff, M. H. & Zulkifli, H. (2017). Does soil compaction affect oil palm standing biomass. Journal of Oil Palm Research, Kajang, 29(3), 352-357.‏ DOI:10.21894/jopr.2017.2903.07
Go to article

Authors and Affiliations

Fatima A. Al-Qadri
1
Alsaiari Raiedhah
1

  1. Department of Chemistry, College of Science and Art in Sharurah, Najran University,Kingdome of Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

Biological treatment in wastewater treatment plants appears to be one of the most crucial factors in water quality management and planning. Though, measuring this important factor is challenging, and obtaining reliable results requires signifi can`t effort. However, the use of artificial neural network (ANN) modeling can help to more reliably and cost-effectively monitor the pollutant characteristics of wastewater treatment plants and regulate the processing of these pollutants. To create an artificial neural network model, a study of the Samsun Eastern Advanced Biological WWTP was carried out. It provides a laboratory simulation and prediction option for flexible treatment process simulations. The models were created to forecast influent features that would affect effluent quality metrics. For ANN models, the correlation coefficients RTRAINING and RALL are more than 0.8080. The MSE, RMSE, and MAPE were less than 0.8704. The model’s results showed compliance with the permitted wastewater quality standards set forth in the Turkish water pollution control law for the environment where the treated wastewater is discharged. This is a useful tool for plant management to enhance the quality of the treatment while enhancing the facility’s dependability and efficiency.
Go to article

Bibliography

  • Adeogun, A. I., Bhagawati, P. B. & Shivayogimath, C. B. (2021). Pollutants removals and energy consumption in electrochemical cell for pulping processes wastewater treatment: Artificial neural network, response surface methodology and kinetic studies. Journal of Environmental Management, 281(December 2020), 111897. DOI:10.1016/j.jenvman.2020.111897.
  • Agatonovic-Kustrin, S. & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22,5,pp. 717–727. DOI:10.1016/S0731-7085(99)00272-1.
  • Alnajjar, H. Y. H. & Üçüncü, O. (2023). Removal efficiency prediction model based on the artificial neural network for pollution prevention in wastewater treatment plants. Arab Gulf Journal of Scientific Research, ahead-of-p(ahead-of-print), DOI:10.1108/AGJSR-07-2022-0129.
  • Bagheri, M., Mirbagheri, S. A., Bagheri, Z. & Kamarkhani, A. M. (2015). Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Safety and Environmental Protection, 95, pp.12–25. DOI:10.1016/j.psep.2015.02.008.
  • Bekkari, N. & Zeddouri, A. (2019). Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Management of Environmental Quality: An International Journal, 30,3, pp. 593–608, DOI:10.1108/MEQ-04-2018-0084.
  • Borgulat, A., Zgórska, A. & Głodniok, M. (2022). Comparison of different municipal sewage sludge products for potential ecotoxicity. Archives of Environmental Protection, 48, 1, pp. 92–99. DOI:10.24425/aep.2022.140548.
  • Chang, N. Bin, Chen, W. C. & Shieh, W. K. (2001). Optimal control of wastewater treatment plants via integrated neural network and genetic algorithms. Civil Engineering and Environmental Systems, 18, 1, pp. 1–17. DOI:10.1080/02630250108970290.
  • Gangi Setti, S. & Rao, R. N. (2014). Artificial neural network approach for prediction of stress-strain curve of near β titanium alloy. Rare Metals, 33, 3, pp. 249–257. DOI:10.1007/s12598-013-0182-2..
  • Golzar, F., Nilsson, D. & Martin, V. (2020). Forecasting wastewater temperature based on artificial neural network (ANN) technique and Monte Carlo sensitivity analysis. Sustainability (Switzerland), 12, 16. DOI:10.3390/SU12166386.
  • Golzar, K., Modarress, H. & Amjad-Iranagh, S. (2016). Evaluation of density, viscosity, surface tension and CO2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique. International Journal of Greenhouse Gas Control, 53, pp. 187–197. DOI:10.1016/j.ijggc.2016.08.008.
  • Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J. pyo, Kim, J. H. & Cho, K. H. (2015). Prediction of effluent concentration in a wastewater treatment plant using machine learning models. Journal of Environmental Sciences (China), 32, pp. 90–101. DOI:10.1016/j.jes.2015.01.007.
  • Hamada, M., Zaqoot, H. A. & Jreiban, A. A. (2018). Application of artificial neural networks for the prediction of Gaza wastewater treatment plant performance-Gaza strip. Journal of Applied Research in Water and Wastewater, 9, 1, pp. 399–406.
  • Hanbay, D., Turkoglu, I. & Demir, Y. (2008). Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks. Expert Systems with Applications, 34, 2, pp. 1038–1043. DOI:10.1016/j.eswa.2006.10.030.
  • Haykin, S. U. (2009). Neural Networks and Learning Machines. In 3 (Ed.), Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vols. 1–3). Library of Congress Cataloging. DOI:10.1016/B978-0-12-809633-8.20339-7.
  • Hong, Y.-S. T., Rosen, M. R. & Bhamidimarri, R. (2003). Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis. Water Research, 37, 7, pp. 1608–1618. DOI:10.1016/S0043-1354(02)00494-3.
  • Iratni, A. & Chang, N.-B. (2019). Advances in control technologies for wastewater treatment processes: status, challenges, and perspectives. IEEE/CAA Journal of Automatica Sinica, 6, 2, pp. 337–363, DOI:10.1109/JAS.2019.1911372.
  • Jana, D. K., Bhunia, P., Das Adhikary, S. & Bej, B. (2022). Optimization of Effluents Using Artificial Neural Network and Support Vector Regression in Detergent Industrial Wastewater Treatment. Cleaner Chemical Engineering, 3(June), pp. 100039. DOI:10.1016/j.clce.2022.100039
  • Jawad, J., Hawari, A. H. & Javaid Zaidi, S. (2021). Artificial neural network modeling of wastewater treatment and desalination using membrane processes: A review. Chemical Engineering Journal, 419(March), pp. 129540. DOI:10.1016/j.cej.2021.129540
  • Khatri, N., Khatri, K. K. & Sharma, A. (2020). Artificial neural network modelling of faecal coliform removal in an intermittent cycle extended aeration system-sequential batch reactor based wastewater treatment plant. Journal of Water Process Engineering, 37, pp. 101477. DOI:10.1016/j.jwpe.2020.101477.
  • Matheri, A. N., Ntuli, F., Ngila, J. C., Seodigeng, T. & Zvinowanda, C. (2021). Performance prediction of trace metals and cod in wastewater treatment using artificial neural network. Computers and Chemical Engineering, 149, pp. 107308. DOI:10.1016/j.compchemeng.2021.107308
  • MATLAB. (2022). The MathWorks Inc version R2022b (version R2021b). The MathWorks Inc. https://matlab.mathworks.com.
  • Negnevitsky, M. (2005). Artificial Intelligence A Guide to Intelligent Systems. In British Library Cataloguing (2nd ed., Vol. 123). DOI:10.1016/j.poly.2016.11.012.
  • Oliveira-Esquerre, K. P., Mori, M. & Bruns, R. E. (2002). Simulation of an industrial wastewater treatment plant using artificial neural networks and principal components analysis. Brazilian Journal of Chemical Engineering, 19, 4, pp. 365–370. DOI:10.1590/S0104-66322002000400002.
  • Pai, T.-Y. (2008). Gray and Neural Network Prediction of Effluent from the Wastewater Treatment Plant of Industrial Park Using Influent Quality. Environmental Engineering Science, 25, 5, pp. 757–766. DOI:10.1089/ees.2007.0136.
  • Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. (2015). Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C, 3, 4 , pp. 10715–10722.DOI:10.1039/b000000x.
  • Sakiewicz, P., Piotrowski, K., Ober, J. & Karwot, J. (2020). Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification. Renewable and Sustainable Energy Reviews, 124. DOI:10.1016/j.rser.2020.109784
  • Sharghi, E., Nourani, V., Aliashrafi, A. & Gökçekuş, H. (2019). Monitoring effluent quality of wastewater treatment plant by clustering baseartificial neural network method. Desalination and Water Treatment, 164, pp. 86–97. DOI:10.5004/dwt.2019.24385
  • Tumer, A. E. & Edebali, S. (2015). Prediction of wastewater treatment plant performance using multilinear regression and artificial neural networks. INISTA 2015 - 2015 International Symposium on Innovations in Intelligent SysTems and Applications, Proceedings, DOI:10.1109/INISTA.2015.7276742
  • Wang, G., Qiao, J., Bi, J., Li, W. & Zhou, M. (2019). TL-GDBN: Growing Deep Belief Network with Transfer Learning. IEEE Transactions on Automation Science and Engineering, 16, 2, pp. 874–885DOI:10.1109/TASE.2018.2865663
  • Yang, Y., Kim, K. R., Kou, R., Li, Y., Fu, J., Zhao, L. & Liu, H. (2022). Prediction of effluent quality in a wastewater treatment plant by dynamic neural network modeling. Process Safety and Environmental Protection, 158, pp. 515–524. DOI:10.1016/j.psep.2021.12.034
  • Zeinolabedini, M. & Najafzadeh, M. (2019). Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant. Environmental Monitoring and Assessment, 191, 3. DOI:10.1007/s10661-019-7196-7
  • Zhao, Ying, Guo, L., Liang, J. & Zhang, M. (2016). Seasonal artificial neural network model for water quality prediction via a clustering analysis method in a wastewater treatment plant of China. Desalination and Water Treatment, 57, 8, pp. 3452–3465, DOI:10.1080/19443994.2014.986202.
  • Zhao, Yuchao, Xie, Z. & Lou, I. (2015). Using Extreme Learning Machine for Filamentous Bulking Prediction in Wastewater Treatment Plants. [In] J. Cao, K. Mao, E. Cambria, Z. Man, & K.-A. Toh (Eds.), Proceedings of ELM-2014 Volume 2 , pp. 1–9, Springer International Publishing.
Go to article

