Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 309
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The meaning of temporal distributiveness occurs either in situations in which a habitual activity is correlated with the recurrent periods of time, or in situations in which the recurrent periods of time are accompanied by an activity. The present paper is yet another contribution to a series of papers exploring temporal constructions in Polish that express the meaning of distributiveness. It focuses on the analysis of constructions such as pracować dzień w dzień, which are exponents of the so-called cyclic and distributive time.
Go to article

Authors and Affiliations

Czesław Lachur
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to discuss the concept of the Lachian literary language formulated in the I 930's by a local poet Óndra Łysohorsky. The author of the paper presents the ecological approach to the language in question and focuses on the following issues: the comparison of Łysohorsky's Lachian literary language with other Lachian dialects and related languages, native speakers of the Lachian literary language, the work on its codification, and the attitudes towards the language.
Go to article

Authors and Affiliations

Grażyna Balowska
Download PDF Download RIS Download Bibtex

Abstract

Press horoscopes are texts that include prophecies to be interpreted by the reader and adjusted to his or her own individual situation. The structure, vocabulary and syntax of horoscopes are characterized by stereotypy and conventionalism. Therefore, all kinds of linguistic schemata, colloquial expressions, idioms, collocations and proverbs can well be applied. This paper shows the forms and functions of such phrases in German and Polish horoscopes.
Go to article

Authors and Affiliations

Czesława Schatte
Download PDF Download RIS Download Bibtex

Abstract

The intent of this article is to present the particular example of use of 4 tenses in the indicative mood: passe compose, imparfait, futur simple, futur anterieur. This analysis is based on various excerpts of texts dating back to 19th and 20th centuries. The author analyses the influence of a number of factors on the interpretation of particular verbal forms appearing in studied sentences. Research takes into account: category of the verb, its aspect, person, adverbs of time, modality particles, verbs of opinion, certain adverbs (e.g. jamais, rarement and those expressing opposition), type of sentence (negative, interrogative), register (written / spoken language), intonation.
Go to article

Authors and Affiliations

Ewa Ciszewska
Download PDF Download RIS Download Bibtex

Abstract

The article is an attempt to examine two linguistic trends that is pragmatics and cognitivism, the aim of which is to show complementarity of theses representing these two research directions. Taking as a starting point the phenomenon of cognition the author explains its implicit presence in chosen pragmatic theories and she discusses its primary role in cognitive theories.
Go to article

Authors and Affiliations

Katarzyna Kwapisz-Osadnik
Download PDF Download RIS Download Bibtex

Abstract

Corporate mission statement is a genre used globally by managers to motivate the employees and to create a good image of the firm. The objective of the research is to analyse, from the linguistic point of view, how Polish companies adapt the genre. In particular, the analysis focuses on how the managerial objectives influence register choices and whether the genre has developed any permanent, or recursive, structural features. The study focuses on statements of missions and vision of 81 companies Polish companies listed on the Warsaw Stock Exchange.
Go to article

Authors and Affiliations

Piotr Memet
Download PDF Download RIS Download Bibtex

Abstract

The aim of this article is to present the practical application of communicative and semantic translation methods on the basis of the two available Polish versions of Charlie and the Chocolate Factory by Roald Dahl: Karol i fabryka czekolady translated in 1998 by Tomasz Wyżyński and Charlie i fabryka czekolady translated in 2004 by Jerzy Łoziński. Through an analysis of selected culture-specific words and expressions present in the original along with different solutions provided by the two translators, an attempt has been made to illustrate the point emphasized by Newmark (1988) that each text can be translated either communicatively or semantically, depending on the needs and expectations of the target readers and the decision of the translator choosing one of those two approaches.
Go to article

Authors and Affiliations

Joanna Czogała-Kiełboń
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to investigate language-learning beliefs of 488 ( 164 males and 324 females) Polish high school students in relation to their gender. Their responses to the Beliefs About Language Leaming Inventory by Horwitz (1988) were explored by means of the U Mann-Whitney test. The main results show that for females English is a language of medium difficulty, but they believe they have a talent for language learning. They are also strongly motivated to learn English and ready to work hard in spite of feeling self-conscious when speaking in front of others. Males believe English is an easy language, and they are not keen to practice.
Go to article

Authors and Affiliations

Ewa Piechurska-Kuciel
Eva Bernat
Download PDF Download RIS Download Bibtex

Abstract

The main concern of this paper is to investigate the relation between self evaluation of the LI and L2 linguistic competences by bilingual university students and the concepts of fossilization and attrition. The two terms refer to changes in language proficiency and imply a state of incompleteness of linguistic knowledge of both languages. Fossilization is identified as stagnation in attaining the target language proficiency whereas attrition is described as a loss of aspects of previously acquired linguistic knowledge. The former occurs at the level of active L2 development whereas the latter takes place at the state of post-active language acquisition. The paper constitutes an attempt to investigate the significance of the two concepts in the processes of bilingual development and maintenance. It considers the manifestations of fossilization and attrition as well as their indications as to the linguistic competences of bilingual users. It eventually attempts to estimate how widespread the rwo phenomena may be in the bilingual context and what their product is.
Go to article

Authors and Affiliations

Anna Krężałek
Marzena S. Wysocka
Download PDF Download RIS Download Bibtex

Abstract

This paper examines the notion of conceptual transfer within the framework of current psycholinguistic research into bilingual memory and multi-competence. In particular, it seeks to delimit the form and direction of conceptual transfer in the bilingual lexicon, as well as outlining the conditions for its occurrence. These are discussed in relation to the data collection methods employed to date, and in the light of recent findings and developments in the area of psycholinguistics and bilingualism.
Go to article

Authors and Affiliations

Jolanta Latkowska
Download PDF Download RIS Download Bibtex

Abstract

The paper offers an analysis which aims at explaining the role that the choice of particular verbs, their grammatical tense and their aspectual form plays in the construal of an episode in narrative prose. Two sample passages from Ursula Hegi's novel Floating in my Mothers Palm will be analysed, focusing upon the textual function of the opposition between "perfectivity" and "imperfectivity" as revealed in the use of English verbs. The theoretical framework for the discussion is provided by the cognitive model developed by Ronald W. Langacker, with the principle of metonymical reference to events (as proposed by Radden and Kovecses) supplementing the strictly grammatical discussion. In conclusion, it is claimed that it is unconventional construals that are markers of what is commonly called "literary style". The principles that underlie such construals, when analysed in linguistic terms, reveal at least some of the workings of the complicated mechanism to which this vague label is commonly meant to refer.
Go to article

Authors and Affiliations

Elżbieta Tabakowska
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the diachronic development of English HAD BETTER (and HAD RATHER) structure(s). It is argued that the original construction out of which HAD BETTER/RATHER developed and which contained the verb BEON 'be' could be substituted by a new construction employing HAD by virtue of the fact that these two verbs in a great number of contexts are devoid of any cognitive content leading to their mutual interchangeability (§ 1 ). Section 2 is devoted to the examination of the development of the construction in question. In section 3 it is shown how the mechanisms and principles of grammaticalisation set out by Lehmann ( 1982) [2002], Hopper (1991) and Heine (2003) [2005] apply in this particular case of grammaticalisation. The bulk of language illustrations comes from the Dictionary of Old English, the Corpus of Middle English Prose and Verse and the Helsinki Corpus ofEnglish Texts. The references to the actual works follow the pattern of the first two electronic corpora.
Go to article

Authors and Affiliations

Andrzej Łęcki
Download PDF Download RIS Download Bibtex

Abstract

ln our paper we analysed a corpus of runic inscriptions that belong to the first period. The runic inscriptions that we chose for our analysis are basically full sentences that contain the elements we were interested in, namely, the verb and the object. The main purpose of this analysis was to find some implications as to Proto-Germanic word order. The data obtained during our analysis suggest that the Proto-Germanic word order was VO due to the fact that there is a strong tendency to place nominal objects after the inflected verb in main clauses. However, on the basis of the data concerning the word order in compound NPs, one could rather regard Proto-Germanic as an OV language. However, if one regards the position of the nominal object with respect to the inflected verb as the basic criterion for classifying a given language either as VO or OV, and treats this level as being independent of other linguistic levels, like for example word compounds, one will arrive at the conclusion that it is necessary to classify Proto-Germanic as an VO language.
Go to article

Authors and Affiliations

Ireneusz Kida
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is to explore two sandhi phenomena of r-zero alternation, i.e. linking and intrusive r. We address the question of lexical representation of etymologically r-less and r-full forms participating in the processes. Moreover, we discuss the influence of historical r on both vowel quality and quantity and explain some developments of etymologically r-full forms which have led both to the confined distribution of r and various vocalic reflexes in non-rhotic dialects.
Go to article

Authors and Affiliations

Artur Kijak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an acoustic analysis of temporal phonetic parameters cueing word boundaries in Polish. Durational variability has been well documented for different languages. Word-final lengthening, word-initial lengthening, and polysyllabic shortening, all predict that segments neighbouring a word boundary will differ in their durations whatever direction such shortening or lengthening should take. In the present study, we obtained two Polish sequences brat Adama versus brata dama from 24 native speakers of Polish. The obtained results point to a complicated pattern of temporal variability caused by the boundary location in Polish.
Go to article

Authors and Affiliations

Arkadiusz Rojczyk
Download PDF Download RIS Download Bibtex

Abstract

In relation to the present interest in discourse analysis this article aims to formulate a general theoretical framework for analyzing various types of discourse. The framework is based on the theory of relevance as one of the theories enabling thorough discourse analysis. The aspects of discourse taken into account range from analyzing explicatures and irnplicatures including a precise classification of the type of knowledge activated for the processes of metarepresentation and covert communication. The unified framework for discourse analysis creates an ability to compare different types of discourse including comparison with everyday speech, which is the most neutral type of discourse. With such ability, different types of discourse can be compared with one another to discover more of their unique properties as well as interesting similarities.
Go to article

