Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 52
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In order to understand infection of avian influenza A virus (AIV) and canine distemper virus (CDV) in the Siberian Tiger in Northeast China, 75 Siberian Tiger serum samples from three cap- tive facilities in northeastern China were collected. AIV and CDV antibody surveillance was test- ed by using hemagglutination inhibition and serum neutralization methods. The results showed that the seroprevalence of H5 AIV, H9 AIV and CDV was respectively 9.33% (7/75), 61.33% (46/75) and 16% (12/75). In the 1<years <2 and > 5 year-old group, the seroprevalence of the H9 AIV was 24% and 80% (P < 0.01), and the CDV seroprevalence was 6% and 36% (P < 0.01), respectively. It was demonstrated that 3 (4%) out of 75 serum samples were AIV+CDV seropos- itive, with 2.67% (2/75) in H9+AIV and 1.33% (1/75) in H5+H9+AIV. To our knowledge, this is the first report of AIV and CDV seroprevalence in Siberian Tigers in China, which will provide base-line data for the control of AIV and CDV infection in Siberian Tigers in China.

Przejdź do artykułu

Autorzy i Afiliacje

K. Wang
H. Wang
N. Feng
Y. Zhao
Y. Gao
G. Hu
X. Xia

Abstrakt

Since late 2011, porcine infections with highly virulent and antigenic variant of pseudorabies virus (PRV) cause great economic loss in the swine industry in China, and its emergence leads to variable protection efficacy of the commercially available PRV vaccine.

In the present study, the potential cross-protective efficacy of two live virus vaccines, includ- ing a commercial vaccine, and an attenuated low pathogenic PRV variant (rPRVTJ-delTK/gE/gI) against a PRV variant Tianjing (TJ) was evaluated in piglets. Vaccination of piglets with the live vaccine Bartha-K61 could not reduce the clinical signs, and was partially efficacious in the reduc- tion of viral loads upon PRV variant TJ challenge, indicating that this live vaccine provided limited cross-protection efficacy against the PRV variant infection. Additionally, rPRVTJ-delTK/gE/gI appeared to exert some beneficial efficiency in shortening the period of clinical fever and improv- ing the growth performance of the challenged pigs.

Our findings give a valuable guidance for the choice and use of PRV vaccines to control PRV variant infection in the field.

Przejdź do artykułu

Autorzy i Afiliacje

M. Wang
L. Wang
Q. Zhao
Słowa kluczowe aptamer virus biosensor animal
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Viral infections are common causes of diseases in animals and appropriate methods are increasingly being required to detect viral pathogens in animals. In this regard, similar to antigen- -antibody interactions, aptamers have high affinity and specificity for their respective target molecules, and can be selected using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) technique. Recently, significant progress has been made in the development of aptamer selection and aptamer-based sensors for viral detection, and here we review some of the recent advances in aptamer-based detection of viral infections in animals. This review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics.
Przejdź do artykułu

Bibliografia

  1. Bai H, Wang RH, Hargis B, Lu HG, Li YB (2012) A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12: 12506-12518.
  2. Banerjee J, Nilsen-Hamilton M (2013) Aptamers: multifunctional molecules for biomedical research. J Mol Med 91: 1333-1342.
  3. Bruno JG, Carrillo MP, Phillips T (2008) Development of DNA aptamers to a foot-and-mouth disease peptide for competitive FRET-based detection. J Biomol Tech 19: 109-115.
  4. Chakraborty B, Das S, Gupta A, Xiong YY, Vushnavi T-V, Kizer ME, Duan JW, Chandrasekaran AR, Wang X (2022). Aptamers for viral detection and inhibition. ACS Infect Dis 8: 667-692.
  5. Chauhan VM, Elsutohy MM, McClure CP, Irving WL, Roddis N, Aylott JW (2021) Gold-Oligonucleotide nanoconstructs engineered to detect conserved enteroviral nucleic acid sequences. Biosensors 11:238.
  6. Chen CH, Zou Z, Chen L, Ji XH, He ZK (2016) Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection. Nanotechnology 27: 435102.
  7. Chen ZQ, Wu QH, Chen J, Ni XH, Dai JF (2020) A DNA aptamer based method for detection of SARS-CoV-2 nucleocapsid protein. Virol Sin 35: 351-354.
  8. D’Cruz RJ, Currier AW, Sampson VB (2020) Laboratory testing methods for novel Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Front Cell Dev Biol 8: 468.
  9. Damase TR, Miura TA, Parent CE, Allen PB (2018) Application of the Open qPCR Instrument for the in Vitro Selection of DNA aptamers against epidermal growth factor receptor and Drosophila C virus. ACS Comb Sci 20: 45-54.
  10. Darmostuk M, Rimpelova S, Gbelcova H, Ruml T (2015) Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 33: 1141-1161.
  11. Diba FS, Kim S, Lee HJ (2015) Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens Bioelectron 72: 355-361.
  12. Ellenbecker M, Sears L, Li P, Lanchy JM, Lodmell JS (2012) Characterization of RNA aptamers directed against the nucleocapsid protein of Rift Valley fever virus. Antiviral Res 93: 330-339.
  13. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818-822.
  14. Hmila I, Wongphatcharachai M, Laamiri N, Aouini R, Marnissi B, Arbi M, Streevatsan S, Ghram A (2017) A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR. J Virol Methods 243: 83-91.
  15. Hong KL, Sooter LJ (2015) Single-Stranded DNA aptamers against pathogens and toxins: identification and biosensing applications. Biomed Res Int 2015: 419318.
  16. Hwang SD, Midorikawa N, Punnarak P, Kikuchi Y, Kondo H, Hirono I, Aoki T (2012) Inhibition of Hirame rhabdovirus growth by RNA aptamers. J Fish Dis 35: 927-934.
  17. Iliuk AB, Hu LH, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83: 4440-4452.
  18. Jafari M, Rezaei M, Kalantari H, Tabarzad M, Daraei B (2018) DNAzyme-aptamer or aptamer-DNAzyme paradigm: Biochemical approach for aflatoxin analysis. Biotechnol Appl Biochem 65:274-280.
  19. Kacherovsky N, Yang LF, Dang HV, Cheng EL, Cardle II, Walls AC, McCallum M, Sellers DL, DiMaio F, Salipante SJ, Corti D, Veesler D, Pun SH (2021) Discovery and characterization of spike N-Terminal domain-binding aptamers for rapid SARS-CoV-2 detection. Angew Chem Int Ed Engl 60: 21211-21215.
  20. Kaur A, Kaur P, Ahuja S (2021) Förster resonance energy transfer (FRET) and applications thereof. Anal Methods 12:5532-5550.
  21. Kim YS, Gu MB (2014) Advances in aptamer screening and small molecule aptasensors. Adv Biochem Eng Biotechnol 140: 29-67.
  22. Labib M, Zamay AS, Muharemagic D, Chechik A, Bell JC, Berezovski MV (2012) Electrochemical sensing of aptamer-facilitated virus immunoshielding. Anal Chem 84: 1677-1686.
  23. Le TT, Adamiak B, Benton DJ, Johnson CJ, Sharma S, Fenton R, McCauley JW, Iqbal M, Cass, AEG (2014) Aptamer-based biosensors for the rapid visual detection of flu viruses. Chem Commun (Camb) 50: 15533-15536.
  24. Lee JL, Stovall GM, Ellington AD (2006) Aptamer therapeutics advance. Curr Opin Chem Biol 10: 282-289.
  25. Li JX, Zhang ZJ, Gu J, Stacey HD, Ang JC, Capretta A, Filipe CDM, Mossman KL, Balion C, Salena BJ, Yamamura D, Soleymani L, Miller MS, Brennan JD, Li YF (2021) Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res 49: 7267-7279.
  26. Li P, Zhou L, Wei J, Yu Y, Yang M, Wei S, Qin Q (2016) Development and characterization of aptamer-based enzyme-linked apta-sorbent assay for the detection of Singapore grouper iridovirus infection. J Appl Microbiol 121: 634-643.
  27. Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10: 210-216.
  28. Liu JX, Qin QW, Zhang XY, Li C, Yu YP, Huang XH, Mukama O, Zeng LW, Wang SW (2020) Development of a novel lateral flow biosensor combined with aptamer-based isolation: application for rapid detection of grouper nervous necrosis virus. Front Microbiol 11: 886.
  29. Lou BB, Liu YF, Shi ML, Chen J, Li K, Tan YF, Chen LW, Wu YW, Wang T, Liu XQ, Jiang T, Peng DM, Liu ZB (2022) Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 157: 116738.
  30. Lu TF, Ma Q, Yan WZ, Wang YZ, Zhang YY, Zhao LL, Chen HY (2018) Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor. Talanta 176: 214-220.
  31. Lum J, Wang RH, Hargis B, Tung S, Bottje W, Lu HG, Li YB (2015) An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors 15: 18565-18578.
  32. Negri P, Chen GJ, Kage A, Nitsche A, Naumann D, Xu BQ, Dluhy RA (2012) Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal Chem, 84: 5501-5508.
  33. Ouellet E, Foley JH, Conway EM, Haynes C (2015) Hi-Fi SELEX: A high-fidelity digital-PCR based therapeutic aptamer discovery platform. Biotechnol Bioeng 112: 1506-1522.
  34. Park JW, Lee SJ, Choi EJ, Kim J, Song JY, Gu MB (2014) An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosens Bioelectron 51: 324-329.
  35. Pfeiffer F, Mayer G (2016) Selection and biosensor application of aptamers for small molecules. Front Chem 4: 25.
  36. Prabhakar PK, Lakhanpal J (2020) Recent advances in the nucleic acid-based diagnostic tool for coronavirus. Mol Biol Rep 47: 9033-9041.
  37. Reinemann C, Stoltenburg R, Strehlitz B (2009) Investigations on the specificity of DNA aptamers binding to ethanolamine. Anal Chem 81: 3973-3978.
  38. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344: 467-468.
  39. Romero-Lopez C, Berzal-Herranz A (2017) Aptamers: Biomedical interest and applications. Pharmaceuticals 10:32.
  40. Sett A, Das S, Bora U (2014) Functional nucleic-acid-based sensors for environmental monitoring. Appl Biochem Biotechnol 174: 1073-1091.
  41. Storch GA (2000) Diagnostic virology. Clin Infect Dis 31: 739-751.
  42. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505-510.
  43. Wang HY, Wu SQ, Jiang L, Xiao RH, Li T, Mei L, Lv JZ, Liu JJ, Lin XM, Han XQ (2018) Establishment and optimization of a liquid bead array for the simultaneous detection of ten insect-borne pathogens. Parasit Vectors 11: 442.
  44. Wang RH, Li YB (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42: 148-155.
  45. Wang RH, Xu LZ, Li YB (2015) Bio-nanogate controlled enzymatic reaction for virus sensing. Biosens Bioelectron 67: 400-407.
  46. Wu JJ, Zhu YY, Xue F, Mei ZL, Yao L, Wang X, Zheng L, Liu J, Liu GD, Peng CF, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Mikrochim Acta 181: 479-491.
  47. Zhang ZJ, Pandey R, Li JX, Gu J, White D, Stacey HD, Ang JC, Steinberg CJ, Capretta A, Filipe CDM, Mossman K, Balion C, Miller MS, Salena BJ, Yamamura D, Soleymani L, Brennan JD, Li YF (2021) High-affinity dimeric aptamers enable the rapid electrochemical detection of wild-type and B.1.1.7 SARS-CoV-2 in Unprocessed Saliva. Angew Chem Int Ed Engl 60: 24266-24274.
Przejdź do artykułu