Authors and Affiliations

Hussein Y.H. Alnajjar
1
ORCID: ORCID
Osman Üçüncü
1

  1. Karadeniz Technical University Civil Engineering Faculty Hydraulic Department, Trabzon, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This study focuses on mapping the groundwater’s vulnerability to pollution in the region of Ouargla, located in the North-East of the northern Sahara, exposed to potential risks of alteration. By applying the methods (GOD, DRASTIC, and SINTACS), coupled with a Geographic Information System (GIS), we were able to identify a medium to high vulnerability trend. In light of the results recorded, the DRASTIC and SINTACS methods prove to be more suitable for our study region. This makes it possible to highlight the recharge zones and land use as being the most vulnerable in the territory studied. The GOD method presents a strong vulnerability trend over 77.02% of the study area. Such a result is directly related to the depth of the water table. It can therefore be argued that this method is far from being representative of the reality on the ground because of these very heterogeneous characteristics.
Go to article

Bibliography

  1. Abunada, Z., Kishawi, Y., Alslaibi, T. M., Kaheil, N. & Mittelstet, A. (2021). The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: Case study. Journal of Hydrology, 592, [125613]. DOI:10.1016/j.jhydrol.2020.125613
  2. ANRH. (2018). Données des fiches techniques des forages de la Wilaya de Ouargla.
  3. ANRH. (2022). Inventaire des forages de la Wilaya de Ouargla.
  4. Awawdeh, M., Al-Kharabsheh, N., Obeidat M. & Awawdeh, M. (2020) Groundwater vulnerability assessment using modified SINTACS model in Wadi Shueib, Jordan, Annals of GIS, 26:4, 377-394. DOI:10.1080/19475683.2020.1773535
  5. Bera, A., Mukhopadhyay, B. P., Chowdhury, P., Ghosh, A. & Biswas, S. (2021). Groundwa-ter vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination. Ecotoxicology and Environmental Safety, 214, 112085. DOI:10.1016/j.ecoenv.2021.112085
  6. Chakraborty, B., Roy, S., Bera, A., Adhikary, P. P., Bera, B., Sengupta, D., Bhunia, G. S. & Shit, P. K. (2022). Groundwater vulnerability assessment using GIS-based DRASTIC model in the upper catchment of Dwarakeshwar river basin, West Bengal, India. Environmental Earth Sciences, 81,1, pp.1–15. DOI:10.1007/s12665-021-10002-3
  7. Charikh, M., Slimani, R., Hamdi-aïssa, B., Bouadjila, O. & Hassaine, A. (2022). Evaluation of Arid Soil Landscapes Permeability in Algerian Sahara. Al-Qadisiyah Journal for Agricul-ture Sciences (QJAS), 12,2, pp. 12–18. DOI:10.33794/qjas.2022.134247.1050
  8. El Baba, M. & Kayastha, P. (2022). Groundwater vulnerability, water quality, and risk assessment in a semi-arid region: a case study from the Dier al-Balah Governorate, Gaza Strip. Modeling Earth Systems and Environment, pp.1–16. DOI:10.3390/w12010262
  9. Elzain, H. E., Chung, S. Y., Senapathi, V., Sekar, S., Lee, S. Y., Roy, P. D., Hassan, A. & Sabarathinam, C. (2022). Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination. Ecotoxicology and Environmental Safety, 229, 113061. DOI:10.1016/j.ecoenv.2021.113061
  10. Fannakh, A. & Farsang, A. (2022). DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: a review. Environ Sci Eur 34, 77. DOI:10.1186/s12302-022-00646-8
  11. Gao, Y.Y., Qian, H., Zhou, Y.H., Chen, J. Wang, H.K., Ren, W.H. & Qu, W.G. (2022). Cumulative health risk assessment of multiple chemicals in groundwater based on determinis-tic and Monte Carlo models in a large semiarid basin. J. Clean. Prod., 352. DOI:10.1016/j.jclepro.2022.131567.
  12. Gharekhani, M., Nadiri, A. A., Khatibi, R., Sadeghfam, S. & Moghaddam, A. A. (2022). A study of uncertainties in groundwater vulnerability modelling using Bayesian model averaging (BMA). Journal of Environmental Management, 303, 114168. DOI:10.1016/j.jenvman.2021.114168
  13. Goyal, D., Haritash, A. K. & Singh, S. K. (2021). A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. Journal of Environmental Management, 296, 113161. DOI:10.1016/j.jenvman.2021.113161
  14. Griffel, L. M., Toba, A-L., Paudel, R., Lin, Y., Hartley D. S. & Langholtz, M. (2022). A multi-criteria land suitability assessment of field allocation decisions for switchgrass, I, 136, 108617. DOI:10.1016/j.ecolind.2022.108617.
  15. Hamdi-Aïssa, B., & Girard, M.-C. (2000). Utilisation de la télédétection en régions sahariennes, pour l’analyse et l’extrapolation spatiale des pédopaysages. Science et Changements Planétaires/Sécheresse, 11,3, pp. 179–188.
  16. Hamza, M.H. & Chmit, M. (2022). "GIS-Based Planning and Web/3D Web GIS Applications for the Analysis and Management of MV/LV Electrical Networks (A Case Study in Tuni-sia)" Applied Sciences 12, no. 5: 2554. DOI:10.3390/app12052554
  17. Kirlas, M.C., Karpouzos, D.Κ., Georgiou, P.E. & Katsifarakis, K. L. (2022). A comparative study of groundwater vulnerability methods in a porous aquifer in Greece. Appl Water Sci 12, 123.DOI:10.1007/s13201-022-01651-1.
  18. Qian, H. Chen, J. & Howard, K. W.F. (2020). Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Environ. Pollut., 263. DOI:10.1016/j.envpol.2020.114669.
  19. Saranya, T. & Saravanan, S. (2022). Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int. J. Environ. Sci. Technol. DOI:10.1007/s13762-022-03944-z
  20. Sarkar, M. & Pal, S.C. (2021). Application of DRASTIC and Modified DRASTIC Models for Model-ing Groundwater Vulnerability of Malda District in West Bengal. J Indian Soc Remote Sens, 49, pp. 1201–1219. DOI:10.1007/s12524-020-01176-7
  21. Slimani, R, & Guendouz, A. (2015). Groundwater vulnerability and risk mapping for the Phreatic aquifer in the Ouargla Oasis of Algerian Sahara using GIS and GOD method. Inter-national Journal of AgriculturalScience and Research (IJASR). ISSN(P): 2250-0057; ISSN(E): 2321-0087. Vol. 5, Issue 3, Jun 2015, pp. 149-158 © TJPRC Pvt. Ltd.
  22. Slimani, Rabia, Guendouz, A., Trolard, F., Moulla, A. S., Hamdi-Aïssa, B. & Bourrié, G. (2017). Identification of dominant hydrogeochemical processes for groundwaters in the Alge-rian Sahara supported by inverse modeling of chemical and isotopic data. Hydrology and Earth System Sciences, 21, 3, pp.1669–1691. DOI:10.5194/hess-21-1669-2017, 2017.
  23. Stigter, T. Y., Ribeiro, L., & Dill, A. M. M. C. (2006). Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies–Two Portu-guese case studies. Journal of Hydrology, 327, 3–4, pp. 578–591. DOI:10.1016/j.jhydrol.2005.12.001
  24. UNESCO. (2020). Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2020: l’eau et les changements climatiques. UNESCO. https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000372941
  25. United Nations. (2022). The United Nations World Water Development Report 2022: groundwater: making the invisible visible. UNESCO. https://unesdoc.unesco.org/notice?id=p::usmarcdef_0000380721.
  26. Zhang, Q., Qian, H., Xu, P., Li, W., Feng, W., & Liu, R. (2021). Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. Journal of Cleaner Production, 298, 126783. DOI:10.1016/j.jclepro.2021.126783.
Go to article

