Details

Title

Selective Laser Melting Process Parameter Optimization on Density and Corrosion Resistance of 17-4PH Stainless Steel

Journal title

Archives of Foundry Engineering

Yearbook

2023

Volume

vol. 23

Issue

No 4

Affiliation

Sahadevan, Priya : Lincoln University College Selangor, Malaysia ; Bhaumik, Amiya : Lincoln University College Selangor, Malaysia ; Selvan, Chithirai Pon : Curtin University Dubai, United Arab Emirates ; Manjunath Patel, G C : PES Institute of Technology and Management, Shivamogga, Visvesvaraya Technological University, Belagavi, India

Authors

Keywords

17-4 PH Stainless Steel ; Density ; Corrosion studies ; SLM

Divisions of PAS

Nauki Techniczne

Coverage

105-116

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Hou, B., Li, X., Ma, X., Du, C., Zhang, M., Zheng, M., Xu, W., Lu, D. & Ma, F. (2017). The cost of corrosion in China. Materials Degradation. 1(1), 4. DOI:10.1038/s41529-017-0005-2.
[2] Khan, M.A.A., Hussain, M. & Djavanroodi, F. (2021). Microbiologically influenced corrosion in oil and gas industries: A review. International Journal of Corrosion and Scale Inhibition. 10(1), 80-106. DOI: 10.17675/2305-6894-2021-10-1-5.
[3] Bhandari, J., Khan, F., Abbassi, R., Garaniya, V. & Ojeda, R. (2015). Modelling of pitting corrosion in marine and offshore steel structures–A technical review. Journal of Loss Prevention in the Process Industries. 37, 39-62. https://doi.org/10.1016/j.jlp.2015.06.008.
[4] Abbas, M. & Shafiee, M. (2020). An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Marine Structures. 71, 102718. https://doi.org/10.1016/j.marstruc. 2020.102718.
[5] Chalisgaonkar, R. (2020). Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys–A review. Materials Today: Proceedings. 26, 1060-1071. https://doi.org/10.1016/j.matpr.2020.02.211.
[6] Zhu, J., Li, D., Chang, W., Wang, Z., Hu, L., Zhang, Y., ... & Zhang, L. (2020). In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean. Journal of Materials Research and Technology. 9(4), 8104-8116. https://doi.org/10.1016/j.jmrt.2020.05.060.
[7] Swamy, P.K., Mylaraiah, S., Gowdru Chandrashekarappa, M.P., Lakshmikanthan, A., Pimenov, D.Y., Giasin, K. & Krishna, M. (2021). Corrosion behaviour of high-strength Al 7005 alloy and its composites reinforced with industrial waste-based fly ash and glass fibre: comparison of stir cast and extrusion conditions. Materials. 14(14), 3929. https://doi.org/10.3390/ma14143929.
[8] Varol, T., Güler, O., Yıldız, F. & Suresh Kumar, S. (2022). Additive manufacturing of non-ferrous metals. In Innovations in Additive Manufacturing. (pp. 91-120). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-89401-6_5.
[9] Mahmoodian, M. (2018). Introduction. In: Reliability and maintainability of in-service pipelines. India: Elsevier.
[10] Ssenteza, V., Eklund, J., Hanif, I., Liske, J. & Jonsson, T. (2023). High temperature corrosion resistance of FeCr (Ni, Al) alloys as bulk/overlay weld coatings in the presence of KCl at 600° C. Corrosion Science. 213, 110896. https://doi.org/10.1016/j.corsci.2022.110896.
[11] Folkeson, N., Jonsson, T., Halvarsson, M., Johansson, L.G. & Svensson, J.E. (2011). The influence of small amounts of KCl (s) on the high temperature corrosion of a Fe‐2.25 Cr‐1Mo steel at 400 and 500° C. Materials and Corrosion. 62(7), 606-615. https://doi.org/10.1002/maco.201005942.
[12] Müller, P., Pernica, V. & Kaňa, V. (2022). Corrosion resistance of cast duplex steels. Archives of Foundry Engineering, 22(3), 5-10. DOI: 10.24425/afe.2022.140230.
[13] Francis, R. & Byrne, G. (2018). The erosion corrosion limits of duplex stainless steels. Materials Performance. 57(5), 44-47.
[14] Sahu, S., Swanson, O.J., Li, T., Gerard, A.Y., Scully, J.R. & Frankel, G.S. (2020). Localized corrosion behavior of non-equiatomic NiFeCrMnCo multi-principal element alloys. Electrochimica acta. 354, 136749. https://doi.org/10.1016/ j.electacta.2020.136749.
[15] Chen, H., Kim, S.H., Kim, C. Chen, J. & Jang, C. (2019). Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650 C. Corrosion Science. 156, 16-31. https://doi.org/10.1016/j.corsci.2019.04.043.