Autorzy i Afiliacje

W. Zhang
1
L. Xiao
2
J. Luo
1
M. Wu
2
Y. Zhu
2
F. Cong
2

  1. Guangdong Eco-Engineering Polytechnic, 297# Guangshan 1st Road, Guangzhou 510520, Guangdong, China
  2. Guangdong Laboratory Animals Monitoring institute and Guangdong Provincial Key Laboratory of Laboratory Animals, 11# Fengxin Road, Guangzhou 510033, Guangdong, China

Abstrakt

In this paper we present the first identification of the Tomato clack ring virus isolated from zucchini with mosaic and deformation of leaves in Poland. Immunosorbent electron microscopy, ELISA test and IC-RT-PCR confirmed the identification of TBRV. RNA extracted from purified virus (size about 7.4 kb and 4.6 kb) was characteristic to this virus.

Przejdź do artykułu

Autorzy i Afiliacje

Henryk Pospieszny
Natasza Borodynko

Abstrakt

Telomeres are repetitive sequence structures at the ends of chromosomes. They consist of the double stranded DNA repeats followed by the short single stranded DNA. In humans and other verterbrates the telomeric sequence is composed of tandem of TTAGGG repeats. With each cells division telomeres shorten by up to 200 base pairs. Telomerase is an enzyme responsible for continuous cell growth and is repressed in most somatic cells, except proliferating progenitor cells, but in more than 85% of cancer cells telomerase expression is observed. Tumour cells with metastatic potential may demonstrate a high telomerase activity, allowing cells to escape from the inhibition of cell proliferation due to shortened telomeres. Determination of telomerase expres- sion was performed with the use of PCR ELISA in samples isolated from bovine leukaemia virus (BLV) infected cows. Telomerase activity was found in almost all investigated samples. The relative telomerase activity (RTA) was higher in infected cows than in healthy animals and the differences were statistically significant (α=0.05). In blood lymphocytes of BLV-infected cows the mean values of telomerase expression determined in real-time PCR were 3534.12 copies, in the healthy group there were 1010.10 copies and these differences were also statistically significant. For telomere length evaluation the Telomere PNA/FITC FISH and Telomere PNA/FITC FISH for flow cytometry were used. The mean fluorescence intensity of telomere sequences calculated on the surface of interphase nuclei of leukaemic blood lymphocytes was lower than that in the control animals and the difference was statistically significant. The mean length of telomeres in BLV- infected and healthy cows was 31.63 ± 12.62 and 38.4 ± 4.03, (p=0.112), respectively.