Authors and Affiliations

Rabia Slimani
1
Messaouda Charikh
1 2
Mohammad Aljaradin
3
ORCID: ORCID

  1. Laboratory of Biogeochemistry of desert environments, Faculty of Natural and Life Sciences, Kasdi Marbah University, Ouargla, Algeria
  2. Ouargla Higher Normal School, Algeria
  3. School of Health and Environmental Studies, Hamdan Bin Mohammed Smart University, Dubai, UAE
Download PDF Download RIS Download Bibtex

Abstract

The article shows the effect of the supply pressure of fog nozzles on the process of ammonia sorption. In the tests, the nozzles flow characteristics Q=f(p) and the dependence of NH3 concentration as a function of the water stream feeding in time at different supply pressures were determined. For the TF 6 NN, TF 6 V, NF 15, CW 50 nozzles, measurements were carried out at the following supply pressures: 0.1 MPa; 0.2MPa; 0.3MPa; 0.4MPa; 0.5MPa. It was observed that the greatest effect of nozzle feed pressure on ammonia sorption efficiency may be expected at lower pressure values. At higher values, the sorption rate becomes stabilized and even starts to decrease. The decreases in the sorption rate constant observed for higher pressures may be due to a reduction contact time of the droplet and the achievement of the critical mixing rate of ammonia vapors in the air intensively saturated with water streams. This is due to diffusion rate limitations. The measurements show that the use of supply pressures for fog nozzles above 0.4 MPa is not justified. It should be noted that varying the feed pressure of nozzles of various designs can affect their ammonia sorption efficiency differently. The type of nozzle and supply pressure affects the distribution of droplets in space. The angle of dispersion and the shape of the generated jet have a critical influence on the efficiency of the sorption process. Complete filling of the space and a large spray angle assure relatively high sorption efficiency.
Go to article