Authors and Affiliations

Dorota Rut-Kluz
Download PDF Download RIS Download Bibtex

Abstract

The present paper analyses metaphor and metonymy describing God in The Old Testament. Instances of these phenomena are approached from the cognitive perspective, suggested by Lakoff and Johnson (2003). The aim of this article is to show that the metaphorical and metonymical references to God in The Old Testament do not function as merely rhetorical devices, but are conceptualizations of God, grounded in people's everyday experiences. This fact plays an important role in the process of understanding the notion of God. The discussed metaphors and metonymies are classified into personifications as instances of ontological metaphor, structural metaphors, orientational metaphors and metonymies.
Go to article

Authors and Affiliations

Marcin Kuczok
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the use of English lexical borrowings in Polish commercials and press advertisements. The author first gives a brief, general account of English loanwords used in Polish advertisements and then concentrates on concrete examples of such borrowings. Particular attention is paid to the discussion of the necessity of the use of such loans in the Polish language of advertising. The author argues, on the basis of the questionnaire described in the paper, that most of the English loans in Polish do not make the message clearer to a Polish receiver. In fact, they seem to hinder comprehensibility. However, as the questionnaire has shown, they do evoke positive connotations of a given product and/or a company.
Go to article

Authors and Affiliations

Marcin Zabawa
Download PDF Download RIS Download Bibtex

Abstract

The slogans and pictorial elements of press advertisements contain the most important elements of the message communicated to the viewers by the advertiser. They have to be formulated and composed in such a way as to ensure the most uniform reading and interpretation among potentially diverse recipients. It is interesting to what extent such an effect would be reported by relatively homogeneous respondents. The present study investigates the interpretation and recall of advertising slogans and foregrounded information by a group of 60 young people, following a short exposure to 5 press advertisements. It also attempts to compare the results to a previous research on mental processing of hidden and inconspicuous elements in press commercials (Wojtaszek 2007b).
Go to article

Authors and Affiliations

Adam Wojtaszek
Download PDF Download RIS Download Bibtex

Abstract

The review exposes basic concepts and manifestations of the singular and structured light fields. The presentation is based on deep intrinsic relations between the singularities and the rotational phenomena in light; it involves essentially the dynamical aspects of light fields and their interactions with matter. Due to their topological nature, the singularities of each separate parameter (phase, polarization, energy flow, etc.) form coherent interrelated systems (singular networks), and the meaningful interconnections between the different singular networks are analysed. The main features of singular-light structures are introduced via generic examples of the optical vortex and circular vortex beams. The review describes approaches for generation and diagnostics of different singular networks and underlines the role of singularities in formation of optical field structures. The mechanical action of structured light fields on material objects is discussed on the base of the spin-orbital (canonical) decomposition of electromagnetic momentum, expressing the special roles of the spin (polarization) and spatial degrees of freedom. Experimental demonstrations spectacularly characterize the topological nature and the immanent rotational features of the light-field singularities. The review is based on the results obtained by its authors with a special attention to relevant works of other researchers.
Go to article