Przejdź do artykułu

Autorzy i Afiliacje

M. Szczotka
J. Kocki
E. Iwan
A. Pluta

Abstrakt

Pseudorabies (PR) outbreaks have devastated many swine farms in several parts of China since late 2011. The outbreak-associated pseudorabies virus (PRV) variant strains exhibited some typical amino acid changes in glycoprotein E (gE), a diagnostic antigen used for discriminating between PRV-infected and vaccinated animals (DIVA). To counteract the potential impact of epitope variations on current serological diagnostics of PRV, we produced monoclonal antibodies (mAbs) against gE protein of one representative PRV variant strain and developed a blocking immunoperoxidase monolayer assay (b-IPMA) for DIVA. The b-IPMA was based on the inhibition of binding between PRV-infected cells and mAb by PRV-specific antibodies present in clinical swine sera and was validated by comparison with a commercial PRV gpI Antibody Test Kit (IDEXX Laboratories, USA). The diagnostic sensitivity, diagnostic specificity and agreement were determined to be 99.25%, 98.18% and 99.02% respectively upon testing 509 serum samples. b-IPMA detected only PRV-specific antibodies and showed no cross- -reactivity with antibodies elicited by gE-deleted vaccine or other common swine pathogens. Thus, b-IPMA has the potential to be used for high-throughput screening of PRV-infected animals in veterinary clinics.

Przejdź do artykułu

Autorzy i Afiliacje

Y.B. Wang
Y.H. Li
Q.M. Li
W.T. Xie
C.L. Guo
J.Q. Guo
R.G. Deng
G.P. Zhang
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In recent years there have been a growing number of reports on applying viruses in oncological treatment. In the present study, we demonstrated for the first time that animal virus EHV-1 productively replicates in the human adenocarcinoma cell line (A549) without the need for adaptation. Real-time PCR analysis and immunofluorescence assay showed that EHV-1 could infect and causes lysis of human lung cancer cells. According to our results, we can assume that EHV-1 has oncolytic potential.
Przejdź do artykułu

Bibliografia


Chodkowski M, Cymerys J, Słońska A, Bańbura M (2017) Oncolytic animal viruses and their applications in anti-cancer therapies. Med Weter 73: 4-9.

Courchesne MJ, White MC, Stanfield BA, Frampton AR (2012) Equine herpesvirus type 1-mediated oncolysis of human glioblastoma multi-forme cells. J Virol 86: 2882-2886.

Cymerys J, Dzieciątkowski T, Słońska A, Bierla J, Tucholska A, Chmielewska A, Golke A, Bańbura MW (2010) Equine herpesvirus type 1 (EHV-1) replication in primary murine neurons culture. Pol J Vet Sci 13: 701-708.

Cymerys J, Słońska A, Brzezicka J, Tucholska A, Chmielewska A, Rola J, Bańbura MW (2016) Replication kinetics of neuropathogenic and non-neuropathogenic equine herpesvirus type 1 (EHV-1) strains in primary murine neurons and ED cell line. Pol J Vet Sci 19: 777-784.

Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Nat Acad Sci 99: 9864-9869.

Liu BL, Robinson M, Han ZQ (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10: 292-303.

Słońska A, Cymerys J, Godlewski MM, Bańbura MW (2016) Application of scanning cytometry and confocal-microscopy-based image analysis for investigation the role of cytoskeletal elements during equine herpesvirus type 1 (EHV-1) infection of primary murine neurons. J Virol Met 237:1-9.

White MC, Frampton AR Jr (2013) The histone deacetylase inhibitor valproic acid enhances equine herpesvirus type 1 (EHV-1)-mediated oncolysis of human glioma cells. Cancer Gene Ther 20: 88-93.
Przejdź do artykułu

Autorzy i Afiliacje

M. Chodkowski
1 2
A. Słońska
1
M. Bartak
1
M.W. Bańbura
1
J. Cymerys
1

  1. Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  2. Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Porcine circovirus type 2 (PCV2) is an economically important swine pathogen and, although small, it has the highest evolution rate among DNA viruses. Commercial PCV2 commercial vaccines are inactivated PCV2 isolates or a subunit vaccine based on the Cap protein of PCV2. Currently, PCV2 VLPs of individual subtype vaccines are available. Although the main prevalent genotype worldwide is PCV2b, the emerging subtype PCV2d subtype is also increasingly associated with PCV disease. The aim of the study was to evaluate the protective efficacy of VLP based on the PCV2b and 2d subtypes against the mixed challenge of two hypotype PCV2 in mice. Thirty-six female SPV Kunming mice were immunized twice with PCV2b and 2d VLPs, then challenged with PCV2b and PCV2d, to assess the immunogenicity and effectiveness of the VLPs. Vaccination of the mice with PCV2b and 2d VLPs elicited a robust antibody response specific for the PCV2. The virus load detected in the 2b and 2d spleen vaccine group was the lowest compared to other groups. Furthermore, there was no pathological damage in the HE stained sections of the 2b and 2d spleen vaccine, and no virus was detected in the immunohistochemical sections. Our data suggest that the mixed PCV2b and 2d VLP vaccine could protect mice from challenge with the mixed infection of PCV2b and PCV2d.
Przejdź do artykułu