Bibliography

  1. Banaczkowski, T. (2022). Statistical data of the National Headquarters of the State Fire Service of Poland (https://www.gov.pl/web/kgpsp/interwencje-psp (01.05. 2022)).
  2. Bara, A., & Dusserre, G. (1997). The use of water curtains to protect firemen in case of heavy gas dispersion, Journal of Loss Prevention in the Process Industries, 10(3), pp.179-183. DOI:10.1016/S0950-4230(96)00049-6.
  3. Bard, A., J. & Faulkner, L., R., (2001). Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York USA 2001.
  4. Bete Europe GmbH, (2022a), Catalog card nozzles TF. (https://www.bete-dysze.pl/files/bete-duesen-de/pdf/vollkegel/tf.pdf (01.05 2022)).
  5. Bete Europe GmbH, (2022b), Catalog card nozzles NF. (ttps://www.bete-dysze.pl/files/bete-duesen-de/pdf/flachstrahl/nf.pdf (01.05.2022)).
  6. Bete Europe GmbH, (2022c), Catalog card nozzles CW. (https://www.bete.com/wp-content/uploads/2022/02/BETE_CW_fullcone-metric.pdf ( 01 08. 2022)).
  7. Buchlin, J.-M. (2017). Mitigation of industrial hazards by water spray curtains, J. of Loss Prev. in the Proc. Ind., Part A 50, pp 91-100. DOI:10.1016/j.jlp.2017.08.007.
  8. Chan, T. S. (1994). Measurments of Water Density and Drop Size Distribution of Selected ESFR Sprinklers, J. Fire Prot. Eng., 6(2) pp. 79-97. DOI:10.1177/104239159400600202.
  9. Cheng, Ch., Tan, W., Du, H. & Liu, L. (2015). A modified steady-state model for evaluation of ammonia concentrations behind a water curtain, J.l of Loss Prev. in the Process Industries, 36, pp 120 – 124. DOI:10.1016/j.jlp.2015.05.018
  10. Chung, Y.H., Lee, W.-J.; Kang, J. & Yoon, S.H. (2022). Fire safety evaluation of high-pressure ammonia storage systems. Energies, 15, 52. DOI:10.3390/en15020520.
  11. Danasa, A.S., Soesilo, T. E.B., Martono, D. N., Sodri, A., Hadi, A. S. & Chandrasa, G. T., (2019). The ammonia release hazard and risk assessment: A case study of urea fertilizer industry in Indonesia, IOP Conf. Series: Earth and Environmental Science, 399, 012087. DOI:10.1088/1755-1315/399/1/012087
  12. Fedoruk, M.J., Bronstein, R. & Kerger, B.D. (2005). Ammonia exposure and hazard assessment for selected household cleaning product uses, J. Expo. Anal. Sci. Environ. Epidemiol., 15(6), pp. 534–544. DOI:10.1038/sj.jea.7500431.
  13. Hua, M., Qi, M., Yue, T.-T., Pi, X.-Y., Pan, X.-H. & Jiang, J.-C. (2018). Experimental research on water curtain scavenging ammonia dispersion in confined space, Procedia Eng., 211, pp 256–261. DOI:10.1016/j.proeng.2017.12.011.
  14. International Fertiliser Association (2022). Ammonia production statistics, (https://www.ifastat.org/supply/Nitrogen%20Products/Ammonia (01.05.2022)).
  15. Li, J., Zhang, J., Huang, W., Kong, F., Li, Y., Xi M., & Zheng Z. (2016) Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa, Mar. Pollut. Bull., 110 ,1 , pp. 93-98. DOI:10.1016/j.marpolbul.2016.06.077. Epub 2016 Jun 26. PMID: 27357916.
  16. Liu, W., Pei, Q., Dong, W. & Chen P. (2022) Study on the purification capacity of rain garden paving structures for rainfall runoff pollutants, Archives of Environmental Protection, 48, 3, pp 28-36. DOI:10.24425/aep.2022.142687
  17. Majder-Łopatka, M., Węsierski, T. & Wąsik, W. (2016). Effect of nozzle structure on the absorption efficiency of the ammonia cloud formed as a result of industrial accidents. Saf. Fire Technol., 42, pp 127–134. DOI:10.12845/bitp.42.2.2016.13.
  18. Majder-Łopatka, M., Węsierski, T., Wąsik, W. & Binio, Ł. (2017). Effects of the supply pressure in a spiral vortex nozzle on a dispersion angle and the sprinkling density of water jet. Sci. Pap. Main Sch. Fire Serv, 61 pp. 137-151. (In Polish)
  19. Mielcarek-Bocheńska, P., Rzeźnik W. (2022) Odors and ammonia emission from a mechanically ventilated fattening piggery on deep litter in Poland, Archives of Environmental Protection, Vol. 48 no. 2 pp. 86–94. DOI:10.24425/aep.2022.140769.
  20. Ochowiak, M., Krupińska, A., Włodarczak, S., Matuszak, M., Markowska M., Janczarek, M. & Szulc, T. (2020). The two-phase conical swirl atomizers: Spray characteristics, Energies, 13, 3416. DOI:10.3390/en13133416
  21. Orzechowski, Z. & Prywer, J. (2018). Wytwarzanie i zastosowanie rozpylonej cieczy Wydawnictwo Naukowe PWN SA, Warsaw Poland 2018. (In Polish)
  22. Orzechowski, Z., & Prywer, J. (2008). Wytwarzanie i Zastosowanie Rozpylonej Cieczy, 1st ed., WNT: Warsaw Poland 2008. (In Polish)
  23. Rosa, A.C., de Souza, I.T., Terra, A., Hammad, A.W., Di Gregório, L.T., Vazquez, E., & Haddad, A. (2021). Quantitative risk analysis applied to refrigeration's industry using computational modeling, Results in Engineering, 9, 100202. DOI:10.1016/j.rineng.2021.100202.
  24. Salamonowicz, Z., Majder-Łopatka, M., Dmochowska, A., Rogula-Kozłowska, W., Piechota-Polańczyk, A. & Polańczyk, A. (2022). Ammonia dispersion in the closed space of an ammonia engine room with forced ventilation in an industrial plant. Atmosphere, 13, 1062. DOI:10.3390/atmos13071062.
  25. Schoten, H. H., Molag, M., Duffield, J.S. & Powell-Price, M. (2000). Use of fluid curtains for post-release mitigation of gas dispersion, HAZARDS XV: The process, its Safety, and the Environment 'Getting it Right', Manchester, UK, Conference code: 57035, 147, pp 287-298, http://resolver.tudelft.nl/uuid:a13e5b87-1762-4a00-aea6-e39a4191182f.
  26. Shen, X., Zhang, J., Hua, M. & Pan, X. (2017). Experimental research on decontamination effect of water curtain containing compound organic acids on the leakage of ammonia. Process Safety and Environmental Protection, 105, pp. 250-261. DOI:10.1016/j.psep.2016.10.016
  27. Sheppard, D. T. (2002). Spray Characteristics of Fire Sprinklers, National Institute of Standards and technology, Technology Administration, US. Department of Cemmerce, Gaithesburg, 2002.
  28. Sukumar, N., Gananvel, P., Dharmalingam, R. & Aruna S. (2022). Development of chemical protective clothing using multilayer fabric for hazardous chemicals handling, Journal of Natural Fibers, 19(4), pp. 1265-1280. DOI:10.1080/15440478.2020.1764450
  29. Tan, W., Du, H., Liu, L., Su., T. & Liu., X. (2017). Experimental and numerical study of ammonia leakage and dispersion in a food factory, J. Loss Prev. Process. Ind., 47, pp. 129–39. DOI:10.1016/j.jlp.2017.03.005.
  30. Ubowska, A. (2018). Environmental hazard related to a rail accident of a tanker transporting the ammonia. Sci. Pap. Main Sch. Fire Serv., 66, pp. 51–63, bwmeta1.element.baztech-311b42f9-2465-4fff-b5ea-df7807e18530. (in Polish)
  31. Warych, J. (1998), Oczyszczanie Gazów. Procesy i Aparatura, 1st ed., WNT: Warsaw, Poland 1998,. (In Polish)
  32. Wąsik, W., Majder-Łopatka, M. & Rogula-Kozłowska, W. (2022). Influence of micro- and macrostructure of atomised water jets on ammonia absorption efficiency, Sustainability, 14, 9693. DOI:10.3390/su14159693
  33. Wąsik, W., Rogula-Kozłowska, W. & Majder-Łopatka, M. (2021). Evaluation of the microstructure of water jet produced by a full cone spiral nozzle, Sci. Pap. Main Sch. Fire Serv., 79, pp. 105–122. DOI:10.5604/01.3001.0015.2890. (In Polish)
  34. Wąsik, W., Walczak, A. & Węsierski, T. (2018). The impact of fog nozzle type on the distribution of mass spray density MATEC Web of Conferences FESE 2018, 247, 00058. DOI:10.1051/matecconf/201824700058
  35. Wȩsierski, T. & Majder-Łopatka, M. (2018). Comparison of water curtain effectiveness in the elimination of airborne vapours of ammonia, acetone, and low-molecular aliphatic alcohols, Applied Sciences (Switzerland),8,10,art. no. 1971. DOI:10.3390/app8101971.
  36. Węsierski, T. (2015). Effectiveness of water curtains during fighting against vapors of saturated linear low molecular mass alcohols during its uncontrolled release, Chem. Ind., 5, pp. 728–730. DOI:10.15199/62.2015.5.13.
Go to article

Authors and Affiliations

Wiktor Wąsik
1
ORCID: ORCID
Małgorzata Majder-Łopatka
1
ORCID: ORCID
Wioletta Rogula-Kozłowska
1
ORCID: ORCID
Tomasz Węsierski
1
ORCID: ORCID

  1. The Main School of Fire Service, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the context of resource utilization, the applications of waste biomass have attracted increasing attention.Previous studies have shown that forming biochar by heat treatment of sludge could replace the traditional sludge disposal methods, and sludge biochar is proved to be efficient in wastewater treatment. In this work, the pyrolysis, hydrothermal carbonization and microwave pyrolysis methods for preparing sludge biochar were reviewed, and the effects of different modification methods on the performance of sludge biochar in the synthesis process were comprehensively analyzed. This review also summarized the risk control of heavy metal leaching in sludge biochar, increasing the pyrolysis temperature and use of the fractional pyrolysis or co-pyrolysis were usually effectively meathods to reduce the leaching risk of heavy metal in the system, which is crucial for the wide application of sludge biochar in sewage treatment. At the same time, the adsorption mechanism of sludge biochar and the catalytic mechanism as the catalytic material in AOPs reaction, the process of radical and non-radical pathway and the possible impacts in the sludge biochar catalytic process were also analyzed in this paper
Go to article