Bibliography

  1. Descartes, R. Principia Phylosophiae. (Amsterdam, 1644); Dioptrique, Meteores. (Leyden, 1637).
  2. Descartes, R. [The World]. Le Monde, Ou Traité De La Lumière. (Abaris Books, 1979).
  3. Fresnel, A. Œuvres Complètes. (Imprimerie Imperiale, France, 1866–1870). (In French)
  4. Faraday, M. Experimental Researches in Chemistry and Physics. (Taylor & Francis, 1859). https://doi.org/10.5962/bhl.title.30054
  5. Maxwell, J. C. Treatise on Electricity and Magnetism. (Cambridge University Press, 1873). https://doi.org/10.1017/CBO9780511709333
  6. Sadowsky, A. Acta et Commentationes Imp. Universitatis Jurievensis (olim Dorpatensis) 7, 1–3 (1899). (In Russian)
  7. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. R. Soc. Lond. A 82, 560–567 (1909). https://doi.org/10.1098/rspa.1909.0060
  8. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Rev. 50, 115–125 (1939). https://doi.org/10.1103/PhysRev.50.115
  9. Ignatowski, W. S. Diffraction by a lens of arbitrary aperture. Opt. Inst. I, 1–36 (1919). https://doi.org/10.1017/9781108552264.019
  10. Boivin, A., Dow, J. & Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam. Opt. Soc. Am. 57, 1171–1176 (1967). https://doi.org/10.1364/JOSA.57.001171
  11. Baranova, N.B. et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. Opt. Soc. Am. 73, 525–528 (1983). https://doi.org/10.1364/JOSA.73.000525
  12. Angelsky, O. V., Maksimyak, P. P., Magun, I. I. & Perun, T. O. On spatial stochastiation of optical fields and feasibilities of optical diagnostics of objects with large phase inhomogeneities. Spectr. 71, 123–128 (1991).
  13. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Commun. 73, 403–408 (1989). https://doi.org/10.1016/0030-4018(89)90180-6
  14. Gottfried, K. Quantum Mechanics. (Benjamin, 1966).
  15. Simmonds, J. W. & Guttmann, M. J. States, Waves and Photons. (Addison-Wesley, 1970).
  16. Berestetskii, V. B., Lifshits, E. M. & Pitaevskii, L. P. Quantum Electrodynamics. (Butterworth-Heinemann, 1982). https://doi.org/10.1016/C2009-0-24486-2
  17. Allen, L., Beijersbergen, M. V., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  18. Bazhenov, V. Yu., Vasnetsov, M. V. & Soskin M. S. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431(1990).
  19. Soskin, M. S. & Vasnetsov, M. V. Nonlinear singular optics. Pure Appl. Opt. 7, 301–311 (1998). https://doi.org/10.1088/0963-9659/7/2/019
  20. Soskin, M. S. & Vasnetsov, M. V. Chapter 4–Singular optics. Opt. 42, 219–276 (2001). https://doi.org/10.1016/S0079-6638(01)80018-4
  21. Nye, J. F. & Berry, M. V. Dislocations in wave trains. R. Soc. Lond. 336, 165–190 (1974). https://doi.org/10.1098/rspa.1974.0012
  22. Berry, M. V. Singularities in Waves and Rays. in Physics of Defects. (eds. Balian, R., Klaeman, M. & Poirier, J. P.) 453–549 (North Holland Publishing Company, 1981).
  23. Nye, J. F. Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations. (Institute of Physics Publishing: Bristol and Philadelphia, 1999).
  24. Gbur, G., Tyson, R. K., Vortex beam propagation through atmospheric turbulence and topological charge conservation. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25, 225–230 (2008). https://doi.org/10.1364/JOSAA.25.000225
  25. Angelsky, O. V. et al. Structured light: ideas and concepts. Front. Phys. 8, 114 (2020). https://doi.org/10.3389/fphy.2020.00114
  26. Andrews, D. L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. (Academic Press, 2011). https://doi.org/10.1016/B978-0-12-374027-4.X0001-1
  27. Bekshaev, A., Bliokh, K. & Soskin, M. Internal flows and energy circulation in light beams. J Opt. 13, 053001 (2011). https://doi.org/10.1088/2040-8978/13/5/053001
  28. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. Opt. 19, 013001 (2017).
    https://doi.org/10.1088/2040-8978/19/1/013001
  29. Rotenberg, N. & Kuiper, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014). https://doi.org/10.1038/nphoton.2014.285
  30. Aiello, A. & Banzer, P. The ubiquitous photonic wheel. Opt. 18, 085605 (2016). http://dx.doi.org/10.1088/2040-8978/18/8/085605
  31. Aiello, A. et al. From transverse angular momentum to photonic wheels. Photonics 9, 789–795 (2015). https://doi.org/10.1038/nphoton.2015.203
  32. Bekshaev, A. & Soskin, M. S. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332–348 (2007). https://doi.org/10.1016/j.optcom.2006.10.057
  33. Bliokh, K. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015). https://doi.org/10.1016/j.physrep.2015.06.003
  34. Dennis, M. , O’Holleran, K. & Padgett, M. J. Chapter 5 Singular optics: optical vortices and polarization singularities. Prog. opt. 53, 293–363 (2009). https://doi.org/10.1016/S0079-6638(08)00205-9
  35. Basisty, I. , Soskin, M. S. & Vasnetsov, M. V. Optical wavefront dislocations and their properties. Opt. Comm. 119, 604–612 (1995). https://doi.org/10.1016/0030-4018(95)00267-C
  36. Soskin, M. , Vasnetsov, M. V. & Basisty, I. V. Optical wavefront dislocations. Proc. SPIE 2647, 57–62 (1995). https://doi.org/10.1117/12.226741
  37. White, A. et al. Interferometric measurements of phase singulari­ties in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991). https://doi.org/10.1080/09500349114552651
  38. Heckenberg, N. , McDuff, R., Smith, C. P. & White, A. G. Generation of optical singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992). https://doi.org/10.1364/OL.17.000221
  39. Angelsky, O. Optical Correlation Techniques and Applications. (Bellingham: SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999
  40. Allen, L., Padgett, M. & Babiker, M. IV The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999). https://doi.org/10.1016/S0079-6638(08)70391-3
  41. Bekshaev, A., Soskin, M. & Vasnetsov M. Paraxial Light Beams with Angular Momentum. (New York: Nova Science Publishers, 2008). https://arxiv.org/abs/0801.2309
  42. Gbur, G. Singular Optics. (CRC Press, 2016). https://doi.org/10.1201/9781315374260
  43. Senthilkumaran, P. Singularities in Physics and Engineering. (IOP Publishing,2018). https://doi.org/10.1088/978-0-7503-1698-9
  44. Yao, A. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011). https://doi.org/10.1364/AOP.3.000161
  45. Barnett, S. , Babiker, M. & Padgett, M. J. Optical orbital angular momentum. Philos. Trans. R. Soc. A 375, 0444 (2017). http://doi.org/10.1098/rsta.2015.0444
  46. Habraken, S. M. Light with A Twist: Ray Aspects (Leiden University, Netherlands, 2010).
  47. Alexeyev, C. N. Propagation of optical vortices in periodically perturbed weakly guiding optical fibres. (Institute of Physical Optics of the Ministry of Education and Science of Ukraine, Lviv, 2010). (in Russian)
  48. Ruchi, Senthilkumaran P. & Pal, S. Phase singularities to polarization singularities. Int. J. Opt. 2020, 2812803 (2020). https://doi.org/10.1155/2020/2812803
  49. Born, M. & Wolf, E. Principles of Optics. (Pergamon, 1968).
  50. Landau, L. & Lifshitz, E. M. The classical theory of fields. Course of theoretical physics Vol. 2. (Pergamon, 1975). https://doi.org/10.1016/C2009-0-14608-1
  51. Berry, M. Optical currents. J. Opt. A: Pure Appl. Opt. 11, 11094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001
  52. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).
  53. Bekshaev, A. & Karamoch, A. I. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281, 1366–1374 (2008). https://doi.org/10.1016/j.optcom.2007.11.032
  54. Bekshaev, A. , Karamoch, A. I., Khoroshun, G. M., Masajada, J. & Ryazantsev, O. I. Special features of a functional beam splitter: diffraction grating with groove bifurcation. in Advances in Engineering Research vol. 28. (ed. Petrova, V. M.) 1–86 (Nova Science Publishers New York, 2019).
  55. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Phys. 46, 15–28 (2005). https://doi.org/10.1080/0010751042000275259
  56. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Lett. 32, 3053–3055 (2007). https://doi.org/10.1364/OL.32.003053
  57. Abramovitz, M. & Stegun, I. Handbook of Mathematical Functions (National Bureau of Standards, 1964)
  58. Berry, M. Paraxial beams of spinning light. SPIE 3487, 6–11 (1998). https://doi.org/10.1117/12.317704
  59. Roux, F. Distribution of angular momentum and vortex morphology in optical beams. Opt. Commun. 242, 45–55 (2004). https://doi.org/10.1016/j.optcom.2004.08.006
  60. Bekshaev, A., Orlinska, O. & Vasnetsov, M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Commun. 283, 2006–2016 (2010). https://doi.org/10.1016/j.optcom.2010.01.012
  61. Baranova, N. , Zel’dovich, B. Ya., Mamaev, A. V., Philipetskii, N. F. & Shkunov, V. V. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett. 33, 195–199 (1981).
  62. Beijersbergen, M. , Allen, L., Van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993). https://doi.org/10.1016/0030-4018(93)90535-D
  63. Bekshaev, A. & Popov, A. Optical system for Laguerre-Gaussian / Hermite-Gaussian mode conversion. SPIE 4403, 296–301 (2001). https://doi.org/10.1117/12.428283
  64. Soroko, L. Holography and Coherent Optics. (Springer, Boston, 1980). https://doi.org/10.1007/978-1-4684-3420-0
  65. Petrov, D. Vortex–edge dislocation interaction in a linear medium. Opt.Commun.188, 307–312 (2001). https://doi.org/10.1016/S0030-4018(01)00993-2
  66. Cheng, S. et al. Composite spiral zone plate. IEEE Photon. J. 11, 1–11(2018). https://doi.org/10.1109/JPHOT.2018.2885004
  67. Sabatyan, A. & Behjat, Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Quantum Electron. 49, 371 (2017).
    https://doi.org/10.1007/s11082-017-1211-4
  68. Bekshaev, A. & Karamoch, A. I. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281, 3597–3610 (2008). https://doi.org/10.1016/j.optcom.2008.03.070
  69. Anan'ev, Y. & Bekshaev, A. Y. Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 76, 558–568 (1994).
  70. Bekshaev, A. , Mohammed, K. A. & Kurka, I. A. Transverse energy circulation and the edge diffraction of an optical vortex beam. Appl. Opt. 53, B27–B37 (2014). https://doi.org/10.1364/AO.53.000B27
  71. Oemrawsingh, S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). https://doi.org/10.1364/AO.43.000688
  72. Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. Opt. A Pure Appl. Opt. 6, 259 (2004). https://doi.org/10.1088/1464-4258/6/2/018
  73. Kotlyar, V. V. et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.  Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(5), 849–861(2005). https://doi.org/10.1364/JOSAA.22.000849
  74. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Lett. 27, 1141–1143 (2002). https://doi.org/10.1364/OL.27.001141
  75. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Let. 27, 1875–1877 (2002). https://doi.org/10.1364/OL.27.001875
  76. Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Express 14, 4208–4220 (2006). https://doi.org/10.1364/OE.14.004208
  77. Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Rev. Lett. 96, 163905 (2006). https://doi.org/10.1103/PhysRevLett.96.163905
  78. Basistiy, I. , Pas’ko, V. A., Slyusar, V. V., Soskin, M. S & Vasnetsov, M. V. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A Pure Appl. Opt. 6, S166–S169 (2004). https://doi.org/10.1088/1464-4258/6/5/003
  79. Gbur, G. Fractional vortex Hilbert’s hotel. Optica 3, 222–225 (2016). https://doi.org/10.1364/OPTICA.3.000222
  80. Freund, I. & Shvartsman, N. Wave-field phase singularities: the sign principle. Rev. A 50, 5164 (1994). https://doi.org/10.1103/PhysRevA.50.5164
  81. Soskin, S., Gorshkov, V. N., Vasnetsov, M. V., Malos, J. T. & Heckenberg, N. R. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064–4075 (1997). https://doi.org/10.1103/PhysRevA.56.4064
  82. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Rotational frequency shift. Rev. Lett. 78, 2539–2542 (1997). https://doi.org/10.1103/PhysRevLett.78.2539
  83. Garetz, B. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981). https://doi.org/10.1364/JOSA.71.000609
  84. Garetz, B. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave plate. Opt. Commun. 31, 1–3 (1979).
    https://doi.org/10.1016/0030-4018(79)90230-X
  85. Simon, R., Kimble, H. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. Phys. Rev. Lett. 61, 19–22 (1988). https://doi.org/10.1103/PhysRevLett.61.19
  86. Bretenaker, F.& Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Rev. Lett. 65, 2316 (1990). https://doi.org/10.1103/PhysRevLett.65.2316
  87. Courtial, J., Dholakia, K., Robertson, D. , Allen, L. & Padgett, M. J. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett. 80, 3217–3219 (1998). https://doi.org/10.1103/PhysRevLett.80.3217
  88. Courtial, J., Robertson, D. , Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998). https://doi.org/10.1103/PhysRevLett.81.4828
  89. Bekshaev, A. et al. Observation of rotational Doppler effect with an optical-vortex one-beam interferometer. Ukr. J. Phys. 47, 1035–1040 (2002). http://archive.ujp.bitp.kiev.ua/files/journals/47/11/471105p.pdf
  90. Basistiy, I.V., Bekshaev, A. , Vasnetsov, M. V., Slyusar, V. V. & Soskin, M. S. Observation of the rotational Doppler effect for optical beams with helical wave front using spiral zone plate. JETP Lett. 76, 486–489 (2002). https://doi.org/10.1134/1.1533771
  91. Basistiy, I. , Slyusar, V. V., Soskin, M. S., Vasnetsov, M. V. & Bekshaev, A. Ya. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam. Opt. Lett. 28, 1185–1187 (2003). https://doi.org/10.1364/OL.28.001185
  92. Bekshaev, A. & Popov, A. Non-collinear rotational Doppler effect. SPIE 5477, 55–66 (2004). https://doi.org/10.1117/12.558759
  93. Bekshaev, A. & Grimblatov, V. M. Energy method of analysis of optical resonators with mirror deformations. Opt. Spectrosc. 58, 707–709 (1985).
  94. Bekshaev, A. , Grimblatov, V. M. & Kalugin, V. V. Misaligned Ring Resonator with A Lens-Like Medium. (Odessa University, 2016). https://doi.org/10.48550/arXiv.1612.01407
  95. Bekshaev, A. Manifestation of mechanical properties of light waves in vortex beam optical systems. Opt. Spectrosc. 88, 904–910 (2000). https://doi.org/10.1134/1.626898
  96. Bekshaev, A. Mechanical properties of the light wave with phase singularity. Proc. SPIE 3904, 131–139 (1999). https://doi.org/10.1117/12.370396
  97. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M.V. Rotation of arbitrary optical image and the rotational Doppler effect. Ukr. J. Phys. 49, 490–495 (2004). http://archive.ujp.bitp.kiev.ua/files/journals/49/5/490512p.pdf
  98. Vinitskii, S. I., Derbov, V. L, Dubovik, V. M., Markovski, B. & Stepanovskii, Yu. P. Topological phases in quantum mechanics and polarization optics. Sov. Phys. Usp. 33, 403–429 (1990). https://doi.org/10.1070/PU1990v033n06ABEH002598
  99. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. An optical vortex as a rotating body: mechanical features of a singular light beam. J. Opt. A Pure Appl. Opt. 6, S170–S174 (2004). https://doi.org/10.1088/1464-4258/6/5/004
  100. Allen, L. & Padgett, M. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000). https://doi.org/10.1016/S0030-4018(00)00960-3
  101. Bekshaev, A. Transverse rotation of the instantaneous field distribution and the orbital angular momentum of a light beam. J. Opt. A Pure Appl. Opt. 11, 094004 (2009). https://doi.org/10.1088/1464-4258/11/9/094004
  102. Bekshaev, A. Internal energy flows and instantaneous field of a monochromatic paraxial light beam. Appl. Opt. 51, C13–C16 (2012). https://doi.org/10.1364/AO.51.000C13
  103. Lekner, J. TM, TE, and ‘TEM’ beam modes: exact solutions and their problems. Opt. A Pure Appl. Opt. 3, 407–412 (2001). https://doi.org/10.1088/1464-4258/3/5/314
  104. Lekner, J. Phase and transport velocities in particle and electromagnetic beams. Opt. A Pure Appl. Opt. 4, 491–499 (2002). https://doi.org/10.1088/1464-4258/4/5/301
  105. Lekner, J. Polarization of tightly focused laser beams. Opt. A Pure Appl. Opt. 5, 6–14 (2003). https://doi.org/10.1088/1464-4258/5/1/302
  106. He, H., Friese, M. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995). https://doi.org/10.1103/PhysRevLett.75.826
  107. Rubinsztein-Dunlop, H., Nieminen, T. , Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469–492 (1998). https://doi.org/10.1016/S0065-3276(08)60523-7
  108. Gahagan, K. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996). https://doi.org/10.1364/OL.21.000827
  109. Gahagan, K. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524–534 (1998). https://doi.org/10.1364/JOSAB.15.000524
