Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Sugar beet ( Beta vulgaris L.) has emerged as an alternative to sugarcane. It is mainly utilized for sugar extraction and has significant industrial value with great nutritional impact. Different kinds of biotic and abiotic stresses are considered to be major barriers for sugar beet cultivation. As per the current scenario, every year sugar beet production suffers huge yield losses due to various stresses. The conventional breeding technique is a time-consuming lengthy procedure which can be replaced by a genetic transformation technique to bring new transgenic traits within a short period of time. Sugar beet has proven to be excellent sample material for in vitro culture of haploid plants, protoplast culture, somaclonal variation, and single cell culture, among others. Agrobacterium mediated and PEG-mediated transformations are the most effective genomic transformations in the case of sugar beet. Development of new traits in terms of fungus/virus, pest/nematode tolerance, herbicide and salt tolerance are the most frequently expected traits in the current scenario of sugar beet production. Potential transgenic plants are viable alternatives to traditional expression systems for end product (protein) development with more accuracy. So, transgenic production through genome editing/base editing is presently considered to be one of the best tools for sugar beet tolerant traits development. Food safety and environmental impacts are two major concerns of genetic transformation in sugar beet and need to be appropriately screened for public health acceptability.
Go to article

Authors and Affiliations

Sudeepta Pattanayak
1
ORCID: ORCID
Siddhartha Das
2
ORCID: ORCID
Sumit Kumar
3

  1. Division of Plant Pathology, ICAR – Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
  2. Department of Plant Pathology, Centurion University of Technology and Management, Parlakhemundi, India
  3. Department of Biotechnology, University Institute of Engineering and Technology, Kurukshetra University, Thanesar, India
Download PDF Download RIS Download Bibtex

Abstract

An effective procedure for producing transformed Centaurium erythraea plants from synthetic seeds is described. Explants were encapsulated in 3% sodium alginate with 3% sucrose. Encapsulated hairy roots were cultured on half-strength Murashige and Skoog (1/2 MS) or Woody Plant (WPM) agar-solidified regeneration media supplemented with 6-benzylaminopurine (BAP) or without the cytokinin. The use of WPM with 0.5 mg/L of BAP gave the best shoot formation frequency (86%) and mean number of shoots (15) per root segment. Shoots rooted with 97% frequency on 1/2 MS without growth regulators. Encapsulated shoot buds were cultured on onethird- strength MS agar medium (1/3 MS) supplemented with indole-3-butyric acid (IBA) (0.05 mg/L). The plantlet conversion frequency was 32%. The encapsulated hairy roots and shoot buds were stored for 4, 6 or 14 weeks at 4°C. Synthetic seeds encapsulated with 3% sodium alginate with 3% sucrose stored at 4°C remained viable for 6 weeks but their developmental parameters significantly decreased. Adding nutrient medium and growth regulator to the alginate matrix increased plantlet recovery from both non-stored and stored synthetic seeds: synthetic seeds retained their viability and ability to form plantlets even after 14 weeks of storage. Regenerated transformed plantlets of C. erythraea were acclimatized in the greenhouse.

Go to article

Authors and Affiliations

Ewelina Piątczak
Halina Wysokińska

This page uses 'cookies'. Learn more