Bibliography

  1. Antunes, E., Jacob, M. V., Brodie, G. & Schneider, P. A. (2018).Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. Journal of Analytical and Applied Pyrolysis, 129, 93-100. DOI:10.1016/j.jaap.2017.11.023.
  2. Bogacki, J.P. & Al-Hazmi, H. (2017). Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes. Archives of Environmental Protection, 43 (3), pp. 24–31. DOI:10.1515/aep-2017-002
  3. Borgulat, A., Zgórska. A. & Głodniok, M. (2022). Comparison of different municipal sewage sludge products for potential ecotoxicity. Archives of Environmental Protection, 48 (1), pp. 92–99. DOI:10.24425/aep.2022.140548
  4. Chandrasekaran, S., Basak, T. & Srinivasan, R. (2013).Microwave heating characteristics of graphite based powder mixtures. International Communications in Heat and Mass Transfer, 2013, 48, 22-27. DOI: 10.1016/j.icheatmasstransfer.2013.09.008.
  5. Chen, G., Tian, S., Liu, B., Hu, M., Ma, W., Li, X. (2020). Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste. Waste Management, 103, 268-275. DOI:10.1016/j.wasman.2019.12.031.42.
  6. Cherif Lahimer, M.; Ayed, N.; Horriche, J. & Belgaied, S. (2017). Characterization of plastic packaging additives: Food contact, stability and toxicity. Arabian Journal of Chemistry, 10, S1938-S1954. DOI: 10.1016/j.arabjc.2013.07.022.
  7. Danni, L., Rui, S., Li, X, J., Jing, G., Yu, Y, Z., Hao, R, Y. & Yong, C.A. (2020). review on the migration and transformation of heavy metals in the process of sludge pyrolysis. Resources, Conservation & Recycling, 185, 106452. DOI:10.1016/j.resconrec.2022.106452.
  8. Devi, P. & Saroha, A. K. (2014). Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technology, 162, 308-315. DOI:10.1016/j.biortech.2014.03.093.
  9. Dong, Q., Zhang, S., Wu, B., Pi, M., Xiong, Y. & Zhang, H. (2019). Co-pyrolysis of Sewage Sludge and Rice Straw: Thermal Behavior and Char Characteristic Evaluations. Energy & Fuels, 34 (1), 607-615. DOI: 0.1021/acs.energyfuels.9b03800.
  10. Duan, D., Chen, D., Huang, L., Zhang, Y., Zhang, Y., Wang, Q., Xiao, G., Zhang, W., Lei, H. & Ruan, R. (2021). Activated carbon from lignocellulosic biomass as catalyst: A review of the applications in fast pyrolysis process. Journal of Analytical and Applied Pyrolysis, 158, 105246. DOI: 10.1016/j.jaap.2021.105246.
  11. Duan, X., Sun, H., Shao, Z. & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973-982. DOI:10.1016/j.apcatb.2017.11.051.
  12. Fang, G., Li, J., Zhang, C., Qin, F., Luo, H., Huang, C., Qin, D. & Ouyang, Z. (2022). Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environmental Pollution, 300, 118939. DOI: 10.1016/j.envpol.2022.118939.
  13. Gan, Q., Hou, H., Liang, S., Qiu, J., Tao, S., Yang, L., Yu, W., Xiao, K., Liu, B., Hu, J., Wang, Y. & Yang, J. (2020). Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol. Science of The Total Environment, 725, 138299. DOI: 0.1016/j.scitotenv.2020.138299.
  14. Harvey, O. R., Herbert, B. E., Rhue, R. D. & Kuo, L. J. (2011). Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environmental Science& Technology, 45 (13), 5550-6. DOI:10.1021/es104401h.
  15. Issaka, E., Amu-Darko, J. N., Yakubu, S., Fapohunda, F. O., Ali, N. & Bilal, M. (2022). Advanced catalytic ozonation for degradation of pharmaceutical pollutants-A review. Chemosphere, 289, 133208. DOI:10.1016/j.chemosphere.2021.133208.
  16. Jia, H, Z., Zhao, S., Zhou, X, H., Qu, C, T., Fan, D, D. & Wang, C, Y. (2017). Low-temperature pyrolysis of oily sludge: roles of Fe/Al-pillared bentonites. Archives of Environmental Protection, 43 (3), pp. 82–90. DOI: 0.1515/aep-2017-002.
  17. Jin, Z., Jun, W, J., Min, Y. W., Ravi, N., Yan, J, L., Yu, B., Man, Xin, Q, L., Ming, H, W., Christie, P., Yan, Z., Cheng, F, S. & Sheng D, S. (2020). Co-pyrolysis of sewage sludge and rice husk/ bamboo sawdust for biochar with high aromaticity and low metal mobility. Environmental Research, 191,110304. DOI:10.1016/j.envres.2020.110034.
  18. Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M. & Behrens, S. (2014). Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science & Technology Letters, 1 (8), 339-344. DOI:10.1021/ez5002209.
  19. Kim, E., Jung, C., Han, J., Her, N., Park, C. M., Jang, M., Son, A. & Yoon, Y. (2016). Sorptive removal of selected emerging contaminants using biochar in aqueous solution. Journal of Industrial and Engineering Chemistry, 36, 364-371. DOI:10.1016/j.jiec.2016.03.004.
  20. Li, H., Dong, X., da Silva, E, B., de Oliveira, L, M., Chen, Y. & Ma, L.Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. DOI:10.1016/j.chemosphere.2017.03.072.
  21. Li, L., Cao, W., Wang, G., Peng, P., Liu, S., Jin, H., Wei, W. & Guo, L. (2022). Experimental and kinetic study of heavy metals transformation in supercritical water gasification of oily sludge. Journal of Cleaner Production, 373, 133898. DOI:10.1016/j.jclepro.2022.133898.
  22. Li, W, J., Jun, M., Yu, L, Z. Ghulam, H, B., Tida, G., Haibo, Z., Zhang, H. B., Li, Z. T., Yi, J. Yu. & Sheng, D. S. (2022). Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Environmental Pollution, 302, 119092. DOI:10.1016\/j.envpol.2022.119092
  23. Li, Z., Deng, H., Yang, L., Zhang, G., Li, Y. & Ren, Y. (2018). Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge. Bioresource Technology, 256, 216-223. DOI:10.1016/j.biortech.2018.02.013.
  24. Ma, J., Zhou, B., Zhang, H. & Zhang, W. (2020), Fe/S modified sludge-based biochar for tetracycline removal from water. Powder Technology, 364, 889-900. DOI:10.1016/j.powtec.2019.10.107.
  25. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.13347.
  26. Mian, M. M., Liu, G., Fu, B. & Song, Y. (2019). Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation. Applied Catalysis B: Environmental, 255, 117765. DOI:10.1016/j.apcatb.2019.117765.
  27. Nie, M., Yang, Y., Zhang, Z., Yan, C., Wang, X., Li, H. & Dong, W. (2014). Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chemical Engineering Journal, 246, 373-382. DOI:10.1016/j.cej.2014.02.047.
  28. Oh, S. Y. & Seo, Y. D. (2016). Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms. Environment Science Pollution Research International, 23 (2), 951-61. DOI:10.1007/s11356-015-4201-8
  29. Peng, B., Liu, Q., Li, X., Zhou, Z., Wu, C. & Zhang, H. (2022). Co-pyrolysis of industrial sludge and rice straw: Synergistic effects of biomass on reaction characteristics, biochar properties and heavy metals solidification. Fuel Processing Technology, 230.107211. DOI:10.1016/j.fuproc.2022.107211.