  110. Simpson, N. , McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998). https://doi.org/10.1080/09500349808231712
  111. Simpson, N. , Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre Gaussian modes. J. Mod. Opt. 43, 2485–2491 (1996). https://doi.org/10.1080/09500349608230675
  112. O’Neil, A. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139–143 (2000). https://doi.org/10.1016/S0030-4018(00)00989-5
  113. Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Rev. E 59, 3676–3681 (1999). https://doi.org/10.1103/PhysRevE.59.3676
  114. Friese, M. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001). https://doi.org/10.1063/1.1339995
  115. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). https://doi.org/10.1126/science.1058591
  116. Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935
  117. Bowman, R. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013). https://doi.org/10.1088/0034-4885/76/2/026401
  118. Padgett, M. & Bowman, R. Tweezers with a twist. photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81
  119. Jack, Ng., Lin, Zh. & Chan, C. T. Theory of optical trapping by an optical vortex beam. Rev. Lett. 104, 103601 (2010). https://doi.org/10.1103/PhysRevLett.104.103601
  120. Yuehan, T. et al. Multi-trap optical tweezers based on composite vortex beams. Commun. 485, 126712 (2021). https://doi.org/10.1016/j.optcom.2020.126712
  121. Chun-Fu, K. & Chu, S.-Ch. Numerical study of the properties of optical vortex array laser tweezers. Express 21, 26418–26431 (2013). https://doi.org/10.1364/OE.21.026418
  122. Mokhun, I. Introduction to Linear Singular Optics. in Optical Correlation Techniques and Applications (ed. Angelsky, O.) 1–132 (Bellingham, SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999.ch1
  123. Mokhun, I .I. Introduction to Linear Singular Optics (Chernivtsi National University, 2012) (In Russian)
  124. Angelsky, O. , Besaga, R. N. & Mokhun, I. I. Appearance of wave front dislocations under interference among beams with simple wave fronts. Proc. SPIE 3317, 97–100 (1997). https://doi.org/10.1117/12.295666
  125. O’Holleran, K., Padgett, M. & Dennis, M.  R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express 14, 3039–3044 (2006). https://doi.org/10.1364/OE.14.003039
  126. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves. Opt. 51, 1872–1878 (2012). https://doi.org/10.1364/AO.51.001872
  127. Kapoor, A., Kumar, M., Senthilkumaran, P. & Joseph, J. Optical vortex array in spatially varying lattice. Commun. 365, 99–102 (2016). https://doi.org/10.1016/j.optcom.2015.11.074
  128. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Complex 3D vortex lattice formation by phase-engineered multiple beam interference. J. Opt. 2012, 863875 (2012). https://doi.org/10.1155/2012/863875
  129. Galvez, E. , Rojec, B. L., Beach, K. & Cheng, X. C-point Singularities in Poincaré Beams (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1192&rep=rep1&type=pdf
  130. Mokhun, A. , Soskin, M. S. & Freund, I. Elliptic critical points in paraxial optical fields. Opt. Commun. 208, 223–253 (2002). https://doi.org/10.1016/S0030-4018(02)01585-7
  131. Mokhun, I., Galushko, Yu., Kharitonova, Ye., Viktorovskaya, Yu. & Khrobatin, R. Elementary heterogeneously polarized field modeling. Lett. 36, 2137–2139 (2011). https://doi.org/10.1364/OL.36.002137
  132. Angelsky, O. , Dominikov, N. N., Maksimyak, P. P. & Tudor, T. Experimental revealing of polarization waves. Appl. Opt. 38, 3112–3117 (1999). https://doi.org/10.1364/AO.38.003112
  133. Angelsky, O. , Hanson, S. G., Zenkova, C. Yu., Gorsky, M. P. & Gorodin’ska, N. V. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express, 17, 15623–15634 (2009). https://doi.org/10.1364/OE.17.015623
  134. Mokhun, I., Khrobatin, R. & Viktorovskaya, Ju. The behavior of the Poynting vector in the area of elementary polarization singularities. Appl. 37, 261–277 (2007).
  135. Khrobatin, R. & Mokhun, I. Shift of application point of angular momentum in the area of elementary polarization singularity. Opt. A Pure Appl. Opt. 10, 064015 (2008).
    https:/doi.org/10.1088/1464-4258/10/6/064015
  136. Angelsky, O. , Besaga, R. N., Mokhun, I. I., Soskin, M. S. & Vasnetsov, M. V. Singularities in vectoral fields. Proc. SPIE 3904, 40–55 (1999). https://doi.org/10.1117/12.370443
  137. Mokhun, I. , Arkhelyuk, A., Galushko, Yu., Kharitonova, Ye., & Viktorovskaya, Ju. Experimental analysis of the Poynting vector characteristics. Appl. Opt. 51, C158–C162 (2012). https://doi.org/10.1364/AO.51.00C158
  138. Mokhun, I., Arkhelyuk, A. , Galushko, Yu., Kharitonova, Ye. & Viktorovskaya, Yu. Angular momentum of an incoherent Gaussian beam. Appl. Opt. 53, B38–B42 (2014). https://doi.org/10.1364/AO.53.000B38
  139. Andronov, A. , Vitt, A. A. & Khaikin, S. E. Theory of Oscillators (Pergamon Press, 1966).
  140. Bekshaev, A. Spin angular momentum of inhomogeneous and transversely limited light beams. Proc. SPIE 6254, 56–63 (2006). https://doi.org/10.1117/12.679902
  141. O’Neil, A. , MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002). https://doi.org/10.1103/PhysRevLett.88.053601
  142. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J. Opt. Soc. Amer. A 20, 1635–1643 (2003). https://doi.org/10.1364/JOSAA.20.001635
  143. Belinfante, F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7, 449 (1940). https://doi.org/10.1016/S0031-8914(40)90091-X
  144. Bliokh, K. , Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014). https://doi.org/10.1088/1367-2630/16/9/093037
  145. Angelsky, O. et al. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express 19, 660–672 (2011). https://doi.org/10.1364/OE.19.000660
  146. Zenkova, C. Yu., Gorsky, M. , Maksimyak, P. P. & Maksimyak, A. P. Optical currents in vector fields. App. Opt. 50, 1105–1112 (2011) https://doi.org/10.1364/AO.50.001105
  147. Angelsky, V., Zenkova, C. Yu., Hanson, S. G. & Zheng, J. Extraordinary manifestation of evanescent wave in biomedical application. Front. Phys. 8, 159 (2020). https://doi.org/10.3389/fphy.2020.00159
  148. Angelsky, O., Bekshaev. A., Dragan, G., Maksimyak, P., Zenkova, C.Y. & Zheng, J., Structured light control and diagnostics using optical crystals. Phys. 9, 368 (2021). https://doi.org/10.3389/fphy.2021.715045
  149. Angelsky, O. Introduction to Singular Correlation Optics. (SPIE Press, 2019).
  150. Allen, L. & Padgett, M. Response to question #79. Does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002). https://doi.org/10.1119/1.1456075
  151. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. Opt. 13, 044017 (2011). https://doi.org/10.1088/2040-8978/13/4/044017
  152. Stewart, A. M. Angular momentum of the electromagnetic field: the plane wave paradox resolved. J. Phys. 26, 635–641 (2005). https://doi.org/10.1088/0143-0807/26/4/008
  153. Bekshaev, A. “Spin” and “Orbital” Flows in A Circularly Polarized Paraxial Beam: Orbital Rotation Without Orbital Angular Momentum. https://arxiv.org/ftp/arxiv/papers/0908/0908.2526.pdf (2009).
  154. Bekshaev, A. & Vasnetsov, M. Vortex Flow of Light: “Spin” and “Orbital” Flows in a Circularly Polarized Paraxial Beam. in Twisted Photons. Applications of Light with Orbital Angular Momentum (eds. Torres, J. & Torner, L.) chapter 2 (Weinheim: Wiley-VCH, 2011). https://doi.org/10.1002/9783527635368.ch2
  155. Bekshaev, A. & Soskin, M. Transverse energy flows in vectorial fields of paraxial light beams. SPIE 6729, 67290G (2007). https://doi.org/10.1117/12.751952
  156. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. Nanophotonics 2, 021875 (2008). https://doi.org/10.1117/1.2992045
  157. Gouesbet, G. T-matrix methods for electromagnetic structured beams: a commented reference database for the period 2014–2018. Quant. Spectrosc. Radiat. Transf. 230, 247–281 (2019). https://doi.org/10.1016/j.jqsrt.2019.04.004
  158. Nieminen, T. , Loke, V. L., Stilgoe, A. B., Heckenberg, N. R., & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011). https://doi.org/10.1080/09500340.2010.528565
  159. Bekshaev, A. , Bliokh, K. Y. & Nori, F. Mie scattering and optical forces from evanescent fields: A complex-angle approach. Opt. Express 21, 7082–7095 (2013). https://doi.org/10.1364/OE.21.007082
  160. Аngelsky, O., Bekshaev, A., Maksimyak, P., Maksimyak, A. & Hanson, S. Measurement of small light absorption in microparticles by means of optically induced rotation. Express 23, 7152–7163 (2015). https://doi.org/10.1364/OE.23.007152
  161. Bekshaev A. , Angelsky O. V., Sviridova S. V. & Zenkova C. Yu. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Adv. Opt. Technol. 2011, 723901 (2011). https://doi.org/10.1155/2011/723901
  162. Bekshaev, A. , Angelsky, O. V., Hanson, S. G. & Zenkova, C. Yu. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847-10 (2012). https://doi.org/10.1103/PhysRevA.86.023847
  163. Bohren, C. & Huffman, D. R. Absorption and Scattering of Light by Small Particles. (Wiley-VCH, 1983).
  164. Bekshaev, A. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013). https://doi.org/10.1088/2040-8978/15/4/044004
  165. Bliokh, K. Y., Bekshaev, A.Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Commun. 5, 3300 (2014). https://doi.org/10.1038/ncomms4300
  166. Liberal, I., Ederra, I., Gonzalo, R. & Ziolkowski, R. W. Electromagnetic force density in electrically and magnetically polarizable media. Rev. A 88, 053808 (2013). https://doi.org/10.1103/PhysRevA.88.053808
  167. Nieto-Vesperinas, M., Saenz, J. , Gomez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010). https://doi.org/10.1364/OE.18.011428
  168. Canaguier-Durand, A., Cuche, A., Cyriaque, G. & Ebbesen, T.W. Force and torque on an electric dipole by spinning light fields. Rev. A 88, 033831 (2013). https://doi.org/10.1103/PhysRevA.88.033831
  169. Bliokh, K. , Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phy. 15, 033026 (2013). https://doi.org/10.1088/1367-2630/15/3/033026
  170. Xu, X. & Nieto-Vesperinas, M. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett. 123, 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902
  171. Nieto-Vesperinas, M. & Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Rev. Res. 3, 043080 (2021). https://doi.org/10.1103/PhysRevResearch.3.043080
  172. Bekshaev, A., Kontush, S., Popov, A. & Van Grieken, R. Application of light beams with non-zero angular momentum in optical study of micrometer-size aerosol particles. SPIE 4403, 287–295 (2001). https://doi.org/10.1117/12.428282
  173. Bekshaev, A. Abraham-Based Momentum and Spin of Optical Fields Under Conditions of Total Reflection. https://arxiv.org/ftp/arxiv/papers/1710/1710.01561.pdf (2017).
  174. Angelsky, O. V. et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Express 20, 3563–3571 (2012). https://doi.org/10.1364/OE.20.003563
  175. Angelsky, O.V. et al. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Express 20, 11351–11356 (2012). https://doi.org/10.1364/OE.20.011351
  176. Angelsky, O. V., Bekshaev, A.  Ya., Maksimyak, P.  P. & Polyanskii, P. V. Internal energy flows and optical trapping. Photonic  News 25, 20–21 (2014).
  177. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Rev. X 5, 011039 (2015). https://doi.org/10.1103/PhysRevX.5.011039
  178. Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Phys. 12, 731–735 (2016). https//doi.org/10.1038/nphys3732
  179. Bekshaev, A. Y. Dynamical characteristics of an electromagnetic field under conditions of total reflection. Opt. 2, 045604 (2018). https://doi.org/10.1088/2040-8986/aab035
  180. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Rev. A 85, 061801 (2012). https://doi.org/10.1103/PhysRevA.85.061801
  181. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). https://doi.org/1126/science.aaa9519
  182. Bliokh, K. Y. Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Photonics 9, 796 (2015). https://doi.org/10.1038/nphoton.2015.201
  183. Skelton, S. E. et al. Evanescent wave optical trapping and transport of micro and nanoparticles on tapered optical fibers. Quant. Spectrosc. Radiat. Transf. 113, 2512–2520 (2012). https://doi.org/10.1016/j.jqsrt.2012.06.005
  184. Chang, S., Kim, J. T., Jo, J. H. & Lee, S. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Opt. Commun. 139, 252–261 (1997). https://doi.org/10.1016/S0030-4018(97)00144-2
  185. Song, Y. G., Han, B. M. & Chang, S. Force of surface plasmon-coupled evanescent fields on Mie particles. Commun. 198, 7–19 (2001). https://doi.org/10.1016/S0030-4018(01)01484-5
  186. Angelsky, O. V. et al. Influence of evanescent wave on birefringent microplates. Express 25, 2299–2311 (2017). https://doi.org/10.1364/OE.25.002299
  187. Zenkova C. Yu., Ivanskyi, D. I. & Kiyashchuk, T. V. Optical torques and forces in birefringent microplate. Appl. 47, 1–11 (2017). https://doi.org/10.5277/oa170313
  188. Angelsky, O. V., Zenkova, C. Yu. & Ivansky, D. I. Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media. Optoelectron. Adv. Mater. 20, 217–226 (2018).
  189. Angelsky, O.V. et al. Controllying and manipulation of red blood cells by evanescent waves. Appl. 49, 597–611 (2019). https://doi.org/10.37190/oa190406
  190. Angelsky,  V. et al. Peculiarities of control of erythrocytes moving in an evanescent field. J. Biomed. Opt. 24, 055002 (2019). https://doi.org/10.1117/1.JBO.24.5.055002
  191. Angelsky, O.V. et al. Peculiarities of energy circulation in evanescent field. Application for red blood cells. Mem. Neural Netw. (Inf. Opt.) 28, 11–20 (2019). https://doi.org/10.3103/S1060992X19010028
  192. Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. R. Soc. Lond. 459, 1261 (2003). https://doi.org/10.1098/rspa.2003.1155
  193. Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Rev. A 83, 021803(R) (2011). https://doi.org/10.1103/PhysRevA.83.021803
  194. Desyatnikov, A. S., Sukhorukov, A. A. & Kivshar, Y. S. Azimuthons: spatially modulated vortex solitons. Rev. Lett. 95: 20, 203904 (2005). https://doi.org/10.1103/PhysRevLett.95.203904
  195. Kivshar, Y. S. Vortex solitons and rotating azimuthons in nonlinear media. Topologica 2, 005 (2009). https://doi.org/3731/topologica.2.005
  196. Bekshaev, A., Angelsky, O. & Hanson, S.G. Transformations and Evolution of Phase Singularities in Diffracted Optical Vortices. in Advances in Optics: Reviews, Book Series Vol. 1 (ed. Yurish, S. Y.) 345–385 (International Frequency Sensor Association (IFSA), Spain, 2018). http://www.sensorsportal.com/HTML/BOOKSTORE/Advances_in_Optics_Vol_1.pdf
  197. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Singular skeleton evolution and topological reactions in edge-diffracted circular optical-vortex beams. Commun. 397, 72–83 (2017). https://doi.org/10.1016/j.optcom.2017.03.062
  198. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Localization and migration of phase singularities in the edge-diffracted optical-vortex beams. Opt. 18 024011 (2016). https://doi.org/10.1088/2040-8978/18/2/024011
  199. Bekshaev, A., Khoroshun, A. & Mikhaylovskaya, L. Transformation of the singular skeleton in optical-vortex beams diffracted by a rectilinear phase step. Opt. 21, 084003 (2019). https://doi.org/10.1088/2040-8986/ab2c5b
  200. Bekshaev, A. Spin-orbit interaction of light and diffraction of polarized beams. Opt. 19, 085602 (2017). https://doi.org/10.1088/2040-8986/aa746a
  201. Fedoseyev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Commun. 193, 9–18 (2001). https://doi.org/10.1016/S0030-4018(01)01262-7
  202. Okuda, H. & Sasada, H. Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. Opt. Am. A: Opt. Image Sci. Vis. 25, 881–890 (2008). https://doi.org/10.1364/JOSAA.25.000881
  203. Bekshaev, A. Ya. & Popov, A. Yu. Method of light beam orbital angular momentum evaluation by means of space-angle intensity moments. J. Phys. Opt. 3, 249–257 (2002). https://doi.org/10.3116/16091833/3/4/249/2002
  204. Bekshaev, A. Ya. Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. Opt. A Pure Appl. Opt. 11, 094003 (2009). https://doi.org/10.1088/1464-4258/11/9/094003
  205. Bekshaev, A. Ya. Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space. J. Phys. Opt. 12, 10–18 (2011). https://doi.org/10.3116/16091833/12/1/10/2011
  206. Bekshaev, A. Ya. Polarization-dependent transformation of a paraxial beam upon reflection and refraction: A real-space approach. Rev. A 85, 023842 (2012). https://doi.org/10.1103/PhysRevA.85.023842
  207. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013). https://doi.org/10.1088/2040-8978/15/1/014001
Go to article