Bibliografia


Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S, Nabel GJ (2010) A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med 16: 334-338.
Firth C, Charleston MA, Duffy S, Shapiro B, Holmes EC (2009) Insights into the evolutionary history of an emerging livestock pathogen: porcine circovirus 2. J Virol 83: 12813-12821.
Forstova J, Krauzewicz N, Wallace S, Street A J, Dilworth S M, Beard S, Griffin B E (1993) Cooperation of structural proteins during late events in the life cycle of polyomavirus. J Virol 67: 1405-1413.
Fraile L, Sibila M, Nofrarias M, Lopez-Jimenez R, Huerta E, Llorens A, Lopez-Soria S, Perez D, Segales J (2012) Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. Vet Microbiol 161: 229-234.
Ge X, Wang F, Guo X, Yang H (2012) Porcine circovirus type 2 and its associated diseases in China. Virus Res 164: 100-106.
Guo L, Fu Y, Wang Y, Lu Y, Wei Y, Tang Q, Fan P, Liu J, Zhang L, Zhang F, Huang L, Liu D, Li S, Wu H, Liu C (2012) A porcine circovirus type 2 (PCV2) mutant with 234 amino acids in capsid protein showed more virulence in vivo, compared with classical PCV2a/b strain. PLoS One 7: e41463.
Guo LJ, Lu YH, Wei YW, Huang LP, Liu CM (2010) Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J 7: 273.
Hemann M, Beach NM, Meng XJ, Halbur PG, Opriessnig T (2012) Vaccination with inactivated or live-attenuated chimeric PCV1-2 results in decreased viremia in challenge-exposed pigs and may reduce transmission of PCV2. Vet Microbiol 158: 180-186.
Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14: 207.
Jourdan N, Godeke G J, Penaud M, Mottola G, Sorrentino A, Rottier P J, Bonatti S (2006) Assembly of HCV E1 and E2 glycoproteins into coronavirus VLPs. Arch Virol 151: 2085-2094.
Kixmoller M, Ritzmann M, Eddicks M, Saalmuller A, Elbers K, Fachinger V (2008) Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 26: 3443-3451.
Kwon T, Lee DU, Yoo SJ, Je SH, Shin JY, Lyoo YS (2017) Genotypic diversity of porcine circovirus type 2 (PCV2) and genotype shift to PCV2d in Korean pig population. Virus Res 228: 24-29.
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF (2017) Major findings and recent advances in virus- -like particle (VLP)-based vac-cines. Semin Immunol 34: 123-132.
Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS (2000) Open reading frame 2 of porcine circo- virus type 2 encodes a major capsid protein. J Gen Virol 81: 2281-2287.
Opriessnig T, Shen HG, Pal N, Ramamoorthy S, Huang YW, Lager KM, Beach NM, Halbur PG, Meng XJ (2011) A live-attenuated chimeric porcine circovirus type 2 (PCV2) vaccine is transmitted to contact pigs but is not upregulated by concurrent infection with porcine parvovirus (PPV) and porcine reproductive and respira- tory syndrome virus (PRRSV) and is efficacious in a PCV2b-PRRSV-PPV challenge model. Clin Vaccine Immunol 18: 1261-1268.
Palkova Z, Adamec T, Liebl D, Stokrova J, Forstova J (2000) Production of polyomavirus structural protein VP1 in yeast cells and its interac-tion with cell structures. FEBS Lett 478: 281-289.
Ramqvist T, Andreasson K, Dalianis T (2007) Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther 7: 997-1007.
Salunke DM, Caspar DL, Garcea RL (1986) Self-assembly of purified polyomavirus capsid protein VP1. Cell 46: 895-904.
Segales J (2015) Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev Vaccines 14: 473-487.
Segales J, Calsamiglia M, Olvera A, Sibila M, Badiella L, Domingo M (2005) Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Vet Microbiol 111: 223-229.
Segales J, Martinez-Guino L, Cortey M, Navarro N, Huerta E, Sibila M, Pujols J, Kekarainen T (2009) Retrospective study on swine Torque teno virus genogroups 1 and 2 infection from 1985 to 2005 in Spain. Vet Microbiol 134(3-4): 199-207.
Stewart M, Bhatia Y, Athmaran TN, Noad R, Gastaldi C, Dubois E, Russo P, Thiery R, Sailleau C, Breard E, Zientara S, Roy P (2010) Vali-dation of a novel approach for the rapid production of immunogenic virus-like particles for bluetongue virus. Vaccine 28: 3047-3054.
Szecsi J, Boson B, Johnsson P, Dupeyrot-Lacas P, Matrosovich M, Klenk HD, Klatzmann D, Volchkov V, Cosset FL (2006) Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol J 3: 70.
Wang F, Guo X, Ge X, Wang Z, Chen Y, Cha Z, Yang H (2009) Genetic variation analysis of Chinese strains of porcine circovirus type 2. Virus Res 145: 151-156.
Xiao CT, Halbur PG, Opriessnig T (2012) Complete genome sequence of a novel porcine circovirus type 2b variant present in cases of vac-cine failures in the United States. J Virol 86: 12469.
Xiao CT, Halbur PG, Opriessnig T (2015) Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J Gen Virol 96: 1830-1841.
Xiao CT, Harmon KM, Halbur PG, Opriessnig T (2016) PCV2d-2 is the predominant type of PCV2 DNA in pig samples collected in the U.S. during 2014-2016. Vet Microbiol 197: 72-77.
Yang S, Yin S, Shang Y, Liu B, Yuan L, Zafar Khan MU, Liu X, Cai J (2018) Phylogenetic and genetic variation analyses of porcine circovirus type 2 isolated from China. Transbound Emerg Dis 65: e383-e392.
Yuan X, Lin H, Li B, He K, Fan H (2017) Efficacy and immunogenicity of recombinant swinepox virus expressing the truncated S protein of a novel isolate of porcine epidemic diarrhea virus. Arch Virol 162: 3779-3789.
Zhang Y, Wang Z, Zhan Y, Gong Q, Yu W, Deng Z, Wang A, Yang Y, Wang N (2016) Generation of E. coli-derived virus-like particles of porcine circovirus type 2 and their use in an indirect IgG enzyme-linked immunosorbent assay. Arch Virol 161: 1485-1491.
Przejdź do artykułu

Autorzy i Afiliacje

X.M. Yuan
1
Q.C. Yuan
1
S.M. Feng
1
Z.B. Deng
1

  1. Laboratory of Animal Disease Prevention and Control and Animal model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda road, Furong District, Changsha, 410128, People’s Republic of China

Abstrakt

Dendritic cells (DCs) due to their ability to present antigens are essential during the immune response to infections. The aim of the study was to evaluate the influence of bovine leukaemia virus (BLV) infection on DC properties. Cytokine profiles of myeloid, plasmacytoid and mono- cyte derived DCs from BLV infected cattle were analysed. Concentrations of IL-6, IL-10, IL-12, IFN-γ, and TNF-α in DC cultures were measured by flow cytometry. Obtained results indicated activation of pDCs population, where a significant increase in production of the IFN-γ was shown. Meanwhile, a decrease in production of IFN-γ and increase in production of IL-10 were shown in mDCs; the main population responsible for antigens presentation. This may indicate a contribu- tory role of the population during the process of persistent infection. In MoDCs population a significant elevation in secretion of proinflammatory cytokines – IL-6 and TNF-α was noted.

Przejdź do artykułu

Autorzy i Afiliacje

E. Iwan
M. Szczotka
J. Kocki
A. Pluta
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Porcine parvovirus (PPV) is a major causative agent in reproductive pig disease. The swine industry faces a significant economic and epizootic threat; thus, finding a reliable, quick, and practical way to detect it is essential. In this investigation, recombinant PPV VP2 protein was expressed in the Escherichia coli ( E. coli) expression systems. As shown by electron microscopy (TEM), Western blot, and hemagglutination (HA) assays, the recombinant VP2 protein was successfully assembled into virus-like particles (VLPs) after being expressed and purified. These VLPs had a structure that was similar to that of real PPV viruses and also exhibited HA activity. These VLPs induced high levels of PPV-specific antibody titers in mice after immunization, indicating that the VLPs may be beneficial as potential candidate antigens. VLPs were used as the coating antigens for the VLP ELISA, and the PPV VLPs-based ELISA displayed a high sensitivity (99%), specificity (93.0%) and agreement rate (98.3%) compared to HI assay, and the agreement rate of this ELISA was 97.5% compared to a commercial ELISA kit. Within a plate, the coefficient of variation (CV) was 10%, and between ELISA plates, the CV was 15%. According to a cross-reactivity assay, the technique was PPV-specific in contrast to other viral illness sera. The PPV VLP indirect-ELISA test for PPV detection in pigs with an inactivated vaccine showed that the PPV-positive rate varied among different sample sources from 88.2 to 89.6%. Our results indicate that this ELISA technique was quick, accurate, and repeatable and may be used for extensive serological research on PPV antibodies in pigs.
Przejdź do artykułu

