Details

Title

Effect of Alloying Additives and Casting Parameters on the Microstructure and Mechanical Properties of Silicon Bronzes

Journal title

Archives of Foundry Engineering

Yearbook

2023

Volume

vol. 23

Issue

No 3

Affiliation

Witasiak, D. : AGH University of Science and Technology, Faculty of Foundry Engineering, Poland ; Garbacz-Klempka, A. : AGH University of Science and Technology, Faculty of Foundry Engineering, Poland ; Piękoś, M. : AGH University of Science and Technology, Faculty of Foundry Engineering, Poland ; Kozana, J. : AGH University of Science and Technology, Faculty of Foundry Engineering, Poland ; Maj, M. : AGH University of Science and Technology, Faculty of Foundry Engineering, Poland ; Perek-Nowak, M. : AGH University of Science and Technology, Faculty of Foundry Engineering, Poland

Authors

Keywords

Innovative foundry technologies and materials ; centrifugal casting ; Sand casting ; Mechanical properties ; Microstructure

Divisions of PAS

Nauki Techniczne

Coverage

110-117

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Nnakwo, K. C., Mbah, C. N. & Nnuka, E. E. (2019). Influence of trace additions of titanium on grain characteristics, conductivity and mechanical properties of copper-silicon-titanium alloys. Heliyon. 5(10), e02471, 1-7. DOI: 10.1016/j.heliyon.2019.e02471.
[2] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2015). Refining processes in the copper casting technology. Metalurgija. 54(1), 259-262.
[3] Wesołowski, K. (1966). Metaloznawstwo. tom III. Warszawa: Państwowe Wydawnictwo Techniczne.
[4] Prowans, S. (1988). Metaloznawstwo. Warszawa: Państwowe Wydawnictwo Naukowe.
[5] Goto, I.; Aso, S., Ohguchi, Ki., Kurosawa, K., Suzuki, H., Hayashi, H. & Shionoya, J. (2019). Deformation behavior of pure copper castings with as-cast surfaces for electrical parts. Journal of Materials Engineering and Performance. 28, 3835-3843. DOI: 10.1007/s11665-019-3865-5.
[6] Bydałek, A.W. & Najman, K. (2006). The reduction melting conduction of Cu-Si slloys. Archives of Foundry. 6(22), 107-110. (in Polish).
[7] Davis, J.R. (Ed.) (2001). Copper and copper alloys. ASM International.
[8] Rowley, M. T. (1984). Casting copper-base alloys. Illinois: American Foundrymen´s Society.
[9] Rzadkosz, S. (2013). Foundry of copper and copper alloys. Kraków: Akapit. (in Polish).
[10] Garbacz-Klempka, A., Kozana, J., Piękoś, M., Papaj, P., Papaj, M. & Perek-Nowak, M. (2018). Influence of modification in centrifugal casting on microstructure and mechanical properties of silicon bronzes. Archives of Foundry Engineering. 3(18), 11-18. DOI: 10.24425/123594.
[11] Romankiewicz, R., Romankiewicz, F. (2016). Research into oxide inclusions in silicon bronze CuSi3Zn3MnFe with the use of X-ray microanalysis. Metallurgy and Foundry Engineering. 42(1), 41-46. DOI: 10.7494/mafe.2016.42.1.41
[12] Tokarski, M. (1985). Metaloznawstwo metali i stopów nieżelaznych w zarysie. Katowice: Wydawnictwo Śląsk.
[13] Kosowski, A. (1996) Metaloznawstwo stopów odlewniczych. Kraków: Wydawnictwo AGH.
[14] Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B.C., Oghenekowho, P. A., Okeke, I.U. & Maduka, E. A. (2021) Grain characteristics, electrical conductivity, and hardness of Zn-doped Cu–3Si alloys system. SN Applied Sciences. 3(11), 829, 1-10. DOI: 10.1007/s42452-021-04784-1. [15] Adamski, Cz. (1953). Casting bronzes and silicon brasses - technology and application. Warszawa: Państwowe Wydawnictwo Techniczne. (in Polish).