[16] Zai, L., Zhang, C., Wang, Y., Guo, W., Wellmann, D., Tong, X. & Tian, Y. (2020). Laser powder bed fusion of precipitation-hardened martensitic stainless steels: a review. Metals. 10(2), 255. https://doi.org/10.3390/met10020255.
[17] Li, J., Zhan, D., Jiang, Z., Zhang, H., Yang, Y. & Zhang, Y. (2023). Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review. Journal of Materials Research and Technology. 23, 172-190. https://doi.org/10.1016/j.jmrt.2022.12.177.
[18] Davanageri, M., Narendranath, S. & Kadoli, R. (2016). Dry sliding wear behavior of super duplex stainless steel AISI 2507: A statistical approach. Archives of Foundry Engineering. 16(4), 47-56.
[19] Ghaffari, M., Nemani, A. V. & Nasiri, A. (2022). Microstructure and mechanical behavior of PH 13–8Mo martensitic stainless steel fabricated by wire arc additive manufacturing. Additive Manufacturing. 49, 102374. https://doi.org/10.1016/j.addma.2021.102374.
[20] Alım, B., Özpolat, Ö.F., Şakar, E., Han, İ., Arslan, İ., Singh, V.P. & Demir, L. (2022). Precipitation-hardening stainless steels: Potential use radiation shielding materials. Radiation Physics and Chemistry. 194, 110009. https://doi.org/10.1016/j.radphyschem.2022.110009.
[21] Yeganeh, M., Shoushtari, M.T. & Jalali, P. (2021). Evaluation of the corrosion performance of selective laser melted 17-4 precipitation hardening stainless steel in Ringer’s solution. Journal of Laser Applications. 33(4). https://doi.org/10.2351/7.0000445.
[22] Rafi, H.K., Pal, D., Patil, N., Starr, T.L. & Stucker, B.E. (2014). Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. Journal of materials engineering and performance. 23, 4421-4428. https://doi.org/10.1007/s11665-014-1226-y.
[23] Hu, Z., Zhu, H., Zhang, H. & Zeng, X. (2017). Experimental investigation on selective laser melting of 17-4PH stainless steel. Optics & Laser Technology. 87, 17-25. https://doi.org/10.1016/j.optlastec.2016.07.012.
[24] Srivastava, M., Rathee, S., Tiwari, A. & Dongre, M. (2023). Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour. Materials Chemistry and Physics. 294, 126988. https://doi.org/10.1016/j.matchemphys.2022.126988.
[25] Piekło, J. & Garbacz-Klempka, A. (2021). Use of selective laser melting (SLM) as a replacement for pressure die casting technology for the production of automotive casting. Archives of Foundry Engineering. 21(2), 9-16. DOI: 10.24425/afe.2021.136092.
[26] Fuchs, S.L., Praegla, P.M., Cyron, C.J., Wall, W.A. & Meier, C. (2022). A versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusion. Engineering with Computers. 38(6), 4853-4877. https://doi.org/10.1007/s00366-022-01724-4.
[27] Zhu, Y.Y., Tang, H.B., Li, Z., Xu, C. & He, B. (2019). Solidification behavior and grain morphology of laser additive manufacturing titanium alloys. Journal of Alloys and Compounds. 777, 712-716. https://doi.org/10.1016/ j.jallcom.2018.11.055.
[28] Sheshadri, R., Nagaraj, M., Lakshmikanthan, A., Chandrashekarappa, M.P.G., Pimenov, D.Y., Giasin, K., ... & Wojciechowski, S. (2021). Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: Taguchi and super ranking concept approaches. Journal of Materials Research and Technology, 14, 2586-2600. https://doi.org/10.1016/ j.jmrt.2021.07.144.
[29] Li, R., Shi, Y., Wang, Z., Wang, L., Liu, J. & Jiang, W. (2010). Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science. 256(13), 4350-4356. https://doi.org/10.1016/j.apsusc.2010.02.030.
[30] Averyanova, M., Cicala, E., Bertrand, P., Grevey, D. (2012). Experimental design approach to optimize selective laser melting of martensitic 17-4 PH powder: part Iesingle laser tracks and first layer. Rapid Prototyping Journal. 18(1), 28e37. https://doi.org/ 10.1108/13552541211193476
[31] Razavykia, A., Brusa, E., Delprete, C. & Yavari, R. (2020). An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting. Materials. 13(17), 3895. https://doi.org/10.3390/ma13173895.
[32] Gu, H., Gong, H., Pal, D., Rafi, K., Starr, T., Stucker B, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. In 2013 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2013-August.
[33] Rashid, R., Masood, S.H., Ruan, D., Palanisamy, S., Rashid, R.R. & Brandt, M. (2017). Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM). Journal of Materials Processing Technology. 249, 502-511. https://doi.org/10.1016/j.jmatprotec.2017.06.023.