Bibliografia

1. Allan GM, Kennedy S, McNeilly F, Foster JC, Ellis JA, Krakowka SJ, Meehan BM, Adair BM (1999) Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 121(1): 1-11.
2. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B (2005) Cloning of a human parvovirus by molecu-lar screening of respiratory tract samples. Proc Natl Acad Sci U S A 102(36): 12891-12896.
3. Cartwright SF, Lucas M, Huck RA (1971) A small haemaggultinating porcine DNA virus. II. Biological and serological studies. J Comp Pathol 81(1): 145-155.
4. Choi C, Chae C (2000) Distribution of porcine parvovirus in porcine circovirus 2-infected pigs with postweaning multisystemic wasting syndrome as shown by in-situ hybridization. J Comp Pathol 123(4): 302-305.
5. Crowther JR (2000) The ELISA guidebook. Methods Mol Biol 149: III-IV, 1-413.
6. Ellis JA, Bratanich A, Clark EG, Allan G, Meehan B, Haines DM, Harding J, West KH, Krakowka S, Konoby C, Hassard L, Martin K, McNeilly F (2000) Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystem-ic wasting syndrome. J Vet Diagn Invest 12(1): 21-27.
7. Feng H, Hu GQ, Wang HL, Liang M, Liang H, Guo H, Zhao P, Yang YJ, Zheng XX, Zhang ZF, Zhao YK, Gao YW, Yang ST, Xia XZ (2014) Canine parvovirus VP2 protein expressed in silkworm pupae self-assembles into virus-like particles with high immunogenic-ity. PLoS One 9(1): e79575.
8. Hohdatsu T, Baba K, Ide S, Tsuchimoto M, Nagano H, Yamagami T, Yamagishi H, Fujisaki Y, Matumoto M (1988) Detection of anti-bodies against porcine parvovirus in swine sera by enzyme-linked immunosorbent assay. Vet Microbiol 17(1): 11-19.
9. Hua T, Zhang D, Tang B, Chang C, Liu G, Zhang X (2020) The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet Microbiol 248: 108795.
10. Jenkins CE (1992) An enzyme-linked immunosorbent assay for detection of porcine parvovirus in fetal tissues. J Virol Methods 39(1-2): 179-184.
11. Ji P, Liu Y, Chen Y, Wang A, Jiang D, Zhao B, Wang J, Chai S, Zhou E, Zhang G (2017) Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs. Antiviral Res 139: 146-152.
12. Joo HS, Donaldson-Wood CR, Johnson RH (1976) A standardised haemagglutination inhibition test for porcine parvovirus antibody. Aust Vet J 52(9): 422-424.
13. Jozwik A, Manteufel J, Selbitz HJ, Truyen U (2009) Vaccination against porcine parvovirus protects against disease, but does not pre-vent infection and virus shedding after challenge infection with a heterologous virus strain. J Gen Virol 90(Pt 10): 2437-2441.
14. Kennedy S, Moffett D, McNeilly F, Meehan B, Ellis J, Krakowka S, Allan GM (2000) Reproduction of lesions of postweaning multi-systemic wasting syndrome by infection of conventional pigs with porcine circovirus type 2 alone or in combination with porcine parvo-virus. J Comp Pathol 122(1): 9-24.
15. Kong M, Peng Y, Cui Y, Chang T, Wang X, Liu Z, Liu Y, Zhu Y, Luo Y, Tang Q, Feng L, Cui S (2014) Development and evaluation of the rVP-ELISA for detection of antibodies against porcine parvovirus. J Virol Methods 206: 115-118.
16. Marcekova Z, Psikal I, Kosinova E, Benada O, Sebo P, Bumba L (2009) Heterologous expression of full-length capsid protein of por-cine circovirus 2 in Escherichia coli and its potential use for detection of antibodies. J Virol Methods 162(1-2): 133-141.
17. Mengeling WL, Cutlip RC (1976) Reproductive disease experimentally induced by exposing pregnant gilts to porcine parvovirus. Am J Vet Res 37(12): 1393-1400.
18. Mengeling WL, Lager KM, Vorwald AC (2000) The effect of porcine parvovirus and porcine reproductive and respiratory syndrome vi-rus on porcine reproductive performance. Anim Reprod Sci 60-61: 199-210.
19. Meszaros I, Olasz F, Csagola A, Tijssen P, Zadori Z (2017) Biology of porcine parvovirus (Ungulate parvovirus 1). Viruses 9(12): 393.
20. Oravainen J, Hakala M, Rautiainen E, Veijalainen P, Heinonen M, Tast A, Virolainen JV, Peltoniemi OA (2006) Parvovirus antibodies in vaccinated gilts in field conditions-results with HI and ELISA tests. Reprod Domest Anim 41(1): 91-93.
21. Oravainen J, Heinonen M, Tast A, Virolainen J, Peltoniemi O (2005) High porcine parvovirus antibodies in sow herds: prevalence and associated factors. Reprod Domest Anim 40(1): 57-61.
22. Qing L, Lv J, Li H, Tan Y, Hao H, Chen Z, Zhao J, Chen H (2006) The recombinant nonstructural polyprotein NS1 of porcine parvovi-rus (PPV) as diagnostic antigen in ELISA to differentiate infected from vaccinated pigs. Vet Res Commun 30(2): 175-190.
23. Roic B, Cajavec S, Toncic J, Madic J, Lipej Z, Jemersic L, Lojkic M, Mihaljevic Z, Cac Z, Sostaric B (2005) Prevalence of antibodies to porcine parvovirus in wild boars (Sus scrofa) in Croatia. J Wildl Dis 41(4): 796-799.
24. Shang SB, Li YF, Guo JQ, Wang ZT, Chen QX, Shen HG, Zhou JY (2008) Development and validation of a recombinant capsid pro-tein-based ELISA for detection of antibody to porcine circovirus type 2. Res Vet Sci 84(1): 150-157.
25. Streck AF, Canal CW, Truyen U (2015) Molecular epidemiology and evolution of porcine parvoviruses. Infect Genet Evol 36: 300-306.
26. Westenbrink F, Veldhuis MA, Brinkhof JM (1989) An enzyme-linked immunosorbent assay for detection of antibodies to porcine par-vovirus. J Virol Methods 23(2): 169-178.
27. Xu Y, Li Y (2007) Induction of immune responses in mice after intragastric administration of Lactobacillus casei producing porcine par-vovirus VP2 protein. Appl Environ Microbiol 73(21): 7041-7047.
28. Zeeuw EJL, Leinecker N, Herwig V, Selbitz HJ, Truyen U (2007) Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J Gen Virol 88(Pt 2): 420-427.
29. Zheng HH, Wang LQ, Fu PF, Zheng LL, Chen HY, Liu F (2020) Characterization of a recombinant pseudorabies virus expressing por-cine parvovirus VP2 protein and porcine IL-6. Virol J 17(1): 19.
Przejdź do artykułu

Autorzy i Afiliacje

Y. Li
1
Q. Wang
2
W. Yue
1
X. Li
1
Y. Chen
1
Y. Gao
1

  1. Beijing Biomedicine Technology Center of JoFunHwa Biotechnology (Nanjing Co. Ltd.); No.25 Xiangrui Street Daxing District, Beijing 102600 China
  2. State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China

Abstrakt

Baculoviruses are widely used as bioagents for controlling insect populations. Although they are successfully replicated in cell cultures, still the production in laboratory reared larvae is the cheapest way for large-scale production of viral agents. Commercial products are prepared as liquid suspensions and as dried powders. We investigated the stability of two formulations of S. exigua nuclear polyhedrosis virus (SeMNPV) stored at +4°C for over twenty years as a powder (prepared by aceton precipitation) and in a suspension. The biological activity and biochemical properties of these formulations were examinated. Viral biological activity of the suspension was 1 OOO times better than the activity of powdered virus. Aceton precipitation method caused the significant loss of virus activity. Electrophoretic analysis of proteins showed degradation of polyhedrin peptide. There was also partial DNA degradation. These changes may lead to decreased bioactivity of powdered SeMNPV virus.
Przejdź do artykułu