  30. Piekarski, J., Dąbrowski, T., Dąbrowski, J. & Ignatowicz, K. (2021). Preliminary studies on odor removal in the adsorption process on biochars produced form sewage sludge and beekeeping waste. Archives of Environmental Protection, 47(2), pp.20–28. DOI:10.24425/aep.2021.137275
  31. Pulka, J., Wiśniewski, D., Gołaszewski, J. & Białowiec, A. (2016). Is the biochar produced from sewage sludge a good quality solid fuel. Archives of Environmental Protection, 42 (4), pp. 125–134. DOI:10.1515/aep-2016-0043
  32. Qiu, B., Shao, Q., Shi, J., Yang, C. & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300, 12195. DOI:10.1016/j.seppur.2022.121925
  33. Shi, Q, D., Zheng, Y., Du, Y., Li, L., Yang, S., Zhang, G., Du, L., Wang, G., Cheng, M. & Liu, Y. (2022). The application of transition metal-modified biochar in sulfate radical based advanced oxidation processes. Environmental Research, 212 (Pt B), 113340. DOI:10.1016/j.envres.2022.113340.
  34. Streit, A. F. M., Cortes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C. Perondi, D. & Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science Total Environmental, 660, 277-287. DOI:10.1016/j.scitotenv.2019.01.027
  35. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46 (3), pp. 49–59. DOI:10.24425/aep.2020.134535
  36. Tang, J., Lv, H., Gong, Y. & Huang, Y. (2015). Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 196, 355-363. DOI:10.1016/j.biortech.2015.07.047.
  37. Wallace, C. A., Afzal, M. T. & Saha, G. C. (2019). Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing, 6 (1).8. DOI:10.1016/j.jaap.2015.01.010.
  38. Wang, C., Zhang, X., Wang, W., Sun, J., Mao, Y., Zhao, X. & Song, Z. (2022). A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: Optimizing and mechanism of heavy metals immobilization. Fuel, 314. (Apr.15) – 122770. DOI:10.1016/j.fuel.2021.122770.
  39. Wang, H., Guo, W., Liu, B., Si, Q., Luo, H., Zhao, Q. & Ren, N. (2020). Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms. Applied Catalysis B: Environmental, 279, 119361. DOI:10.1016/j.apcatb.2020.119361.
  40. Wang, J., Cai, J., Wang, S., Zhou, X., Ding, X., Ali, J., Zheng, L., Wang, S., Yang, L., Xi, S., Wang, M. & Chen, Z. (2022). Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species. Chemical Engineering Journal, 428, 131233. DOI:10.1016/j.cej.2021.131233
  41. Wang, J. & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517. DOI:10.1016/j.cej.2017.11.059.
  42. Wang, S. & Wang, J. (2019). Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chemical Engineering Journal, 356, pp. 350-358. DOI:10.1016/j.cej.2018.09.062
  43. Wang, X., Wei, Ch. Ch., Li, Z., Song, Y., Li, C. & Wang, Y. (2022). Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. Waste Management, 141, 231-239. DOI:10.1016/j.wasman.2022.02.001.
  44. Wu, W., Zhu, S., Huang, X., Wei, W. & Ni, B, J. (2021). Mechanisms of persulfate activation on biochar derived from two different sludges: Dominance of their intrinsic compositions. Journal Hazard Materials, 408, 124454. DOI:10.1016/j.jhazmat.2020.124454.
  45. Xin, Z., Bao, W. Z., Hui, L. & Liu, J. L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals insewage sludge biochars Environmental Technology & Innovation, 26, 102288. DOI:10.1016/j.eti.2022.102288.
  46. Xu, L., Wu, C., Liu, P., Bai, X., Du, X., Jin, P., Yang, L., Jin, X., Shi, X. & Wang, Y. (2020). Peroxymonosulfate activation by nitrogen-doped biochar from sawdust for the efficient degradation of organic pollutants. Chemical Engineering Journal, 387, 124065. DOI:10.1016/j.cej.2020.124065.
  47. Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W., Liu, C., Chen, Z. & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, 297, 122381. DOI:10.1016/j.biortech.2019.122381.
  48. Yang, T, S., Zhang, Y., Cao, X, Q., Zhang, J., Kan, Y, J., Wei, B., Zhang, Y. Z. M., Wang, Z. Z., Jiao, Z., Zhang, X. X. & Li, R. (2022). Water caltrop-based carbon catalysts for cooperative adsorption and heterogeneous activation of peroxymonosulfate for tetracycline oxidation via electron transfer and non-radical pathway. Applied Surface Science, 606, 164823. DOI:10.1016/j.apsusc.2022.154823.
  49. Ye, G. R., Zhou, J. H., Huang, R. T., Ke, W. J., Peng, Y. C., Zhou, Y. X., Weng, Y., Ling, C. T. & Pan, W. X. (2022). Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue. Journal of Environmental Chemical Engineering, 10, 107242. DOI:10.1016/j.jece.2022.107242.
  50. Yu, H., Zhang, D., Gu, L., Wen, H. & Zhu, N. (2022). Coupling sludge-based biochar and electrolysis for conditioning and dewatering of sewage sludge: Effect of char properties. Environmental Science and Ecotechnology, 2022, 214 (Pt 3), 113974. DOI:10.1016/j.envres.2022.113974.
  51. Yu, J., Tang, L., Pang, Y., Zeng, G., Wang, J., Deng, Y., Liu, Y., Feng, H., Chen, S. & Ren, X. (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364, 146-159. DOI:10.1016/j.cej.2019.01.163.
  52. Yu, J., Zhu, Z., Zhang, H., Shen, X., Qiu, Y., Yin, D. & Wang, S. (2020). Persistent free radicals on N-doped hydrochar for degradation of endocrine disrupting compounds. Chemical Engineering Journal, 398, 125538. DOI:10.1016/j.cej.2020.125538.
  53. Zeng, H. P., Li, J. X., Xu, J. X., Qi, W., Hao, R. X., Gao, G. W., Lin, D., Li, D. & Zhang, J. (2022). Preparation of magnetic N-doped iron sludge based biochar and itspotential for persulfate activation and tetracycline degradation. Journal of Cleaner Production, 378, 134519. DOI:10.1016/j.jclepro.2022.134519.
  54. Zhang, A., Li, X., Xing, J. & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8 (4), 104196. DOI:10.1016/j.jece.2020.104196.
  55. Zhang, H., Xue, G., Chen, H. & Li, X. (2018). Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 191, pp. 64-71. DOI:10.1016/j.chemosphere.2017.10.026.
  56. Zhang, L., Pan, J., Liu, L., Song, K. & Wang, Q. (2019). Combined physical and chemical activation of sludge-based adsorbent enhances Cr(Ⅵ) removal from wastewater. Journal of Cleaner Production, 238,11767. DOI:10.1016/j.jclepro.2019.117904
  57. Zhang, S., Lv, J., Han, R. & Zhang, S. (2022). Superoxide radical mediates the transformation of tetrabromobisphenol A by manganese oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129807. DOI:10.1016/j.colsurfa.2022.129807.
  58. Zhang, Y., Jiang, Q., Xie, W., Wang, Y. & Kang, J. (2019). Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover. Biomass and Bioenergy, 122, 175-182. DOI:10.1016/j.biombioe.2019.01.035.
Go to article