Authors and Affiliations

Oleg V. Angelsky
1 2
Aleksandr Ya. Bekshaev
3
Igor I. Mokhun
2
Mikhail V. Vasnetsov
4
Claudia Yu. Zenkova
1 2
Steen G. Hanson
5
Jun Zheng
1

  1. Taizhou Research Institute of Zhejiang University, Taizhou, China
  2. Chernivtsi National University, Chernivtsi, Ukraine
  3. Physics Research Institute, Odessa I. I. Mechnikov National University, Odessa, Ukraine
  4. Department of Optical Quantum Electronics, Institute of Physics of the NAS of Ukraine, Kyiv, Ukraine
  5. DTU Fotonik, Department of Photonics Engineering, DK-4000 Roskilde, Denmark
Download PDF Download RIS Download Bibtex

Abstract

External light outcoupling structures provide a cost-effective and highly efficient solution for light extraction in organic light-emitting diodes. Among them, different microtextures, mainly optimized for devices with isotopically oriented emission dipoles, have been proposed as an efficient light extraction solution. In the paper, the outcoupling for a preferential orientation of emission dipoles is studied for the case of a red bottom-emitting organic light-emitting diode. Optical simulations are used to analyse the preferential orientation of dipoles in combination with three different textures, namely hexagonal array of sine-textures, three-sided pyramids, and random pyramids. It is shown that while there are minimal differences between the optimized textures, the highest external quantum efficiency of 51% is predicted by using the three-sided pyramid texture. Further improvements, by employing highly oriented dipole sources, are examined. In this case, the results show that the top outcoupling efficiencies can be achieved with the same texture shape and size, regardless of the preferred orientation of the emission dipoles. Using an optimized three-sided pyramid in combination with ideally parallel oriented dipoles, an efficiency of 62% is achievable. A detailed analysis of the optical situation inside the glass substrate, dominating external light outcoupling, is presented. Depicted results and their analysis offer a simplified further research and development of external light extraction for organic light-emitting devices with highly oriented dipole emission sources.
Go to article