[34] Weissman, S.A. & Anderson, N.G. (2015). Design of experiments (DoE) and process optimization. A review of recent publications. Organic Process Research & Development. 19(11), 1605-1633. https://doi.org/10.1021/op500169m.
[35] Spall, J.C. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins apl technical digest. 19(4), 482-492.
[36] Yap, C.Y., Chua, C.K. & Dong, Z.L. (2016). An effective analytical model of selective laser melting. Virtual and Physical Prototyping. 11(1), 21-26. https://doi.org/10.1080/ 17452759.2015.1133217.
[37] Pawlak, A., Rosienkiewicz, M. & Chlebus, E. (2017). Design of experiments approach in AZ31 powder selective laser melting process optimization. Archives of Civil and Mechanical Engineering. 17, 9-18. https://doi.org/10.1016/j.acme.2016.07.007.
[38] Sun, J., Yang, Y. & Wang, D. (2013). Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Optics & Laser Technology. 49, 118-124. https://doi.org/10.1016/j.optlastec.2012.12.002.
[39] Bai, Y., Yang, Y., Xiao, Z., Zhang, M. & Wang, D. (2018). Process optimization and mechanical property evolution of AlSiMg0. 75 by selective laser melting. Materials & Design. 140, 257-266. https://doi.org/10.1016/j.matdes.2017.11.045.
[40] Larimian, T., Kannan, M., Grzesiak, D., Al Mangour, B. & Borkar, T. (2020). Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A. 770, 138455. https://doi.org/10.1016/j.msea.2019.138455.
[41] Pearson, P. & Cousins, A. (2016). Assessment of corrosion in amine-based post-combustion capture of carbon dioxide systems. Absorption-based post-combustion capture of carbon dioxide. 439-463. https://doi.org/10.1016/B978-0-08-100514-9.00018-4.
[42] Martin, S., Lepaumier, H., Picq, D., Kittel, J., De Bruin, T., Faraj, A. & Carrette, P.L. (2012). New amines for CO2 capture. IV. Degradation, corrosion, and quantitative structure property relationship model. Industrial and Engineering Chemistry Research. 51(18), 6283-6289. https://doi.org/10.1021/ie2029877.
[43] Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., & Sienz, J. (2015). Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. The International Journal of Advanced Manufacturing Technology. 76, 869-879. 8), 6283-6289. https://doi.org/10.1021/ie2029877.
[44] Davidson, K. & Singamneni, S. (2016). Selective laser melting of duplex stainless steel powders: an investigation. Materials and Manufacturing Processes. 31(12), 1543-1555. https://doi.org/10.1080/10426914.2015.1090605.
[45] Suwanpreecha, C., Seensattayawong, P., Vadhanakovint, V. & Manonukul, A. (2021). Influence of specimen layout on 17-4PH (AISI 630) alloys fabricated by low-cost additive manufacturing. Metallurgical and Materials Transactions A. 52, 1999-2009. https://doi.org/10.1007/s11661-021-06211-x.
[46] Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D. & Stucker, B. (2017). Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Progress in Additive Manufacturing. 2, 157-167. https://doi.org/10.1007/s40964-017-0030-2.
[47] Tian, Y., Tomus, D., Rometsch, P. & Wu, X. (2017). Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Additive Manufacturing. 13, 103-112. https://doi.org/10.1016/ j.addma.2016.10.010.
[48] Gong, H., Rafi, K., Gu, H., Starr, T. & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing. 1, 87-98. https://doi.org/10.1016/j.addma.2014.08.002.
[49] Wen, S., Wang, C., Zhou, Y., Duan, L., Wei, Q., Yang, S. & Shi, Y. (2019). High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Optics & Laser Technology. 116, 128-138. https://doi.org/10.1016/j.optlastec.2019.03.018.
[50] Meier, H. & Haberland, C. (2008). Experimental studies on selective laser melting of metallic parts. Materialwissenschaft und Werkstofftechnik. 39(9), 665-670. DOI: 10.1002/mawe.200800327.
[51] Garcia-Cabezon, C., Castro-Sastre, M.A., Fernandez-Abia, A.I. et al. (2022). Microstructure–hardness–corrosion performance of 17–4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy. Metals and Materials International. 28, 2652–2667. https://doi.org/10.1007/s12540-021-01155-8.

Date

2023.12.22

Type

Article

Identifier

DOI: 10.24425/afe.2023.146685
×