Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Open Skies Treaty has been a peace-building instrument between North American and European nations for over two decades. This agreement is based on the possibility for each country-signatory of the Treaty to independently conduct observation flights and obtain aerial imagery data of the territories of other Treaty States-Parties. This imagery data was originally acquired only using traditional photographic film cameras. Together with the rapid development and advancement of digital sensor technologies, the logical step forward was to amend the Treaty provisions to allow for the use of these types of sensors during observation missions. This paper describes this transition process and highlights a number of technical problems which needed to be addressed by experts working within the Open Skies Consultative Commission workgroups.
Go to article

Authors and Affiliations

Agata Orych
Download PDF Download RIS Download Bibtex

Abstract

In this paper a possibility of determining a local velocity of the surface acoustic Rayleigh waves using a transducer, with the rigidly connected emitting and receiving parts, is considered. A problem on spatial resolution of such a transducer for investigation of inhomogeneous specimens is also examined. A high spatial resolution can be obtained due to the transducer displacement by a value less than the distance between the emitting and receiving parts. It is shown that in this case it is not necessary to measure the transducer displacement with a high accuracy for precise determination of the velocity. Such an effect is obtained through measuring the velocity of surface waves in one local region of the specimen with respect to the other. The criterion for optimal spatial resolution selection during spatially inhomogeneous specimens study is also proposed. The proposed criterion use is illustrated on the example of the determination of spatial distribution of the surface acoustic velocity in a steel specimen subjected to inhomogeneous plastic deformation.

Go to article

Authors and Affiliations

Oleh Mokryy
Oleksandr Tsyrulnyk

This page uses 'cookies'. Learn more