Bibliography

  1. Song, J., Lee, H., Jeong, E.͏͏ G., Choi, K.͏ C. & Yoo, S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32, 1907539 (2020). https://doi.org/10.1002/adma.201907539
  2. Yin, Y., Ali, M. U., Xie, W., Yang, H. & Meng, H. Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Mater. Chem. Front. 3, 970–1031 (2019). https://doi.org/10.1039/C9QM00042A
  3. Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sust. Energy Rev. 133, 110043 (2020). https://doi.org/10.1016/j.rser.2020.110043
  4. Chang, Y. & Lu, Z. White organic light-emitting diodes for solid-state lighting. J. Disp. Technol. 9, 459–468 (2013). https://doi.org/10.1109/JDT.2013.2248698
  5. Reineke, S., Thomschke, M., Lüssem, B. & Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 85, 1245–1293 (2013). https://doi.org/10.1103/RevModPhys.85.1245
  6. Hong, G. et al. A brief history of OLEDS—emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021). https://doi.org/10.1002/adma.202005630
  7. Adachi, C., Xie, G., Reineke, S. & Zysman-Colman, E. Editorial: recent advances in thermally activated delayed fluorescence materials. Front. Chem. 8, 625910 (2020). https://doi.org/10.3389/fchem.2020.625910
  8. Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003). https://doi.org/10.1002/adma.200302151
  9. Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012). https://doi.org/10.1103/PhysRevB.85.115205
  10. Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010). https://doi.org/10.1063/1.3527936
  11. Salehi, A., Fu, X., Shin, D.-H. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019). https://doi.org/10.1002/adfm.201808803
  12. Gather, M.C. & Reineke, S. Recent advances in light outcoupling from white organic light-emitting diodes. J. Photonics Energy 5, 057607 (2015). https://doi.org/10.1117/1.JPE.5.057607
  13. Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002). https://doi.org/10.1063/1.1435422
  14. Greiner, H. Light extraction from Organic Light Emitting Diode substrates: simulation and experiment. Jpn. J. Appl. Phys. 46, 4125 (2007). https://doi.org/10.1143/JJAP.46.4125
  15. Bae, H., Kim, J.͏͏ S. & Hong, C. Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array. Opt. Commun. 415, 168–176 (2018). https://doi.org/10.1016/j.optcom.2018.01.044
  16. Zhou, J.-G., Hua, X.-C., Huang, C.-C., Sun, Q. & Fung, M.-K. Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes. Org. Electron. 69, 348–353 (2019). https://doi.org/10.1016/j.orgel.2019.03.051
  17. Zhai, G., Zhu, W., Huang, L., Yi, C. & Ding, K. Enhanced light extraction from green organic light-emitting diodes by attaching a high-haze random-bowls textured optical film. J. Phys. D: Appl. Phys. 53, 435101 (2020). https://doi.org/10.1088/1361-6463/ab9fc3
  18. Yen, J.-H., Wang, Y.-J., Hsieh, C.-A., Chen, Y.-C. & Chen, L.-Y. Enhanced light extraction from organic light-emitting devices through non-covalent or covalent polyimide–silica light scattering hybrid films. J. Mater. Chem. C 8, 4102–4111 (2020). https://doi.org/10.1039/C9TC06449D
  19. Gasonoo, A. et al. Outcoupling efficiency enhancement of a bottom-emitting OLED with a visible perylene film. Opt. Express 28, 26724–26732 (2020). https://doi.org/10.1364/OE.397789
  20. Song, J. et al. Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nat. Commun. 9, 3207 (2018). https://doi.org/10.1038/s41467-018-05671-x
  21. Tu, T. T. K. et al. Enhancement of light extraction from Organic Light-Emitting Diodes by SiO2 nanoparticle-embedded phase separated PAA/PI polymer blends. Mol. Cryst. Liq. Cryst. 686, 55–62 (2019). https://doi.org/10.1080/15421406.2019.1648036
  22. Kovačič, M. et al. Coupled optical modeling for optimization of Organic Light-Emitting Diodes with external outcoupling structures. ACS Photonics 5, 422–430 (2018). https://doi.org/10.1021/acsphotonics.7b00874
  23. Kovačič, M. et al. Combined optical model for micro-structured organic light emitting diodes. Inf. MIDEM 46, 167–275 (2017).
  24. Kovačič, M., Jošt, M., Bokalič, M. & Lipovšek, B. Sklopljeno optično modeliranje sodobnih optoelektronskih gradnikov. Elektrotehniski Vestn. 87, 223–234 (2020). http://www.dlib.si/stream/URN:NBN:SI:doc-2H1046ZZ/1ab9d4a8-6aab-40c3-abb5-9d826ff65672/PDF (in Slovene)
  25. Kovačič, M. et al. Analysis and optimization of light outcoupling in OLEDs with external hierarchical textures. Opt. Express 29, 23701–23716 (2021). https://doi.org/10.1364/OE.428021
  26. Lipovšek, B., Krč, J. & Topič, M. Microtextured light-management foils and their optimization for planar organic and perovskite solar cells. IEEE J. Photovolt. 8, 783–792 (2018). https://doi.org/10.1109/JPHOTOV.2018.2810844
  27. Jošt, M. et al. Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics 4, 1232–1239 (2017). https://doi.org/10.1021/acsphotonics.7b00138
  28. Schmidt, T. D. et al. Emitter orientation as a key parameter in Organic Light-Emitting Diodes. Phys. Rev. Appl. 8, 037001 (2017). https://doi.org/10.1103/PhysRevApplied.8.037001
  29. Hofmann, A., Schmid, M. & Brütting, W. The many facets of molecular orientation in organic optoelectronics. Adv. Opt. Mater. 9, 2101004 (2021). https://doi.org/10.1002/adom.202101004
  30. Kim, K.-H. & Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high‐efficiency OLEDs. Adv. Mater. 30, 1705600 (2018). https://doi.org/10.1002/adma.201705600
  31. Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 21, 19187–19202 (2011). https://doi.org/10.1039/C1JM13417E
  32. Schwab, T. et al. Highly efficient color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes. Adv. Opt. Mater. 1, 707–713 (2013) https://doi.org/10.1002/adom.201300241
  33. Schwab, T., Schubert, S., Müller-Meskamp, L., Leo, K. & Gather, M. C. Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes. Adv. Opt. Mater. 1, 921–925 (2013). https://doi.org/10.1002/adom.201300392
  34. Zhang, W. et al. Rough glass by 3d texture transfer for silicon thin film solar cells. Phys. Status Solidi C 7, 1120–1123 (2010). https://doi.org/10.1002/pssc.200982773
  35. Escarré, J., Söderström, K., Battaglia, C., Haug, F.-J. & Ballif, C. High fidelity transfer of nanometric random textures by UV embossing for thin film solar cells applications. Sol. Energy Mater. Sol. Cells 95, 881–886 (2011). https://doi.org/10.1016/j.solmat.2010.11.010
  36. Meier, M. et al. UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells. Prog. Photovolt. Res. Appl. 22, 1226–1236 (2014). https://doi.org/10.1002/pip.2382
  37. Xiao, L., Su, S.-J., Agata, Y., Lan, H. & Kido, J. Nearly 100% internal quantum efficiency in an organic blue-light electro-phosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 21, 1271–1274 (2009). https://doi.org/10.1002/adma.200802034
  38. Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013). https://doi.org/10.1002/adma.201300753
  39. Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096–2100 (2015). https://doi.org/10.1002/adma.201405474
  40. Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998). https://doi.org/10.1364/JOSAA.15.000962
  41. Kovačič, M. Effect of dipole position and orientation on light extraction for red OLEDs on periodically corrugated substrate – FEM simulations study. Inf. MIDEM 51, 73–84 (2021). https://doi.org/10.33180/InfMIDEM2021.105
  42. Lüder, H. & Gerken, M. FDTD modelling of nanostructured OLEDs: analysis of simulation parameters for accurate radiation patterns. Opt. Quantum Electron. 51, 139 (2019). https://doi.org/10.1007/s11082-019-1838-4
  43. Lipovšek, B., Krč, J. & Topič, M. Optical model for thin-film photovoltaic devices with large surface textures at the front side. Inf. MIDEM 41, 264–271 (2011). http://www.midem-drustvo.si/Journal%20papers/MIDEM_41%282011%294p264.pdf
  44. MATLAB – MathWorks (2022). https://www.mathworks.com/products/matlab.html
Go to article

Authors and Affiliations

Milan Kovačič
1
ORCID: ORCID

  1. Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000 Ljubljana, Slovenia
Download PDF Download RIS Download Bibtex

Abstract

This work summarises investigations focused on the photoanode impact on the photovoltaic response of dye-sensitized solar cells. This is a comparison of the results obtained by the authors’ research team with literature data. The studies concern the effect of the chemical structure of the applied dye, TiO2 nanostructure, co-adsorbents addition, and experimental conditions of the anode preparation. The oxide substrates were examined using a scanning electron microscope to determine the thickness and structure of the material. The TiO2 substrates with anchored dye molecules were also tested for absorption properties in the UV-Vis light range, largely translating into current density values. Photovoltaic parameters of the fabricated devices with sandwich structure were obtained from current-voltage measurements. During tests conducted with the N719 dye, it was found that devices containing an 8.4 µm thick oxide semiconductor layer had the highest efficiency (5.99%). At the same time, studies were carried out to determine the effect of the solvent and it was found that the best results were obtained using an ACN : tert-butanol mixture (5.46%). Next, phenothiazine derivatives (PTZ-1–PTZ-6) were used to prepare the devices; among the prepared solar cells, the devices containing PTZ-2 and PTZ-3 had the highest performance (6.21 and 6.22%, respectively). Two compounds designated as Th-1 and M-1 were used to prepare devices containing a dye mixture with N719.
Go to article

