Details

Title

Magnetotransport measurements as a tool for searching 3D topological insulators

Journal title

Metrology and Measurement Systems

Yearbook

2021

Volume

vol. 28

Issue

No 4

Affiliation

Śliż, Paweł : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Sankowska, Iwona : Łukasiewicz Research Network – Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland ; Bobko, Ewa : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Szeregij, Eugeniusz : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Grendysa, Jakub : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Tomaka, Grzegorz : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Żak, Dariusz : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Płoch, Dariusz : University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland ; Jasik, Agata : Łukasiewicz Research Network – Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland

Authors

Keywords

materials science ; magnetotransport ; topological insulators ; quantum Hall effect

Divisions of PAS

Nauki Techniczne

Coverage

725-734

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Bibliography

[1] Fu, L., Kane, C. L.,&Mele, E. J. (2007). Topological Insulators in Three Dimensions. Physical Review Letters, 98(10), 106803. https://doi.org/10.1103/physrevlett.98.106803
[2] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2008). A topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190), 970–974. https://doi.org/10.1038/nature06843
[3] Xu, Y., Miotkowski, I., Liu, C., Tian, J., Nam, H., Alidoust, N., Hu, J., Shih, C.-K., Hasan, M. Z., & Chen, Y. P. (2014). Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nature Physics, 10(12), 956–963. https://doi.org/10.1038/nphys3140
[4] Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J., & Ong, N. P. (2010). Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3. Science, 329(5993), 821–824. https://doi.org/10.1126/science.1189792
[5] Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960–964. https://doi.org/10.1038/nphys1861
[6] Shrestha, K. (2015). Magnetotransport Studies on Topological Insulators [Doctoral dissertation, University of Houston]. https://uh-ir.tdl.org/handle/10657/4881
[7] Zhang, J. (2016). Transport Studies of the Electrical, Magnetic and Thermoelectric Properties of Topological Insulator Thin Films. Springer-Verlag GmbH
[8] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., & Zhang, S.-C. (2007). Quantum Spin Hall Insulator State in HgTe QuantumWells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047
[9] Shamim, S., Beugeling, W., Böttcher, J., Shekhar, P., Budewitz, A., Leubner, P., Lunczer, L., Hankiewicz, E. M., Buhmann, H., & Molenkamp, L. W. (2020). Emergent quantum Hall effects below 50 mT in a two-dimensional topological insulator. Science Advances, 6(26). https://doi.org/10.1126/sciadv.aba4625
[10] Weis, J., & von Klitzing, K. (2011). Metrology and microscopic picture of the integer quantum Hall effect. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1953), 3954–3974. https://doi.org/10.1098/rsta.2011.0198
[11] K. I.Wysokinski. (2006). Quantum Hall effect: the fundamentals.Metrology and Measurement Systems, 13(2), 113–124. http://www.metrology.pg.gda.pl/full/2006/M&MS_2006_113.pdf
[12] Brüne, C., Liu, C. X., Novik, E. G., Hankiewicz, E. M., Buhmann, H., Chen, Y. L., Qi, X. L., Shen, Z. X., Zhang, S. C., & Molenkamp, L. W. (2011). Quantum Hall effect from the topological surface states of strained bulk HgTe. Physical Review Letters, 106(12), 126803. https://doi.org/10.1103/PhysRevLett.106.126803
[13] Brüne, C., Thienel, C., Stuiber, M., Böttcher, J., Buhmann, H., Novik, E. G., Liu, C.-X., Hankiewicz, E. M., & Molenkamp, L. W. (2014). Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator. Physical Review X, 4(4), 41045. https://doi.org/10.1103/PhysRevX.4.041045
[14] Mikitik, G. P., & Sharlai, Y. V. (1999). Manifestation of Berry’s Phase in Metal Physics. Physical Review Letters, 82(10), 2147–2150. https://doi.org/10.1103/physrevlett.82.2147
[15] Taskin, A. A., & Ando, Y. (2011). Berry phase of nonideal Dirac fermions in topological insulators. Physical Review B, 84(3), 35301. https://doi.org/10.1103/physrevb.84.035301
