Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.
Go to article

Authors and Affiliations

Konrad Chabowski
Tomasz Piasecki
Andrzej Dzierka
Karol Nitsch
Download PDF Download RIS Download Bibtex

Abstract

Scanning probe microscopy (SPM) since its invention in the 80’s became very popular in examination of many different sample parameters, both in university and industry. This was the effect of bringing this technology closer to the operator. Although the ease of use opened a possibility for measurements without high labour requirement, a quantitative analysis is still a limitation in Scanning ProbeMicroscopes available on the market. Based on experience of Nano-metrology Group, SPM still can be considered as a tool for quantitative examination of thermal, electrical and mechanical surface parameters. In this work we present an ARMScope platform as a versatile SPM controller that is proved to be useful in a variety of applications: fromatomic-resolution STM (Scanning TunnellingMicroscopy) toMulti-resonance KPFM (Kelvin Probe force microscopy) to commercial SEMs (Scanning electron microscopes).

Go to article

Authors and Affiliations

Bartosz Świadkowski
Tomasz Piasecki
Maciej Rudek
Michał Świątkowski
Krzysztof Gajewski
Wojciech Majstrzyk
Michał Babij
Andrzej Dzierka
Teodor Gotszalk
Download PDF Download RIS Download Bibtex

Abstract

Scanning electron microscopy (SEM) is a perfect technique for micro-/nano-object imaging [1] and movement measurement [2, 3] both in high and environmental vacuum conditions and at various temperatures ranging from elevated to low temperatures. In our view, the magnetic field expanding from the pole-piece makes it possible to characterize the behaviour of electromagnetic micro- and nano electromechanical systems (MEMS/NEMS) in which the deflection of the movable part is controlled by the electromagnetic force. What must be determined, however, is the magnetic field expanding from the e-beam column, which is a function of many factors, like working distance (WD), magnification and position of the device in relation to the e-beam column. There are only a few experimental methods for determination of the magnetic field in a scanning electron microscope. In this paper we present a method of the magnetic field determination under the scanning electron column by application of a silicon cantilever magnetometer. The micro-cantilever magnetometer is a silicon micro-fabricated MEMS electromagnetic device integrating a current loop of lithographically defined dimensions. Its stiffness can be calibrated with a precision of 5% by the method described by Majstrzyk et al. [4]. The deflection of the magnetometer cantilever is measured with a scanning electron microscope and thus, through knowing the bias current, it is possible to determine the magnetic field generated by the e-beam column in a defined position and at a defined magnification.

Go to article

Authors and Affiliations

Karolina Orłowska
Maria E. Mognaschi
Krzysztof Kwoka
Tomasz Piasecki
Piotr Kunicki
Andrzej Sierakowski
Wojciech Majstrzyk
Arkadiusz Podgórni
Bartosz Pruchnik
Paolo di Barba
Teodor Gotszalk
Download PDF Download RIS Download Bibtex

Abstract

The suitability of low-cost impedance sensors for microbiological purposes and biofilm growth monitoring was evaluated. The sensors with interdigitated electrodes were fabricated in PCB and LTCC technologies. The electrodes were golden (LTCC) or gold-plated (PCB) to provide surface stability. The sensors were used for monitoring growth and degradation of the reference ATCC 15442 Pseudomonas aeruginosa strain biofilm in invitro setting. During the experiment, the impedance spectra of the sensors were measured and analysed using electrical equivalent circuit (EEC) modelling. Additionally, the process of adhesion and growth of bacteria on a sensor’s surface was assessed by means of the optical and SEM microscopy. EEC and SEM microscopic analysis revealed that the gold layer on copper electrodes was not tight, making the PCB sensors susceptible to corrosion while the LTCC sensors had good surface stability. It turned out that the LTCC sensors are suitable for monitoring pseudomonal biofilm and the PCB sensors are good detectors of ongoing stages of biofilm formation.

Go to article

Authors and Affiliations

Konrad Chabowski
Adam F. Junka
Tomasz Piasecki
Damian Nowak
Karol Nitsch
Danuta Smutnicka
Marzenna Bartoszewicz
Magdalena Moczała
Patrycja Szymczyk

This page uses 'cookies'. Learn more