Bibliography

  1. Kishore Kumar, D. et al. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Sci. Energy Technol. 3, 472–481 (2020). https://doi.org/10.1016/j.mset.2020.03.003
  2. Gerischer, H., Michel-Beyerle, M. E., Rebentrost, F. & Tributsch, H. Sensitization of charge injection into semiconductors with large band gap. Acta 13, 1509–1515 (1968). https://doi.org/10.1016/0013-4686(68)80076-3
  3. Tsubomura, H., Matsumura M., Nomura, Y. & Amamiya, T. Dye senstized Zinc oxide: aqueous electrolyte: platinumphotocell. Nature 261, 402–403 (1976). https://doi.org/10.1038/261402a0
  4. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
  5. Ji, J.-M., Zhou, H., Eom, Y. K., Kim, C. H. & Kim, H. K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno[3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Energy Mater. 10, 1–12 (2020). https://doi.org/10.1002/aenm.202000124
  6. Gnida, P., Libera, M., Pająk, A. & Schab-Balcerzak, E. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells. Energy Fuels 34, 14344–14355 (2020). https://doi.org/10.1021/acs.energyfuels.0c02188
  7. Selvaraj, P. et al. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Energy Mater. Sol. Cells 175, 29–34 (2018). https://doi.org/10.1016/j.solmat.2017.10.006
  8. Baglio, V., Girolamo, M., Antonucci, V. & Aricò, A. S. Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int. J. Sci. 6, 3375–3384 (2011).
  9. Zhang, H. et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull. 49, 126–131 (2014). https://doi.org/10.1016/j.materresbull.2013.08.058
  10. Madurai Ramakrishnan, V. et al. Transformation of TiO2 nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. J. Hydrog. 45, 15441–15452 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.021
  11. Lee, S. et al. Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem. Mater. 22, 1958–1965 (2010). https://doi.org/10.1021/cm902842k
  12. Gnida, P. et al. Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Materials 14, 13–15 (2021). https://doi.org/10.3390/ma14071633
  13. Slodek, A. et al. New benzo [ h ] quinolin-10-ol derivatives as co-sensitizers for DSSCs. Materials 14, 1–19 (2021) https://doi.org/10.3390/ma14123386
  14. Lee, K. M. et al. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J. Mater. Chem. 19, 5009–5015 (2009). https://doi.org/10.1039/b903852c
  15. Kumar, V., Gupta, R. & Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Sol. Energy 196, 589–596 (2020) https://doi.org/10.1016/j.solener.2019.12.034
  16. Ko, S. H. et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011). https://doi.org/10.1021/nl1037962
  17. Lee, K.-M. Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Sol. Energy Mater. Sol. Cells 91, 1426–1431 (2007). https://doi.org/10.1016/j.solmat.2007.03.009
  18. Wang, X. et al. Enhanced performance of dye-sensitized solar cells based on a dual anchored diphenylpyranylidene dye and N719 co-sensitization. J. Mol. Struct. 1206, 127694 (2020). https://doi.org/10.1016/j.molstruc.2020.127694
  19. Kula, S. et al. Effect of thienyl units in cyanoacrylic acid derivatives toward dye-sensitized solar cells. Photochem. Photobiol. B, Biol. 197, 111555 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111555
  20. Kotowicz, S. et al. Photoelectrochemical and thermal characteri-zation of aromatic hydrocarbons substituted with a dicyanovinyl unit. Pigm. 180, 108432 (2020). https://doi.org/10.1016/j.dyepig.2020.108432
  21. Fabiańczyk, A. et al. Effect of heterocycle donor in 2-cyanoacrylic acid conjugated derivatives for DSSC applications. Energy 220, 1109–1119 (2021). https://doi.org/10.1016/j.solener.2020.08.069
  22. Luo, J. et al. Co-sensitization of dithiafulvenyl-phenothiazine based organic dyes with N719 for efficient dye-sensitized solar cells. Acta 211, 364–374 (2016). https://doi.org/10.1016/j.electacta.2016.05.175
  23. Wu, Z. S. et al. New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. Power Sources 451, 227776 (2020). https://doi.org/10.1016/j.jpowsour.2020.227776
  24. Dang Quang, L. N., Kaliamurthy, A. K. & Hao, N. H. Co-sensitization of metal based N719 and metal free D35 dyes: An effective strategy to improve the performance of DSSC. Mater. 111, 110589 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110589
  25. Lee, H., Kim, J., Kim, D. Y. & Seo, Y. Co-sensitization of metal free organic dyes in flexible dye sensitized solar cells. Electron. 52, 103–109 (2018). https://doi.org/10.1016/j.orgel.2017.10.003
  26. Magne, C., Urien, M. & Pauporté, T. Enhancement of photovoltaic performances in dye-sensitized solar cells by co-sensitization with metal-free organic dyes. RSC Adv. 3, 6315–6318 (2013). https://doi.org/10.1039/c3ra41170b
  27. Kovash Jr., C. S., Hoefelmeyer, J. D. & Logue, B. A. TiO 2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells. Acta 67, 18–23 (2012). https://doi.org/10.1016/j.electacta.2012.01.092
  28. Cha, S. I. et al. Dye-sensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure. Energy Environ. Sci. 5, 6071–6075 (2012). https://doi.org/10.1039/c2ee03096a
  29. Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Chem. Bull. 4, 92–97 (2015). https://doi.org/10.17628/ECB.2015.4.92
  30. Slodek, A. et al. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. Mater. Chem. C 7, 5830–5840 (2019). https://doi.org/10.1039/C9TC01727E
  31. Slodek, A. et al. Investigations of new phenothiazine-based com­pounds for dye-sensitized solar cells with theoretical insight. Materials 13, 2292 (2020). https://www.mdpi.com/1996-1944/13/10/2292
  32. Li, X., Wang, Y., Liu, Y. & Ge, W. Green, room-temperature, fast route for NH4Yb2F7:Tm3+ nanoparticles and their blue upconversion luminescence properties. Mater.111, 110605 (2021). https://doi.org/10.1016/j.optmat.2020.110605
  33. Li, S. et al. Comparative studies on the structure-performance relationships of phenothiazine-based organic dyes for dye-sensitized solar cells. ACS Omega 6, 6817–6823 (2021). https://doi.org/10.1021/acsomega.0c05887
  34. Zhang, C., Wang, S. & Li, Y. Phenothiazine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for dye-sensitized solar cells. Energy 157, 94–102 (2017). https://doi.org/10.1016/j.solener.2017.08.012
  35. Duvva, N., Eom, Y. K., Reddy, G., Schanze, K. S. & Giribabu, L. Bulky phenanthroimidazole-phenothiazine D-?-A based organic sensitizers for application in efficient dye-sensitized solar cells. ACS Appl. Energy Mater. 3, 6758–6767 (2020). https://doi.org/10.1021/acsaem.0c00892
  36. Huang, Z.-S., Meier, H. & Cao, D. Phenothiazine-based dyes for efficient dye-sensitized solar cells. Mater. Chem. C 4, 2404–2426 (2016). https://doi.org/10.1039/c5tc04418a
  37. Althagafi, I. & El-Metwaly, N. Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719. J. Chem. 14, 103080 (2021). https://doi.org/10.1016/J.ARABJC.2021.103080
  38. Wu, Z., Wei, Y., An, Z., Chen, X. & Chen, P. Co-sensitization of N719 with an organic dye for dye-sensitized solar cells application. Korean Chem. Soc. 35, 1449–1454 (2014). https://doi.org/10.5012/bkcs.2014.35.5.1449
  39. Xu, Z. et al. DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Acta A Mol. Biomol. Spectrosc. 212, 272–280 (2019). https://doi.org/10.1016/J.SAA.2019.01.002
  40. Afolabi, S. O. et al. Design and theoretical study of phenothiazine-based low bandgap dye derivatives as sensitizers in molecular photovoltaics. Quantum Electron. 52, 1–18 (2020). https://doi.org/10.1007/s11082-020-02600-5
  41. Arunkumar, A., Shanavas, S. & Anbarasan, P. M. First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs. Comput. Electron. 17,
    1410–1420 (2018). https://doi.org/10.1007/s10825-018-1226-5
  42. Nath, N. C. D., Lee, H. J. Choi, W.-Y. & Lee, J.-J. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Acta 109, 39–45 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.07.057
Go to article

Authors and Affiliations

Paweł Gnida
1
ORCID: ORCID
Aneta Slodek
2
ORCID: ORCID
Ewa Schab-Balcerzak
2 1
ORCID: ORCID

  1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska St., 41-819 Zabrze, Poland
  2. Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a study of a hybrid structure based on the combination of a tapered optical fibre and gold nanoparticles dispersed in a liquid crystal material. Sensitivity to changes of the refractive index of the environment in which the structure is located, as well as the possibility of changing the refractive index of liquid crystals by external factors, such as temperature and electric field, were investigated. Electro- and thermally-induced changes of the refractive index of a liquid crystal through the rotation of a molecule director, which cause changes in the light propagated in a tapered optical fibre, were described. The most important issue in the article is to determine the influence of doping a liquid crystal with gold nanoparticles the concentration of which varies between 0.1 and 0.3 wt.%. The paper presents transmission measurements in a wide optical range depending on voltage, temperature, and frequency changes. Additionally, time courses of the obtained signal were measured. The study shows that the appropriate selection of nanoparticle concentration has a huge impact on the optical wave propagation. The experimental results show that the optical changes obtained for the investigated hybrid structure prefer it for use as an electro-optical switcher, filter, or sensor.
Go to article