[16] Tomaka, G., Grendysa, J., Sliz, P., Becker, C. R., Polit, J., Wojnarowska, R., Stadler, A., & Sheregii, E. M. (2016). High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction. Physical Review B, 93(20), 205419. https://doi.org/10.1103/physrevb.93.205419
[17] Melhem, Z. (2019). Cryogenics at Oxford Instruments. Oxford Instruments. https://indico.cern.ch/event/792215/contributions/3408669/attachments/1938018/3212326/Melhem_Ziad_Cryo_at_OI_ EasiTrain_2Oct19_.pdf
[18] Balshaw, N. H. (1996). Practical Cryogenics: An Introduction to Laboratory Cryogenics. Oxford Instruments, Scientific Research Division
[19] LakeShore. (n.d.). Lake Shore 7500/9500 Series Hall System User’s Manual. http://sites.science.oregonstate.edu/~tatej/TateLabWiki/lib/exe/fetch.php?media=manuals:lakeshore_7504_complete.pdf
[20] MagLab. (2018). National MagLab – Elevate your research with higher fields. Brochure. https://nationalmaglab.org/images/research/publications/searchable_docs/print_media/maglab_ elevate_brochure_2018.pdf
[21] Markiewicz,W. D., Larbalestier, D. C.,Weijers, H. W., Voran, A. J., Pickard, K. W., Sheppard,W. R., Jaroszynski, J., Xu, A., Walsh, R. P., Lu, J., Gavrilin, A. V, & Noyes, P. D. (2012). Design of a Superconducting 32 T Magnet With REBCO High Field Coils. IEEE Transactions on Applied Superconductivity, 22(3), 4300704. https://doi.org/10.1109/tasc.2011.2174952
[22] Hahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, K. R., Noguchi, S., Jaroszynski, J., & Larbalestier, D. C. (2019). 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 570(7762), 496–499. https://doi.org/10.1038/s41586-019-1293-1 [23] Nakamura, D., Ikeda, A., Sawabe, H., Matsuda, Y. H.,& Takeyama, S. (2018). Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Review of Scientific Instruments, 89(9), 95106. https://doi.org/10.1063/1.5044557
[24] Liu, Q., Zhang, S., Ding, L., Zuo, H., & Han, X. (2019). Magnetoresistance Measurement of Topological Quantum Materials in Pulsed High Magnetic Field. 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6. https://doi.org/10.1109/I2MTC.2019.8827073
[25] Courts, S. S. (2003). Review of CernoxTM (Zirconium Oxy-Nitride) Thin-Film Resistance Temperature Sensors. AIP Conference Proceedings, 684, 393–398. https://doi.org/10.1063/1.1627157
[26] Kowalewski, A.,Wróbel, J., Boguski, J., Gorczyca, K.,&Martyniuk, P. (2019). Semiconductor contact layer characterization in a context of hall effect measurements. Metrology and Measurement Systems, 26(1), 109–114. https://doi.org/10.24425/mms.2019.126324
[27] Mleczko, K., & Ptak, P. (2015). Low-temperature properties of RuO2-based resistors. Scientific Journals of Rzeszów University of Technology, Series: Electrotechnics, 275–294. https://doi.org/10.7862/re.2015.21
[28] ZurichInstruments. (n.d.). Hall Effect for Sensing and Materials Characterization. https://www.zhinst.com/europe/en/publications/hall-effect-sensing-and-materials-characterization
[29] Vaklinova, K. (2017). Spin Transport in Topological Insulator-Based Nanostructures, [Doctoral dissertation, École Polytechnique Fédérale de Lausanne]. https://doi.org/10.5075/epfl-thesis-7585
[30] Chiatti, O., Riha, C., Lawrenz, D., Busch, M., Dusari, S., Sánchez-Barriga, J., Mogilatenko, A., Yashina, L. V, Valencia, S., Ünal, A. A., Rader, O., & Fischer, S. F. (2016). 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Scientific Reports, 6(1). https://doi.org/10.1038/srep27483
[31] Meyyappa, M. (2007). Nanotechnology Measurement Handbook. A Guide to Electrical Measurements for Nanoscience Applications. Keithley Instruments, Inc. https://download.tek.com/document/1KW-30011-0%20NanotechHandbook.pdf
[32] Suslov, A. V. (2010). Stand alone experimental setup for dc transport measurements. Review of Scientific Instruments, 81(7), 75111. https://doi.org/10.1063/1.3463691
[33] Nawrocki, W. (2005). Measurement Systems and Sensors. Artech House
[34] Sewell, R. H., Musca, C. A., Dell, J. M., Faraone, L., Usher, B. F.,&Dieing, T. (2005). High-resolution X-ray diffraction studies of molecular beam epitaxy-grown HgCdTe heterostructures and CdZnTe substrates. Journal of Electronic Materials, 34(6), 795–803. https://doi.org/10.1007/s11664-005-0023-7

Date

2021.12.22

Type

Article

Identifier

DOI: 10.24425/mms.2021.137708
×