Details

Title

Area, depth and elevation of cryoconite holes in the Arctic do not influence Tardigrada densities

Journal title

Polish Polar Research

Yearbook

2016

Volume

vol. 37

Issue

No 2

Authors

Keywords

Arctic ; cryoconite holes ; ecology ; Glaciers ; Svalbard ; Tardigrada

Divisions of PAS

Nauki o Ziemi

Coverage

325-334

Publisher

Polish Academy of Sciences ; Committee on Polar Research

Date

2016

Type

Artykuły / Articles

Identifier

DOI: 10.1515/popore-2016-0009 ; ISSN 0138-0338 ; eISSN 2081-8262

Source

Polish Polar Research; 2016; vol. 37; No 2; 325-334

References

KaczmarekŁ (2016), Cryoconite holes microorganisms ( algae Archaea bacteria cyanobacteria fungi and Protista ) a review, Polar Records, 52, 176, doi.org/10.1017/S0032247415000637 ; DastychH (2003), Redescription and notes on the biology of the glacier tardigradeHypsibius klebelsbergiMihelcic based on material from Ötztal Alps Austria Mitteilungen aus den Hamburgischen Zoologischen Museum und, Institut, 100, 73. ; ZawieruchaK (2015), b Distribution and diversity of Tardigrada along altitudinal gradients in the Hornsund Spitsbergen, Arctic Polar Research, 34, 24168. ; CookJ (2015), Biocryomorphology : Integrating Microbial Processes with Ice Surface Hydrology Topography and Roughness of, Frontiers Earth Science, 3, 78. ; FountainA (2004), Evolution of cryoconite holes and their contribution to melt water runoff from glaciers in the McMurdo Dry Valleys Antarctica, Journal of Glaciology, 50, 35, doi.org/10.3189/172756504781830312 ; ZawieruchaK (2015), a What animals can live in cryoconite holes ? A faunal review, Journal of Zoology, 295. ; GrøngaardA (1999), Tardigrades and other cryoconite biota on the Greenland ice sheet, Zoologischer Anzeiger, 238, 211. ; EdwardsA (2014), Coupled cryoconite ecosystem structure function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers, FEMS Microbiology Ecology, 89, 222, doi.org/10.1111/1574-6941.12283 ; VonnahmeT (2016), Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers Svalbard, Biogeosciences Discussion, 13, 659, doi.org/10.5194/bg-13-659-2016 ; DastychH (2004), Hypsibius thalerisp nov , a new species of a glacier dwelling tardigrade from the Himalaya Nepal Mitteilungen aus den Hamburgischen Zoologischen Museum und, Tardigrada Institut, 101, 169. ; WhartonR (1983), Distribution of snow and ice algae in western North America, Madrono, 30, 201. ; ZárskýJ (2013), Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia oxidizing archaea, Environmental Research Letters, 8, 35. ; StibalM (2008), Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input, Environmental Microbiology, 10, 2172, doi.org/10.1111/j.1462-2920.2008.01620.x ; HodsonA (2008), Glacial ecosystems, Ecological Monographs, 78, 41, doi.org/10.1890/07-0187.1 ; McIntyreN (1984), Cryoconite hole thermodynamics, Canadian Journal of Earth Sciences, 21, 152, doi.org/10.1139/e84-016 ; StibalM (2006), Microbial communities on glacier surfaces in Svalbard : impact of physical and chemical properties on abundance and structure of cyanobacteria and algae, Microbial Ecology, 52, 644, doi.org/10.1007/s00248-006-9083-3 ; GuidettiR (2012), What can we learn from the toughest animals of the Earth ? Water bears ( tardigrades ) as multicellular model organisms in order to perform scientific preparations for lunar exploration and, Planetary Space Science, 74, 97, doi.org/10.1016/j.pss.2012.05.021 ; ConnorE (2000), Individuals area relationships : the relationship between animal population density and area, Ecology, 81, 734. ; HodsonA (2010), The structure biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier : Longyearbreen Svalbard, Journal of Glaciology, 56, 349, doi.org/10.3189/002214310791968403 ; GastonK (2002), MatterS Individuals area relationships : comment, Ecology, 83, 288. ; ZawieruchaK (2016), and Wojczulanis The influence of a seabird colony on abundance and species composition of water bears ( Tardigrada in Hornsund Spitsbergen, Arctic Polar Biology, 39, 713, doi.org/10.1007/s00300-015-1827-4 ; TakeuchiN (2001), Structure formation and darkening process of albedo reducing material ( cryoconite ) on a Himalayan glacier : a granular algal mat growing on the glacier Antarctic and, Arctic Alpine Research, 33, 115, doi.org/10.2307/1552211 ; PorazinskaD (2004), The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers Antarctica Antarctic and, Arctic Alpine Research, 36, 84, doi.org/10.1657/1523-0430(2004)036[0084:TBABOC]2.0.CO;2 ; AnesioA (2012), Glaciers and ice sheets as a biome Trends in Ecology, Evolution, 4, 219. ; MacArthurR (1972), Density compensation in island faunas, Ecology, 53, 330, doi.org/10.2307/1934090 ; SémériaY (2003), Tardigrades des cryoconites du Groenland Exploration de l inlandsis et de ses abords immédiats la, Bulletin Mensuel de Societe Linneenne de Lyon, 73, 191. ; WhartonR (1985), Cryoconite holes on glaciers, Bioscience, 35, 499, doi.org/10.2307/1309818 ; MacDonellS (2008), The formation and hydrological significance of cryoconite holes Progress in, Physical Geography, 32, 595, doi.org/10.1177/0309133308101382 ; DastychH (1985), West Spitsbergen Tardigrada, Acta Zoologica Cracoviensia, 28, 169. ; EverittD (1981), An ecological study of an Antarctic freshwater pool with particular reference to Tardigrada and Rotifera, Hydrobiologia, 83, 225, doi.org/10.1007/BF00008270 ; DeSmetW (1994), Rotifera and Tardigrada from some cryoconite holes on a Spitsbergen ( Svalbard glacier, Belgian Journal of Zoology, 124, 27. ; MuellerD (2004), Gradient analysis of cryoconite ecosystems from two polar glaciers, Polar Biology, 27, 66, doi.org/10.1007/s00300-003-0580-2 ; RootR (1973), Organization of a plant arthropod association in simple and diverse habitats : the fauna of collards Brassica oleracea ), Ecological Monographs, 45, 95, doi.org/10.2307/1942161

Editorial Board


Editorial Advisory Board


Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.

Abstracting & Indexing

Abstracting & Indexing


Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • CNPIEC
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)
×