Authors and Affiliations

Ming Yi Lv
1
Hui Xin Yu
1
Xiao Yuan Shang

  1. Shenyang University of Chemical Technology, China
Download PDF Download RIS Download Bibtex

Abstract

The temperature dependence of photoluminescence spectra has been studied for the HgCdTe epilayer. At low temperatures, the signal has plenty of band-tail states and shallow/deep defects which makes it difficult to evaluate the material bandgap. In most of the published reports, the photoluminescence spectrum containing multiple peaks is analyzed using a Gaussian fit to a particular peak. However, the determination of the peak position deviates from the energy gap value. Consequently, it may seem that a blue shift with increasing temperature becomes apparent. In our approach, the main peak was fitted with the expression proportional to the product of the joint density of states and the Boltzmann distribution function. The energy gap determined on this basis coincides in the entire temperature range with the theoretical Hansen dependence for the assumed Cd molar composition of the active layer. In addition, the result coincides well with the bandgap energy determined on the basis of the cut-off wavelength at which the detector response drops to 50% of the peak value.
Go to article

Authors and Affiliations

Krzysztof Murawski
1
ORCID: ORCID
Małgorzata Kopytko
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article reviews the results of experimental tests assessing the impact of process parameters of additive manufacturing technologies on the geometric structure of free-form surfaces. The tests covered surfaces manufactured with the Selective Laser Melting additive technology, using titanium-powder-based material (Ti6Al4V) and Selective Laser Sintering from polyamide PA2200. The evaluation of the resulting surfaces was conducted employing modern multiscale analysis, i.e., wavelet transformation. Comparative studies using selected forms of the mother wavelet enabled determining the character of irregularities, size of morphological features and the indications of manufacturing process errors. The tests provide guidelines and allow to better understand the potential in manufacturing elements with complex, irregular shapes.
Go to article

Authors and Affiliations

Damian Gogolewski
1

  1. Kielce University of Technology, Department of Mechanical Engineering and Metrology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

A device with a frequency-modulated output signal has been developed to increase the sensitivity and accuracy of measuring moisture content in crude oil and petroleum products in the range of 0~20%. The main element of the device is a self-oscillator transducer based on a transistor structure with negative differential resistance. A capacitive sensor in the form of a capacitive cylindrical structure with cylindrical electrodes was used to determine moisture content in crude oil and petroleum products. Electric permittivity of a two-component mixture of oil and water was estimated and the capacitance of the humidity-sensitive capacitive cylindrical structure with cylindrical electrodes was calculated. An electrical diagram of the device for measuring and controlling the humidity of crude oil and petroleum products has been developed. The relative error of converting the humidity of oil and petroleum products into capacitance which was caused by the change in oil temperature, was determined to be 0.225%. Values of relative errors of the device for measuring the humidity of oil and petroleum products are as follows: 1.355 · 10 -5% is caused by instability of the oscillator frequency, 0.01% is caused by fluctuations in the supply voltage of the self-oscillator transducer, 0.05% is caused by a change in ambient temperature by 1°C. For the developed device, which used errors of the first and second type, the reliability of humidity control of oil and petroleum products has been determined to be 0.9591.
Go to article

Authors and Affiliations

Andriy Semenov
1
Oleksander Zviahin
1
Natalia Kryvinska
2
Olena Semenova
1
Andrii Rudyk
3

  1. Vinnytsia National Technical University, Faculty of Information Electronic Systems, Khmelnytske shose 95, 21-021 Vinnytsia, Ukraine
  2. Comenius University in Bratislava, Department of Information Systems, Faculty of Management, Šafárikovo námestie 6, 814 99 Bratislava, Slovakia
  3. National University of Water and Environmental Engineering, Department of Automation, Electrical Engineering and Computer-Integrated Technologies, Soborna St. 11, 33-028 Rivne, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

A contactless laser hygrometer based on light absorption by H2O molecules at 1392.5 nm is described. However, measurement results can be affected by optical noise when applied to an atmospheric tunnel or glass cuvette. The noises (occurring in the form of periodic fringes in the recorded spectrum) come from unexpected interference of the light beams reflected from surfaces of the windows or other optical elements. The method of their suppression is described in this article. It is based on wavelength modulation and signal averaging over the fringes period. Also, an experiment confirming the usefulness of this method is described here.
Go to article

Authors and Affiliations

Tadeusz Stacewicz
1
Mateusz Winkowski
1
Natalia Kuk
1

  1. Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Pasteura 5, Poland
Download PDF Download RIS Download Bibtex

Abstract

Temperature rise of the hub motor in distributed drive electric vehicles (DDEVs) under long-time and overload operating conditions brings parameter drift and degrades the performance of the motor. A novel online parameter identification method based on improved teaching-learning-based optimization (ITLBO) is proposed to estimate the stator resistance, ��-axis inductance, ��-axis inductance, and flux linkage of the hub motor with respect to temperature rise. The effect of temperature rise on the stator resistance, ��-axis inductance, ��-axis inductance, and magnetic flux linkage is analysed. The hub motor parameters are identified offline. The proposed ITLBO algorithm is introduced to estimate the parameters online. The Gaussian perturbation function is employed to optimize the TLBO algorithm and improve the identification speed and accuracy. The mechanisms of group learning and low-ranking elimination are established. After that, the proposed ITLBO algorithm for parameter identification is employed to identify the hub motor parameters online on the test bench. Compared with other parameter identification algorithms, both simulation and experimental results show the proposed ITLBO algorithm has rapid convergence and a higher convergence precision, by which the robustness of the algorithm is effectively verified. Keywords: parameters identification, teaching–learning-based optimization, hub motor, temperature rise.
Go to article

Authors and Affiliations

Yong Li
1
Juan Wang
2
Taohua Zhang
2
Han Hu
1
Hao Wu
1

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
  2. Beijing Institute of Space Launch Technology, Beijing 100076, China
Download PDF Download RIS Download Bibtex

Abstract

The most crucial transmission components utilized in rotating machinery are gears and bearings. In a gearbox, the bearings support the force acting on the gears. Compound Faults in both the gears and bearings may cause heavy vibration and lead to early failure of components. Despite their importance, these compound faults are rarely studied since the vibration signals of the compound fault system are strongly dominated by noise. This work proposes an intelligent approach to fault identification of a compound gear-bearing system using a novel Bessel kernel-based Time-Frequency Distribution (TFD) called the Bessel transform. The Time-frequency images extracted using the Bessel transform are used as an input to the Convolutional Neural Network (CNN), which classifies the faults. The effectiveness of the proposed approach is validated with a case study, and a testing efficiency of 94% is achieved. Further, the proposed method is compared with the other TFDs and found to be effective.
Go to article

Authors and Affiliations

Athisayam Andrews
1
Kondal Maniseka
1

  1. Department of Mechanical Engineering, National Engineering College, Kovilpatti, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents special forms of an ensemble of classifiers for analysis of medical images based on application of deep learning. The study analyzes different structures of convolutional neural networks applied in the recognition of two types of medical images: dermoscopic images for melanoma and mammograms for breast cancer. Two approaches to ensemble creation are proposed. In the first approach, the images are processed by a convolutional neural network and the flattened vector of image descriptors is subjected to feature selection by applying different selection methods. As a result, different sets of a limited number of diagnostic features are generated. In the next stage, these sets of features represent input attributes for the classical classifiers: support vector machine, a random forest of decision trees, and softmax. By combining different selection methods with these classifiers an ensemble classification system is created and integrated by majority voting. In the second approach, different structures of convolutional neural networks are directly applied as the members of the ensemble. The efficiency of the proposed classification systems is investigated and compared to medical data representing dermoscopic images of melanoma and breast cancer mammogram images. Thanks to fusion of the results of many classifiers forming an ensemble, accuracy and all other quality measures have been significantly increased for both types of medical images.
Go to article

Authors and Affiliations

Fabian Gil
1
Stanisław Osowski
1 2
Bartosz Świderski
3
Monika Słowińska
4

  1. Military University of Technology, Faculty of Electronics, Institute of Electronic Systems, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Electrical Engineering, pl. Politechniki 1, 00-661 Warsaw, Poland
  3. University of Life Sciences, ul. Nowoursynowska 166, 02-787 Warsaw
  4. Central Clinical Hospital Ministry of Defense, Military Institute of Medicine – National Research Institute, ul. Szaserów 128, 04-141 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