Bibliography

  1. Taha, B. A. et al. Comprehensive review tapered optical fiber configurations for sensing application: trend and challenges. Biosensors 11, 253 (2021). https://doi.org/10.3390/bios11080253
  2. Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B. G. & Min, B.-K. A review on optical fiber sensors for environmental monitoring. Int. Pr. Eng. Man.-Gr. 5, 173–191 (2018). https://doi.org/10.1007/s40684-018-0017-6
  3. Korposh, S., James, S. W., Lee, S.-W. & Tatan, R. P. Tapered optical fibre sensors: current trends and future perspectives. Sensors 19, 2294 (2019). https://doi.org/10.3390/s19102294
  4. Adhikari R., Chauhan, D., Mola, G. T. & Dwivedi, R. P. A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electron. Rev. 29, 148–166 (2021). https://doi.org/10.24425/opelre.2021.139601
  5. Elosua, C. et al. Micro and nanostructured materials for the development of optical fibre. Sensors 17, 2312 (2017). https://doi.org/10.3390/s17102312
  6. Tong, L. Micro/nanofibre optical sensors: challenges and prospects. Sensors 18, 903 (2018). https://doi.org/10.3390/s18030903
  7. Moś, J., Stasiewicz, K., Matras-Postołek, K. & Jaroszewicz, L. R. Thermo-optical switching effect based on a tapered optical fiber and higher alkanes doped with ZnS:Mn. Materials 13, 5044 (2020). https://doi.org/10.3390/ma13215044
  8. Wang, P., Zhao, H., Wang, X., Farrell, G. & Brambilla, G. A Review of multimode interference in tapered optical fibers and related appli-cations. Sensors 18, 858 (2018). https://doi.org/10.3390/s18030858
  9. Komaneca, M. et al. Structurally-modified tapered optical fiber sensors for long-term detection of liquids. Fiber Technol. 47, 187–191 (2019). https://doi.org/10.1016/j.yofte.2018.11.010
  10. Ni, K., Chan, C. C., Dong, X. & Li, L. Temperature independent accelerometer using a fiber Bragg grating incorporating a biconical taper. Fiber Technol. 19, 410–413 (2013). https://doi.org/10.1016/j.yofte.2013.05.008
  11. Wieduwilt, T., Bruckner, S. & Bartelt, H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform waist fiber tapers. Sci. Technol. 22, 075201 (2011). https://doi.org/10.1088/0957-0233/22/7/075201
  12. Xuan, H., Jin, W. & Zhang, M. CO2 laser induced long period gratings in optical microfibers. Express 17, 21882–21890 (2009). https://doi.org/10.1364/OE.17.021882
  13. Fan, P. et al. Higher-order diffraction of long-period microfiber gratings realized by arc discharge method. Express 24, 25380–25388 (2016). https://doi.org/10.1364/OE.24.025380
  14. Tian, Z., Yam, S. S.-H. & Loock, H. P. Refractive index sensor based on an abrut taper Michelson interferometer in single mode Fiber. Lett. 33, 1105–1107 (2008). https://doi.org/10.1364/OL.33.001105
  15. Bhardwaj, V., Kishor, K. & Sharma, A. C. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder Interferometer: A review. Fiber Technol. 58, 1–12 (2020). https://doi.org/10.1016/j.yofte.2020.102302
  16. Pu, S., Luo, L., Tang, J., Mao, L. & Zeng, X. Ultrasensitive refractive-index sensors based on a tapered fiber coupler with Sagnac loop. IEEE Photon. Technol. Lett. 28, 1073–1076 (2016). https://doi.org/10.1109/LPT.2016.2529181
  17. Chen, Y., Yan, S.-C., Zheng, X., Xu, F. & Lu, Y.-G. A miniature reflective micro-force sensor based on a microfiber coupler. Express 3, 24443–2450 (2014). https://doi.org/10.1364/OE.22.002443
  18. Wu, Y., Zhang, T. H., Rao, Y. J. & Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 155, 258–263 (2011). https://doi.org/10.1016/j.snb.2010.12.030
  19. Li, X. & Ding, H. A stable evanescent field based microfiber knot resonator refractive index sensor. IEEE Photon. Technol. Lett. 26, 1625–1628 (2014). https://doi.org/10.1109/LPT.2014.2329321
  20. Lach C. N. H. C., Jamaludin, N., Rokhani, F. Z., Rashid, S. A. & Noor, A. S. M. Lard detection using a tapered optical fiber sensor integrated with gold-graphene quantum dots. Bio-Sens. Res. 26, 100306 (2019). https://doi.org/10.1016/j.sbsr.2019.100306
  21. Korec, J., Stasiewicz, K. A., Garbat, K. & Jaroszewicz, L. R. Enhancement of the SPR Effect in an optical fiber device utilizing a thin ag layer and a 3092A liquid crystal mixture. Molecules 26, 7553 (2021). https://doi.org/3390/molecules26247553
  22. Lin, H.-Y., Huang, Ch.-H., Cheng, G.-L., Chen, N.-K. & Chui, H.-Ch. Tapered optical fiber sensor based on localized surface plasmon resonance Express 20, 21693–21701 (2012). https://doi.org/10.1364/OE.20.021693
  23. Socorro, A. B., Del Villar, I., Corres, J. M., Arregui, F. J. & Matias I. R. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B Chem. 200, 53–60 (2014). https://doi.org/10.1016/j.snb.2014.04.017
  24. Stasiewicz, K. A., Jakubowska, I. & Dudek, M. Detection of organosulfur and organophosphorus compounds using a hexafluorobutyl acrylate-coated tapered optical fibers. Polymers 14, 612 (2022). https://doi.org/10.3390/polym14030612
  25. Zhu, S. et al. High sensitivity refractometer based on TiO2-coated adiabatic tapered optical fiber via ALD technology. Sensors 16, 1295 (2016). https://doi.org/10.3390/s16081295
  26. Wang, S., Feng, M., Wu, S., Wang, Q. & Zhang, L. Highly sensitive temperature sensor based on gain competition mechanism using graphene coated microfiber. IEEE Photon. J. 10, 6802008 (2018). https://doi.org/10.1109/JPHOT.2018.2827073
  27. Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I. R. & Arregui, F. J. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Express 22, 28154–28162 (2014). https://doi.org/10.1364/OE.22.028154
  28. Korec, J., Stasiewicz, K. A., Strzeżysz, O., Kula, P. & Jaroszewicz, L. R. Electro-steering tapered fiber-optic device with liquid crystal cladding. Sensors 2019, 1–11 (2019). https://doi.org/10.1155/2019/1617685
  29. Moś, J. et al. Research on optical properties of tapered optical fibers with liquid crystal cladding doped with gold nanoparticles. Crystals 9, 306 (2019). https://doi.org/10.3390/cryst9060306
  30. Marć, P., Stasiewicz, K., Korec, K., Jaroszewicz, L. R & Kula, P. Polarization properties of nematic liquid crystal cell with tapered optical fiber Opto-Electron. Rev. 27, 321–328 (2019). https://doi.org/10.1016/j.opelre.2019.10.001
  31. Talataisong, W., Ismaeel, R. & Brambilla, G. A review of microfiber-based temperature sensors. Sensors 18, 461 (2018). https://doi.org/10.3390/s18020461
  32. Wu, X. & Tong, L. Optical microfibers and nanofibers. Nanophotonics 2, 407–428 (2018). https://doi.org/10.1515/nanoph-2013-0033
  33. Vishnoi, G., Goel, T. & Pillai, P. K. C. Spectrophotometric studies of chemical species using tapered core multimode optical fiber. Actuators B Chem. 45, 43–48 (1997). https://doi.org/10.1016/S0925-4005(97)00268-2
  34. Zhang, L., Lou, J. & Tong, L. Micro/nanofiber optical sensors. Sens. 1, 31–42 (2011). https://doi.org/10.1007/s13320-010-0022-z
  35. Wiejata, P., Shankar, P. & Mutharasan, R. Fluorescent sensing using biconical tapers. Sens. Actuators B Chem. 96, 315–320 (2003). https://doi.org/10.1016/S0925-4005(03)00548-3
  36. Moayyed, H., Teixeira Leite, I., Coelho, L., Santos, J. & Viegas, D. Analysis of phase interrogated SPR fiber optic sensors with biometallic layers. IEEE Sens. J. 14, 3662–3668 (2014). https://doi.org/1109/JSEN.2014.2329918
  37. Zubiate, P., Zamarreño, C. R., Del Villar, I., Matias, I  R. & Arregui, F. J. High sensitive refractometers based on lossy mode resonance supported by ITO coated D-shape optical fibers. Express 23, 8045–8050 (2015). https://doi.org/10.1364/OE.23.008045
  38. Budaszewki, D. et al. Nanoparticles-enhanced photonic liquid crystal fibers. Mol. Liq. 267, 271–278 (2018). https://doi.org/10.1016/j.molliq.2017.12.080
  39. Tian, Y., Wang, W., Wu, N., Zou, X. & Wang, X. Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 11, 3780–3790 (2011). https://doi.org/10.3390/s110403780
  40. Brambilla, G. et al. Optical fiber nanowires and microwires: fabrication and applications. Opt. Photonics 1, 107–161 (2009). https://doi.org/10.1364/AOP.1.000107
  41. Prakash, J., Khan, S., Chauhan, S. & Biradar, A. M. Metal oxide-nanoparticles, and liquid crystal composites: A review of recent progress. Mol. Liq. 297, 112052 (2020). https://doi.org/10.1016/j.molliq.2019.112052
  42. Khatua, S. et al. Plasmonic nanoparticles−liquid crystal composites. Phys. Chem. C 114, 7251–7257 (2010). https://doi.org/10.1021/jp907923v
  43. Podoliak, N. et al. Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 4, 46068–46074 (2014). https://doi.org/10.1039/C4RA06248E
  44. Choudhary, A., Singh, G. & Biradar, A. M. Advances in gold nanoparticle–liquid crystal composites. Nanoscale 6, 7743–7756 (2014). https://doi.org/10.1039/C4NR01325E
  45. Przybysz, N., Marć, P., Tomaszewska, E., Grobelny, J. & Jaroszewicz,R. Mixtures of selected n-alkanes and Au nanoparticels for optical fiber threshold temperature transducers. Opto-Electron. Rev. 28, 220–228 (2021). https://doi.org/10.24425/opelre.2020.136111
  46. Budaszewski, D. et al. Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles. Express 27, 14260–14269 (2018). https://doi.org/10.1364/OE.27.014260
  47. Qi, H. & Hegmann T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. Interfaces 1, 1731–1738 (2009). https://doi.org/10.1021/am9002815
  48. Stamatoiu, O., Mirzaei, J., Feng, X. & Hegmann, T. Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles. in Liquid Crystals. Topics in Current Chemistry (ed. Tschierske, C.) 318, 331–393 (Springer, Verlag Berlin Heidelberg 2012). https://doi.org/10.1007/128_2011_233
  49. Dąbrowski, R. et al. Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application. Cryst. 44, 1911–1928 (2017). https://doi.org/10.1080/02678292.2017.1360952
Go to article

Authors and Affiliations

Joanna E. Moś
1
ORCID: ORCID
Karol A. Stasiewicz
1
ORCID: ORCID
Leszek R. Jaroszewicz
1
ORCID: ORCID

  1. Faculty of New Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more