Autorzy i Afiliacje

Agata Jakubowska
Jadwiga Ziemnicka

Abstrakt

Investigations on the occurrence of Barley stripe mosaic virus (BSMV, Hordeivirus) in Poland were performed by testing seeds of 22 barley cultivars. BSMV was detected in seeds of winter barley cv. Tiffany and of spring barley cvs. Scarlett and Stratu s. The virus presence was revealed by ELISA test and then confirm ed by electron microscopy. Preliminary data on the rate of seed transmission of BSMV in cvs. Scarlett and Stratus are presented.
Przejdź do artykułu

Autorzy i Afiliacje

Małgorzata Jeżewska

Abstrakt

The quantity and quality of spears from asparagus plants infected with Asparagus virus 2 was lower in comparison to healthy plants. The total number of spears was decreased in 16% and mass of spears in 24.7%. Asparagus virus 2 reduced the number of marketable spears in 31.9%, and increased the number of unmarketable spears in 20.2%. The green mass of stem brushes of infected plants was reduced in 19.4% in field conditions and in 20% in seedlings growing in a greenhouse.
Przejdź do artykułu

Autorzy i Afiliacje

Zofia Fiedorow
Agnieszka Szelka
Anna Gąsiorowska

Abstrakt

Some aspects of the epidemiology of Maize streak virus (MSV) genus Mastrevirus concerning virus incidence, vector populations and some environmental factors were investigated in field experiments conducted over a three year period (2000–2002) at Samaru, northern Nigeria. Significant positive correlations were obtained between number of leafhoppers caught and MSV incidence and age of plant at infection and also with temperature. Also significant negative correlations were obtained between MSV incidence and mean relative humidity; between number of leafhoppers and age of plants and with mean rainfall. Leafhopper vectors caught included Cicadulina arachidis China, C. mbila Naude, C. triangula Ruppel and C. similis China, in order of abundance. Leafhopper incidence was highest in the months of September and October.

Przejdź do artykułu

Autorzy i Afiliacje

Matthew D. Alegbejo
Olalekan O. Banwo

Abstrakt

Wheat dwarf virus (WDV) has been one of the most common viruses on cereal crops in Poland in the last years. This single stranded DNA virus is transmitted by the leafhopper spec, Psammotettix alienus (Dahlb.) in a persistent manner. It induces yellowing and streaking of leaves, dwarfing or even death of infected plants. The presence of barley- and wheat-specific forms of WDV (WDV-B and WDV-W) and their vector were previously reported in the country, however the literature data did not include any information on the infectivity of the vector in Poland. A duplex polymerase chain reaction (PCR) procedure was developed and optimized for simultaneous detection and differentiation of both forms in the vector. Two sets of primers amplify 734 bp and 483 bp specific fragments for WDV-W and WDV-B, respectively. The results were verified by a sequencing method. The studies were carried out on insect samples collected in autumn from four different locations in Greater Poland. The results confirmed the presence of WDV-W in the tested samples. They also suggested the concomitant of both forms of the virus in the vector. Additional studies to determine virus-vector relationships should be undertaken.
Przejdź do artykułu

Autorzy i Afiliacje

Katarzyna Trzmiel
Tomasz Klejdysz

Abstrakt

The species structure of plant parasitic nematode populations from the rhizosphere of winter wheat grown with crop rotation or in 48-year-old monoculture was analyzed and compared. Dominating species: Bitylenchus dubius, Merlinius microdorus, Paratylenchus neglectus and Heterodera avenae, in monoculture plots, had higher populations than in crop rotation plots. Heterodera avenae eggs and larvae were infected by pathogenic fungi in 68% of the monoculture crops (vs. 65–66% of the cysts from crop rotation), 12–20% of Paratylenchus sp. specimens were colonized by bacteria, mainly by Bacillus penetrans. This study shows nematological changes occurring in long-term wheat breeding, thus providing additional information necessary to fight dangerous viral vectors of the examined cereal.
Przejdź do artykułu

Autorzy i Afiliacje

Kinga Katarzyna Zatoń
Andrzej Tomasz Skwiercz
Ewa Adamiak
Patrycja Szelągowska
Grzegorz Hury

Abstrakt

Sixteen tomato cultivars obtained from the collections of the Institute for Agricultural Research (IAR) Samaru, Nigeria were screened for resistance to local strains of Tomato leaf curl virus at Samaru, Northern Guinea Savanna, over a two year period, 1998/1999 and 1999/2000 dry seasons. Five cultivars were moderately resistant, nine were moderately susceptible, while two were highly susceptible. Most of the cultivars were high yielding (46–55 t/ha) and had good fruit size (4.8–6.0 cm x 2.8–4.1 cm). They will be further evaluated on-farm at different locations after which they will be introduced to farmers to replace the low yielding and TLCV-susceptible cultivars currently in use in most parts of the Savanna ecological zones of the country.

Przejdź do artykułu

Autorzy i Afiliacje

Mathew Alegbejo
Olalekan Banwo

Abstrakt

Canine distemper virus (CDV) infects wild and domestic Canidae worldwide. The hemag- glutinin (H) gene has the highest genetic variation in the genome of this virus. Thus, the H gene is commonly used for lineage identification and genetic analyses. In order to study the genetic characteristics and pathogenicity of CDV strains prevalent in China, 132 samples were collected from domestic dogs with suspected CDV infection, 58 samples were confirmed to be positive, and the H gene was successfully amplified from 15 samples. The epidemic strain was identified as type Asia-1 and the novel mutations, A51T, V58I, R179K and D262N, were detected in this strain. Isolated strains, BJ16B53, BJ16B14, and BJ17B8, were used for an animal infection experiment in raccoon dogs. BJ16B53 and BJ16B14 were found to cause clinical symptoms, death, and exten- sive lesions in various organs. These results are expected to facilitate the development of effective strategies to monitor and control CDV infection in China.

Przejdź do artykułu

Autorzy i Afiliacje

M. Chen
T. Xin
S. Hou
W. Lin
W. Song
H. Zhu
K. Huang
H. Jia

Abstrakt

In order to compare the pathogenicity of different Tembusu virus (TMUV) strains from geese, ducks and chickens, 56 5-day-old Cherry Valley ducklings which were divided into 7 groups and infected intramuscularly with 7´105 PFU/ml per duck of six challenge virus stocks. The clinical signs, weight gain, mortality, macroscopic and microscopic lesions, virus loads in sera of 1, 3, 5, 7, 11 and 14 dpi and serum antibody titers were examined. The results showed that these viruses could make the young ducks sick, but the clinical signs differed with the different species-original strains. All the experimental groups lose markedly in weight gain compared to the control, but there were no obvious distinctions in weight gains, as well as macroscopic and microscopic lesions of dead ducks between the infected groups. However, the groups of waterfowl-derived strains (from geese and ducks) showed more serious clinical signs and higher relative expressions of virus loads in sera than those from chicken-derived. The mortality of waterfowl groups was 37.5%, and the greatest mortality of chicken groups was 12.5%. The serum antibodies of the geese-species group JS804 appeared earlier and were higher in the titers than others. Taken toghter, the pathogenicity of waterfowl-derived TMUV was more serious than chicken-derived TMUV and JS804 could be chosen as one TMUV vaccine strain to protect from the infection.
Przejdź do artykułu