To address the problem that a deep neural network needs a sufficient number of training samples to have a good prediction performance, this paper firstly used the Z-Map algorithm to generate a simulated profile of the milling surface and construct an optical simulation model of surface imaging to supplement the training sample size of the neural network. Then the Deep CORAL model was used to match the textures of the simulated samples and the actual samples across domains to solve the problem that the simulated samples were not in the same domain as the actual milling samples. Experimental results have shown that high texture matching could be achieved between optical simulation images and actual images, laying the foundation for expanding the actual milled workpiece images with the simulation images. The deep convolutional neural model Xception was used to predict the classification of six classes of data sets with the inclusion of simulation images, and the accuracy was improved from 86.48% to 92.79% compared with the model without the inclusion of simulation images. The proposed method solves the problem of the need for a large number of samples for deep neural networks and lays the foundation for similar methods to predict surface roughness for different machining processes.
Go to article

Authors and Affiliations

Lingli Lu
1
Huaian Yi
1
Aihua Shu
1
Jianhua Qin
1
Enhui Lu
2

  1. School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, People’s Republic of China
  2. School of Mechanical Engineering, Yangzhou University, Yangzhou, 225009, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

The MEMS inclinometer integrates a tri-axis accelerometer and a tri-axis gyroscope to solve the perceived dynamic inclinations through a complex data fusion algorithm, which has been widely used in the fields of industrial, aerospace, and monitoring. In order to ensure the validity of the measurement results of MEMS inclinometers, it is necessary to determine their dynamic performance parameters. This study proposes a conical motion-based MEMS inclinometer dynamic testing method, and the motion includes the classical conical motion, the attitude conical motion, and the dual-frequency conical motion. Both the frequency response and drift angle of MEMS inclinometers can be determined. Experimental results show that the conical motions can accelerate the angle drift of MEMS inclinometers, which makes them suitable for dynamic testing ofMEMSinclinometers. Additionally, the tilt sensitivity deviation of theMEMS inclinometer by the proposed method and the turntable-based method is less than 0.26 dB.We further provide the research for angle drift and provide discussion.
Go to article

Authors and Affiliations

Qihang Yang
1
Chenguang Cai
2
Ming Yang
3
Ming Kong
1
Zhihua Liu
2
Feng Liang
4

  1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  2. National Institute of Metrology of China, Beijing 100013, China
  3. College of Electrical Engineering, Guizhou University, Guiyang 550025, China
  4. Shenyang Aircraft Corporation, Shenyang 110031, China
Download PDF Download RIS Download Bibtex

Abstract

Is this article simulation of statistical measurements is performed on the basis of which the analysis of the standard deviation of the obtained results is carried out. It is shown that the standard deviation is minimum and independent from measurement duration while an object is in the state of equilibrium. For objects in a stationary non-equilibrium state the standard deviation depends on the duration measurements and the parameters of the state. The influence of these factors on the standard deviation is assessed with equation which includes the relaxation time. The value of the relaxation time is determined by approximating the energy spectrum of the studied signals. The analysis of energy spectra showed that the spectrum of white noise is inherent in objects in equilibrium; the flicker component of the spectrum occurs when the state of the object deviates from equilibrium.
Go to article

Authors and Affiliations

Krzysztof Przystupa
1
Zenoviy Kolodiy
2
Svyatoslav Yatsyshyn
2
Jacek Majewski
3
Yuriy Khoma
2
Iryna Petrovska
2
Serhiy Lasarenko
2
Taras Hut
2

  1. Department Automation, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  2. Lviv Polytechnic National University, Institute of Computer Technologies, Automatics and Metrology, S. Bandera Str. 28a, 79013, Lviv, Ukraine
  3. Department of Automation and Metrology, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to high performance demands of grid-connected pulse-width modulation (PWM) converters in power applications, backstepping control (BSC) has drawn wide research interest for its advantages, including high robustness against parametric variations and external disturbances. In order to guarantee these advantages while providing high static and dynamic responses, in this work, a robust BSC (RBSC) with consideration of grid-connected PWM converter parameter uncertainties is proposed for three-phase grid-connected four-leg voltage source rectifiers (GC-FLVSR). The proposed RBSC for GC-FLVSR is composed of four independent controllers based on the Lyabonov theory that control DC bus voltage and input currents simultaneously. As a result, unit power factor, stable DC-bus voltage, sinusoidal four-leg rectifier input currents with lower harmonics and zero-sequence (ZS), and natural currents can be accurately achieved. Furthermore, the stability and robustness against load, DC capacitor, and filter inductance variations can be tested. The effectiveness and superiority of the proposed RBSC compared to the PI control (PIC) have been validated by processor-inthe- loop (PIL) co-simulation using the STM32F407 discovery-development-board as an experimental study.
Go to article

Authors and Affiliations

Ali Chebabhi
1
Abdelhalim Kessal
2

  1. Electrical Engineering Laboratory (EEL), Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. LPMRN Laboratory, Faculty of Sciences and Technology, University of Bordj Bou Arreridj, 34000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The sequential multilateration principle is often adopted in geometric error measurement of CNC machine tools. To identify the geometric errors, a single laser tracker is placed at different positions to measure the length between the target point and the laser tracker. However, the measurement of each laser tracker position is not simultaneous and measurement accuracy is mainly subject to positioning repeatability of the machine tool. This paper attempts to evaluate the measurement uncertainty of geometric errors caused by the positioning repeatability of the machine tool and the laser tracker spatial length measurement error based on the Monte Carlo method. Firstly, a direct identification method for geometric errors of CNC machine tools based on geometric error evaluation constraints is introduced, combined with the geometric error model of a three-axis machine tool. Moreover, uncertainty contributors caused by the repeatability of positioning of numerically controlled axes of the machine tool and the laser length measurement error are analyzed. The measurement uncertainty of the geometric error and the volumetric positioning error is evaluated with the Monte Carlo method. Finally, geometric error measurement and verification experiments are conducted. The results show that the maximum volumetric positioning error of the machine tool is 84.1 μm and the expanded uncertainty is 5.8 μm (�� = 2). The correctness of the geometric error measurement and uncertainty evaluation method proposed in this paper is verified compared with the direct geometric error measurement methods.
Go to article

Authors and Affiliations

Xingbao Liu
1
Yangqiu Xia
1
Xiaoting Rui
1

  1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China
Download PDF Download RIS Download Bibtex

Abstract

The Kibble balance experiment is used to redefine the kilogram as a unit of mass based on the Planck constant. To demonstrate and understand the basic principle of the Kibble balance, the National Institute of Standards (NIS)-Egypt has constructed a prototype Kibble balance that can measure gram-level masses with 0.01% relative uncertainty. Through the construction of this prototype, the challenges can be studied and addressed to overcome the weaknesses of NIS’s prototype. This study presents the design and construction of the prototype Kibble balance. It also focuses on the design and performance of the magnetic system, which is a crucial element of the Kibble balance. Analytical modeling and finite element analysis were used to evaluate and improve the magnet system. Several other aspects were also discussed, including the yoke’s material and enhancing the magnetic profile within the air gap of the magnet system. Over a vertical distance of 30 mm inside the air gap, the magnetic flux density was found to be 0.3 T, and the uniformity was found to be 8 x 10 -5.
Go to article

Authors and Affiliations

Sayed Emira
1
E.R. Shaaban
2
M.M. Rashad
3
Shaker A. Gelany
1

  1. National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
  2. Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
  3. Central Metallurgical Research and Development Institute (CMRDI), P.O. BOX. 87 Helwan, Egypt 11421

This page uses 'cookies'. Learn more