[16] Guharaja, S., Noorul Haq, A. & Karuppannan, K. M. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. The International Journal of Advanced Manufacturing Technology. 30, 1040-1048. DOI: 10.1007/s00170-005-0146-2.
[17] Hirigo, T.H. & Singh, B. (2019). Design and analysis of sand casting process of mill roller. The International Journal of Advanced Manufacturing Technology. 105, 2183-2214. DOI: 10.1007/s00170-019-04270-4.
[18] Sadarang, J., Nayak, R.K. & Panigrahi, I. (2021). Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review. Transactions of the Indian Institute of Metals. 74, 2939-2952. DOI: 10.1007/s12666-021-02370-y.
[19] Shamasundar, S. & Gopalakrishna V. (2004). Gravity die casting. process die design and process optimisation. esi-group, retrieved July 3, 2023 from https://www.esi-group.com/resources/gravity-die-casting-process-die-design-and-process-optimisation.
[20] Halvaee, A. & Talebi, A. (2001). Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy. Journal of Materials Processing Technology. 118(1-3), 122-126. DOI: 10.1016/S0924-0136(01)00904-9.
[21] Malhotra, V. & Kumar Y. (2016). Study of process parameters of gravity die casting defects. International Journal of Mechanical Engineering and Technology (IJMET). 7(2), March-April, 208-211.
[22] Balout, B. & Litwin, J. (2012). Mathematical modeling of particle segregation during centrifugal casting of metal matrix composites. Journal of Materials Engineering and Performance. 21, 450.462. DOI: 10.1007/s11665-011-9873-8.
[23] Wang, X., Chen, R., Wang, Q., Wang, S., Li, Y., Su, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2022). Influence of casting temperature and mold preheating temperature on centrifugal casting by numerical simulation. Journal of Materials Engineering and Performance. 32(15), 6786-3809. https://doi.org/10.1007/s11665-022-07608-4.
[24] Predein, V. V., Zhilin, S. G. & Komarov, O. N. (2022). Promising methods for forming the structure and properties of metal obtained by crystallization under the action of centrifugal forces. Metallurgist. 65(11-12), 1311-1323. https://doi.org/10.1007/s11015-022-01277-3.
[25] Sen, S., Muralidhara B. K., & Mukunda, P. G. (2020). Study of flow behaviour in vertical centrifugal casting. Materials Today: Proceedings. 24(2), 1392-1399. DOI: 10.1016/ j.matpr.2020.04.457.
[26] Keerthi Prasad, K.S., Murali, M.S. & Mukunda, P.G. (2010). Analysis of fluid flow in centrifugal casting. Frontiers of Materials Science in China. 4, 103-110. DOI: 10.1007/s11706-010-0005-4.
[27] Wang, X., Chen, R., Wang, Q., Wang S., Li, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2023). Influence of rotation speed and filling time on centrifugal casting through numerical simulation. International Journal of Metalcasting. 17(2), 1326-1339. DOI: 10.1007/s40962-022-00841-6. [28] Wołczyński, W., Ivanova, A. A. & Kwapisiński, P. (2019). On consonance between a mathematical method for the CET prediction and constrained / unconstrained solidification. Procedia Manufacturing. 30, 459-466. DOI: 10.1016/j.promfg.2019.02.065.
[29] Kwapisiński, P. & Wołczyński, W. (2023). Control of the CET localization in continuously cast copper and copper alloys’ ingots. Archives of Foundry Engineering. 23(2), 91-99. DOI: 10.24425/afe.2023.144303.
[30] Wołczyński, W., Lipnicki, Z., Bydałek, A.W. & Ivanova, A. (2016). Structural zones in large static ingot. forecasts for continuously cast brass ingot. Archives of Foundry Engineering. 16(3), 141-146. DOI: 10.1515/afe-2016-0067.

Date

2023.09.18

Type

Article

Identifier

DOI: 10.24425/afe.2023.146669
×