Autorzy i Afiliacje

Y. Li
Q. Liu
T. Xu
X. Huang
X. Liu
K. Han
Y. Liu
J. Yang
D. Zhao
K. Bi
W. Sun

Abstrakt

Snap bean production in Kenya is constrained by many pests and diseases, including the bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV). The occurrence of the dominant I gene in many snap bean cultivars has provided a measure of control over BCMV but the BCMNV overcomes this resistance. The current study aimed to screen a collection of locally grown snap bean commercial cultivars, landraces, breeding lines, and dry bean cultivars for the expression of resistance against BCMNV under both field and greenhouse conditions. The results showed that the evaluated snap bean cultivars were susceptible to BCMNV. The reactions of the genotypes to BCMNV varied from top, vein and local necrosis, mosaics, mottling, deformed leaves to stunted growth. Positive infection was confirmed through enzyme linked immunosorbent assays. The dry bean cultivars, which were used as resistant checks can be explored as sources of resistance to BCMNV in future breeding programs. Molecular analysis showed that the SW13 and elF4E markers were reliable in confirming the presence or absence of the dominant I gene and the recessive bc-3 gene, respectively. These molecular markers are useful in markerassisted breeding programs.
Przejdź do artykułu

Autorzy i Afiliacje

Grace Wambui Watare
1
ORCID: ORCID
Bernard Mukiri Gichimu
1
ORCID: ORCID
Edith Esther Arunga
1
ORCID: ORCID

  1. Water and Agricultural Resource Management, University of Embu, Embu, Kenya
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Classical swine fever (CSF) and porcine reproductive and respiratory syndrome (PRRS) are responsible for major economic losses and represent a threat to the swine industry worldwide. Routine surveillance serology for CSF and PRRS viruses is critical to maintaining the health status of sow farms in Hunan Province, which is one of the top pig production provinces in China. The aim of our study was to investigate the serological statistics of CSF virus (CSFV) and PRRS virus (PRRSV) in Hunan Province. The cohort serum samples were collected from vaccinated and unvaccinated pigs. Our findings showed that the average rates of CSFV and PRRSV antibody seropositivity were 82.2% (95% CI: 80.1-84.3) and 84.8% (95% CI: 82.5-87.1), respectively, in the immunized group and that these rates were higher than those in the unvaccinated group (58.6% for CSFV and 47.8% for PRRSV). Additionally, the level of CSFV antibody in piglet serum declined gradually with age, whereas PRRSV-specific antibody level increased initially (1 to 2 weeks old) and then declined with age (2 to 4 weeks old). In summary, we investigated the difference in CSFV/PRRSV antibody levels among piglets at various weeks old (1 to 4 weeks) to further establish the duration of maternal immunity in piglets. In addition, routine monitoring of CSFV/PRRSV antibodies in immunized pigs was carried out to evaluate the efficacy of vaccination.
Przejdź do artykułu

Bibliografia


Brown VR, Bevins SN (2018) A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front Vet Sci 5: 31.
Chae C (2021) Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 9: 185.
Deka D, Barman NN, Deka N, Batth BK, Singh G, Singh S, Agrawal RK, Mukhopadhyay CS, Ramneek (2021) Sero-epidemiology of por-cine parvovirus, circovirus, and classical swine fever virus infections in India. Trop Anim Health Prod 53: 180.
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G (2017) Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 45: 85-92.
Gao JC, Xiong JY, Ye C, Chang XB, Guo JC, Jiang CG, Zhang GH, Tian ZJ, Cai XH, Tong GZ, An TQ (2017) Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996-2016. Vet Microbiol 208: 164-172.
Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C (2019) Virulence evalua-tion of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 232: 114-120.
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X (2018) Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 119: 248-254.
Guo Z, Chen XX, Li R, Qiao S, Zhang G (2018) The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 15: 2.
Han M, Yoo D (2014) Engineering the PRRS virus genome: updates and perspectives. Vet Microbiol 174: 279-295.
Luo Y, Li S, Sun Y, Qiu HJ (2014) Classical swine fever in China: a minireview. Vet Microbiol 172: 1-6.
Madapong A, Saeng-Chuto K, Chaikhumwang P, Tantituvanont A, Saardrak K, Pedrazuela Sanz R, Miranda Alvarez J, Nilubol D (2020) Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome vi-rus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet Microbiol 244: 108655.
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L (2019) Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 6: 38.
Stoian AM, Rowland RR (2019) Challenges for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions with CD163 and Targets of Virus Neutralization. Vet Sci 6: 9.
Suradhat S, Damrongwatanapokin S, Thanawongnuwech R (2007) Factors critical for successful vaccination against classical swine fever in endemic areas. Vet Microbiol 119: 1-9.
VanderWaal K, Deen J (2018) Global trends in infectious diseases of swine. Proc Natl Acad Sci USA 115: 11495-11500.
Yin B, Qi S, Sha W, Qin H, Liu L, Yun J, Zhu J, Li G, Sun D (2021) Molecular Characterization of the Nsp2 and ORF5 (ORF5a) Genes of PRRSV Strains in Nine Provinces of China During 2016-2018. Front Vet Sci 8: 605832.
Zhang H, Leng C, Tian Z, Liu C, Chen J, Bai Y, Li Z, Xiang L, Zhai H, Wang Q, Peng J, An T, Kan Y, Yao L, Yang X, Cai X, Tong G (2018) Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Vet Res 14: 204.
Zhou B (2019) Classical Swine Fever in China-An Update Minireview. Front Vet Sci 6: 187.
Zhou L, Ge X, Yang H (2021) Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A “Leaky” Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 9: 362.
Przejdź do artykułu

Autorzy i Afiliacje

H. Yu
1
L. Zhang
1
Y. Cai
1
Z. Hao
2
Z. Luo
3
T. Peng
1
L. Liu
N. Wang
1
G. Wang
1
Z. Deng
1
Y. Zhan
1

  1. Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
  2. Yongzhou Animal Husbandry and Aquatic Affairs Center, Yongzhou, Hunan 425000, China
  3. Dingcheng Animal Husbandry and Aquatic Affairs Center, Changde, Hunan 415100, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Banana is the major fruit crop produced in Ethiopia. Since Cucumber mosaic virus (CMV) is one of the most devastating plant viruses infecting banana, the present study was undertaken to survey and identify CMV strains infecting banana plants in Ethiopia. Dot immune-binding assay (DIBA) and reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of CMV in all of the symptomatic samples tested. The results of sequence and phylogenetic analysis revealed that the isolate under study was a CMV isolate from the IB subgroup. Multiple sequence alignment revealed a three nucleotide sequence variation that could be used to distinguish CMV subgroups. Selection pressure analysis showed the CMV-RNA1 region undergoing positive selection pressure. Tajima`s test of neutrality revealed a positive value of 0.86468 indicating CMV population contraction. To the best of our knowledge, this is the first report and molecular characterization of CMV IB subgroup isolate infecting banana plants in Ethiopia.
Przejdź do artykułu

Bibliografia


Basavaraj S., Rangaswamy K.T., Bhagyashree M. 2017. Molecular characterization of CMV infecting banana from Karnataka based on complete coat protein gene sequence. International Journal of Current Microbiology and Applied Sciences 6 (11): 3758–3763. DOI: https://doi.org/10.20546/ ijcmas.2017.611.440
Bujarski J.J. 2021. Bromoviruses (Bromoviridae). p. 260–267. “Encyclopedia of Virology” 4th ed. (D.H. Bamford, M. Zuckerman, eds.). Academic Press, Oxford. DOI: https://doi.org/10.1016/B978-0-12-809633-8.21563-X
Canto T., Palukaitis P. 2001. A Cucumber mosaic virus (CMV) RNA 1 transgene mediates suppression of the homologous viral RNA 1 constitutively and prevents CMV entry into the phloem. Journal of Virology 75 (19): 9114–9120. DOI: https://doi.org/10.1128/JVI.75.19.9114-9120.2001
Chou C.N., Chen C.E., Wu M.L., Su H.J., Yeh H.H. 2009. Biological and molecular characterization of Taiwanese isolates of Cucumber mosaic virus associated with banana mosaic disease. Journal of Phytopathology 157 (2): 85–93. DOI: https://doi.org/10.1111/j.1439-0434.2008.01455.x
Domingo E., Holland J.J. 1994. Mutation rates and rapid evolution of RNA viruses. p. 161–184. In: “The Evolutionary Biology of Viruses” (S.S. Morse, ed.). Raven Press, New York.
Doolittle S.P. 1916. A new infectious mosaic disease of cucumber. Phytopathology 6: 145–147.
Garcia-Arenal F., Palukaitis P. 2008. Cucumber mosaic virus. Desk encyclopedia of plant and fungal virology. p. 171–176. In: “Desk Encyclopedia of Plant and Fungal Virology” (B.W.J. Mahy, M.H.V. Van Regenmortel, eds.). Academic Press-Elsevier, Oxford, United Kingdom.
Garcia-Arenal F., Fraile A. 2011. Population dynamics and genetics of plant infection by viruses. p. 263–281. In: ”Recent Advances in Plant Virology” (C. Caranta, M.A. Aranda, M. Tepfer, J.J. Lopez-Moye, eds.). Caister Academic Press, Norfolk, United Kingdom.
Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17 (12): 4713–4730. DOI: https://doi.org/10.1093/nar/17.12.4713
Hampton R.O., Francki R.I.B. 1992. RNA-1 dependent seed transmissibility of cucumber mosaic virus in Phaseolus vulgaris. Phytopathology 82 (2): 127–130.
Kang W.H., Seo J.K., Chung B.N., Kim K.H., Kang B.C. 2012. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 7 (8): e43136. DOI: https://doi.org/10.1371/journal.pone.0043136
Kebede Y., Majumder S. 2020. Molecular detection and first report of Cucumber mosaic virus infecting ‘Cavendish’ banana plants in Ethiopia. Journal of Plant Disease and Protection 127: 417–420. DOI: https://doi.org/10.1007/s41348-020-00315-z
Khan S., Jan A.T., Aquil B., Mohd Q., Haq R. 2011. Coat protein gene based on characterization of cucumber mosaic virus isolates infecting banana in India. Journal of Phytology 3: 94–101.
Kim M.K., Seo J.K., Kwak H.R., Kim J.S., Kim K.H., Cha B.J., Choi H.S. 2014. Molecular genetic analysis of Cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea. Phytopathology 104 (9): 993–1000. DOI: https://doi.org/10.1094/PHYTO-10-13-0275-R
Kumar A., Hanson J., Jones C.S., Assefa Y., Mulatu F. 2020. Screening and characterization of virus causing yellow leaf disease of Tephrosia in Ethiopia. Australasian Plant Pathology 49: 447–450. DOI: https://doi.org/10.1007/s13313-020-00717-5
Kumari R., Bhardwaj P., Singh L., Zaidi A.A., Hallan V. 2013. Biological and molecular characterization of Cucumber mosaic virus subgroup II isolate causing severe mosaic in cucumber. Indian Journal of Virology 24 (1): 27–34. DOI: 10.1007/s13337-012-0125-9
Lakshman D.K., Gonsalves D. 1985. Genetic analyses of two large-lesion isolates of Cucumber mosaic virus. Phytopathology 75 (7): 758–762.
Leach J.E., Vera Cruz C.M., Bai J., Leung H. 2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology 39 (1): 187–224. DOI: https://doi.org/10.1146/annurev.phyto.39.1.187
Liu Y.Y., Yu S.L., Lan Y.F., Zhang C.L., Hou S.S., Li X.D., Zhu X.P. 2009. Molecular variability of five Cucumber mosaic virus isolates from China. Acta Virologica 53 (2): 89–97. DOI: 10.4149/av_2009_02_89
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evollution 1 (1). Available on: https:// doi.org/10.1093/ve/vev003 [Accessed: 10 June 2020]
Nouri S., Arevalo R., Falk B.W., Groves R.L. 2014. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One 9 (5): e96582. DOI: https://doi.org/10.1371/journal.pone.0096582
Palukaitis P., Garcia-Arenal F. 2003. Cucumoviruses. Advances in Virus Research 62: 241–323. DOI: 10.1016/s0065-3527-(03)62005-1
Palukaitis P., Roossinck M.J., Dietzgen R.G., Francki R.I.B. 1992. Cucumber mosaic virus. Advances in Virus Research 41: 281–348. DOI: http://dx.doi.org/10.1016/s0065-3527-(08)60039-1
Prince W.C. 1934. Isolation and study of some yellow strains of Cucumber mosaic virus. Phytopathology 24: 743–761.
Roossinck M.J., Zhang L., Hellwald K.H. 1999. Rearrangements in the 5’ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. Journal of Virology 73 (8): 6752–6758. DOI: https://doi.org/10.1128/jvi.73.8.6752-6758.1999
Roossinck M.J. 1997. Mechanisms of plant virus evolution. Annual Review of Phytopathology 35 (1): 191–209. DOI: https://doi.org/10.1146/annurev.phyto.35.1.191
Roossinck M.J. 2001. Cucumber mosaic virus, a model for RNA virus evolution. Molecular Plant Pathology 2 (2): 59–63. DOI: https://doi.org/10.1046/j.1364-3703.2001.00058.x
Roossinck M.J., Palukaitis P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA 1 of Cucumber mosaic virus. Molecular Plant-Microbe Interactions 3 (1): 188–192. DOI: 10.1094/MPMI-3-188
Rozanov M.N., Koonin E.V., Gorbalenya A.E. 1992. Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’supergroup of positive-strand RNA viruses. Journal of General Virology 73 (8): 2129–2134. DOI: https://doi.org/10.1099/0022-1317-73-8-2129
Rozas J., Ferrer-Mata A., Sanchez-DelBarrio J.C., Guirao- -Rico S., Librado P., Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34 (12): 3299–3302. DOI: https://doi.org/10.1093/molbev/msx248
Rybicki E.P. 2015. A top ten list for economically important plant viruses. Archives of Virology 160 (1): 17–20. DOI: 10.1007/s00705-014-2295-9
Seo J.K., Kwon S.J., Choi H.S., Kim K.H. 2009. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive-and negative-strand RNA synthesis. Virology 383 (2): 248–260. DOI: https://doi.org/10.1016/j.virol.2008.10.033
Simon A.E., Bujarski J.J. 1994. RNA-RNA recombination and evolution in virus-infected plants. Annual Review of Phytopathology 32 (1): 337–362.
Zitter T.A., Murphy J.F. 2009. The plant health instructor: Cucumber mosaic virus. American Phytopathological Society. DOI: 10.1094/PHI-I-2009-0518-01 [Accessed: 25 July 2020]
Przejdź do artykułu

Autorzy i Afiliacje

Yohanis Kebede
1
Shahana Majumder
2
ORCID: ORCID

  1. Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
  2. Department of Botany, Mahatma Gandhi Central University, Bihar, India

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji