Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was to define the frequency prevalence of the incorporation of sphenoid sinuses’ septum / septa in the carotid canal of the adult population.
M a t e r i a l s and M e t h o d s: 296 computed tomography (CT) scans of the patients (147 females, 149 males), who did not present any pathology in the sphenoid sinuses, were evaluated in this retrospective analysis. Spiral CT scanner — Siemens Somatom Sensation 16 — was used to glean the medical images. Standard procedure applied in the option Siemens CARE Dose 4D. No contrast medium was administered. Multiplans reconstruction (MPR) tool was used in order to obtain frontal and sagittal planes from the transverse planes previously received.
R e s u l t s: Bilateral incorporation of the main septum (MS) in the carotid canal was not present in any of the patients, whereas unilateral incorporation was noticed in 21.96% of the patients (17.68% females, 26.17% males). On the right side it occurred in 11.82% of cases (10.88% females, 12.75% males), and on the left side in 10.14% of cases (6.8% females, 13.42% males). Bilateral incorporation of the additional septum (AS) was found in 8.45% of the patients (4.08% females, 12.75% males), whereas unilateral incorporation was noted in 28.37% of the patients. It was seen on the right side in 11.82% of cases (12.93% females, 10.74% males), and on the left side in 16.55% cases (15.65% females, 17.45% males). The most common variant was the incorporation of only one of the septa (either the MS or the AS) in the wall of the carotid canal unilaterally. Such situation took place in 30.07% of the patients (29.25% females, 30.87% males).
Incorporation of two septa on the same side was noticed in 4.39% of cases (4.08% females, 4.7% males), and incorporation of three septa in 0.34% of cases (0.7% males).
C o n c l u s i o n s: The anatomy of the paranasal sinuses is varied to a great extent, hence performing a CT scan is crucial before the scheduled surgery, as it may lessen the unforeseeable surgical complications, that may result from the high prevalence of variants in the sinuses.


Go to article

Bibliography

1. Jaworek-Troć J., Zarzecki M., Bonczar A., Kaythampillai L.N., Rutowicz B., Mazur M., Urbaniak J., Przybycień W., Piątek-Koziej K., Kuniewicz M., Lipski M., Kowalski W., Skrzat J., Loukas M., Walocha J.: Sphenoid bone and its sinus — anatomo-clinical review of the literature including application to FESS. Folia Med Crac. 2019; 59 (2): 45–59. doi: 10.24425/fmc.2019.128453.
2. Jaworek-Troć J., Zarzecki M., Mróz I., Troć P., Chrzan R., Zawiliński J., Walocha J., Urbanik A.: The total number of septa and antra in the sphenoid sinuses — evaluation before the FESS. Folia Med Crac. 2018; 58 (3): 67–81. doi: 10.24425/fmc.2018.125073.
3. Jaworek-Troć J., Iwanaga J., Chrzan R., Zarzecki J.J., Żmuda P., Pękala A., Tomaszewska I.M., Tubbs R.S., Zarzecki M.P.: Anatomical variations of the main septum of the sphenoidal sinus and its importance during transsphenoidal approaches to the sella turcica. Translational Research in Anatomy. 2020 Nov; 21: 100079, https://doi.org/10.1016/j.tria.2020.100079.
4. Abdullah B.J., Arasaratnam A., Kumar G., Gopala K.: The sphenoid sinuses: computed tomographic assessment of septation, relationship to the internal carotid arteries and sidewall thickness in the Malaysian population. J HK Coll Radiol. 2001; 4: 185–188.
5. Eryilmaz A., Ozeri C., Bayiz U., Samim E., Gocmen H., Akmansu H., Safak M.A., Dursun E.: Functional endoscopic sinus surgery (FESS). Turk J Med Res. 1993; 11 (5): 221–223.
6. Haetinger R.G., Navarro J.A.C., Liberti E.A.: Basilar expansion of the human sphenoidal sinu: an integrated anatomical and computerized tomography study. Eur Radiol. 2006; 16: 2092–2099.
7. Kantarci M., Karasen R.M., Alper F., Onbas O., Okur A., Karaman A.: Remarkable anatomic variantions in paranasal sinus region and their clinical importance. European Journal of Radiology. 2004; 50: 296–302.
8. Kazkayasi M., Karadeniz Y., Arikan O.K.: Anatomic variations of the sphenoid sinus on computed tomography. Rhinology. 2005; 43: 109–114.
9. Keast A., Yelavich S., Dawes P., Lyons B.: Anatomical variations of the paranasal sinuses in Polynesian and New Zealand European computerized tomography scans. Otolaryngology-Head and Neck Surgery. 2008; 139: 216–221.
10. Mafee M.F., Chow J.M., Meyers R.: Functional endoscopic sinus surgery: anatomy, CT screening, indications and complications. AJR. 1993; 160: 735–744.
11. Mutlu C., Unlu H.H., Goktan C., Tarhan S., Egrilmez M.: Radiologic anatomy of the sphenoid sinus for intranasal surgery. Rhinology. 2001; 39: 128–132.
12. Perez-Pinas I., Sabate J., Carmona A., Catalina-Herrera C.J., Jimenez-Castellanos J.: Anatomical variations in the human paranasal sinus region studied by CT. J Anat. 2000; 197: 221–227.
13. Sareen D., Agarwail A.K., Kaul J.M., Sethi A.: Study of sphenoid sinus anatomy in relation to endoscopic surgery. Int. J Morphol. 2005; 23 (3): 261–266.
14. Terra E.R., Guedes F.R., Manzi F.R., Boscolo F.N.: Pneumatization of the sphenoid sinus. Dentomaxillofacial Radiology. 2006; 35: 47–49.
15. Becker D.G.: The minimally invasive, endoscopic approach to sinus surgery. Journal of Long-Term Effects of Medical Implants. 2003; 13 (3): 207–221.
16. Bogusławska R.: Badanie zatok przynosowych metoda tomografii komputerowej dla celów chirurgii endoskopowej. Warszawa 1995.
17. Krzeski A., Osuch-Wójcikiewicz E., Szwedowicz P., Tuszyńska A.: Chirurgia endoskopowa w leczeniu guzów jam nosa i zatok przynosowych. Mag ORL. 2004; 3 (3): 79–84.
18. Kapur E., Kapidzic A., Kulenovic A., Sarajlic L., Sahinovic A., Sahinovic M.: Septation oft he sphenoid sinus and ist clinical significance. International Journal of Collaborative Research on Internal Medicine & Public Health. 2012; 4 (10): 1793–1802.
19. Fernandez-Miranda J.C., Prevedello D.M., Madhok R., Morera V., Barges-Coll J., Reineman K., Snyderman C.H., Gardner P., Carrau R., Kassam A.B.: Sphenoid septations and their relationship with internal carotid arteries: anatomical and radiological study. Laryngoscope. 2009; 119: 1893–1896.
20. Sethi D.S., Stanley R.E., Pillay P.K.: Endoscopic anatomy of the sphenoid sinus and sella turcica. The Journal of Laryngology and Otology. 1995; 109: 951–955.
21. Lupascu M., Comsa Gh.I., Zainea V.: Anatomical variations of the sphenoid sinus — a study of 200 cases. ARS Medica Tomitana. 2014; 2 (77): 57–62.
22. Bademci G., Unal B.: Surgical importance of neurovascular relationships of paranasal sinus region. Turkish Neurosurgery. 2005; 15 (2): 93–96.
23. Elwany S., Elsaeid I., Thabet H.: Endoscopic anatomy of the sphenoid sinus. The Journal of Laryngology and Otology. 1999; 113: 122–126.
24. Anusha B., Baharudin A., Philip R., Harvinder S., Mohd Shaffie B., Ramiza R.R.: Anatomical variants of surgically important landmarks in the sphenoid sinus: a radiologic study in Southeast Asian patients. Surg Radiol Anat. 2015; 37: 1182–1190.
25. Hamid O., El Fiky L., Hassan O., Kotb A., El Fiky S.: Anatomic variations of the sphenoid sinus and their impact on trans-sphenoid pituitary surgery. Skull Base. 2008; 18 (1): 9–15.
26. Stokovic N., Trkulja V., Dumic-Cule I., Cukovic-Bagic I., Lauc T., Vukicevic S., Grgurevic L.: Sphenoid sinus types, dimensions and relationship with surrounding structures. Ann Anat. 2016; 203: 69–76.
27. Tan H.M., Chong V.F.H.: CT of the paranasal sinuses: normal anatomy, variations and pathology. CME Radiology. 2001; 2 (3): 120–125.
28. Jaworek-Troć J., Walocha J.A., Chrzan R., Żmuda P., Zarzecki J.J., Pękala A., Depukat P., Kucharska E., Lipski M., Curlej-Wądrzyk A., Zarzecki M.P.: Protrusion of the carotid canal into the sphenoid sinuses: evaluation before endonasal endoscopic sinus surgery. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0086.
29. Jaworek-Troć J., Walocha J.A., Loukas M., Tubbs R.S., Iwanaga J., Zawiliński J., Brzegowy K., Zarzecki J.J., Curlej-Wądrzyk A., Kucharska E., Burdan F., Janda P., Zarzecki M.P.: Extensive pneumatisation of the sphenoid bone — anatomical investigation of the recesses of the sphenoid sinuses and their clinical importance. Folia Morph. 2020 (Ahead of print). doi: 10.5603/FM.a2020.0120.
Go to article

Authors and Affiliations

Joanna Jaworek-Troć
1 2
Michał Zarzecki
1
Dariusz Lusina
1
Tomasz Gładysz
3
Paweł Depukat
1
Agata Mazurek
1
Wojciech Twardokęs
4
Anna Curlej- Wądrzyk
5
Joe Iwanaga
6
Ewa Walocha
7
Robert Chrzan
2
Andrzej Urbanik
2

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Dental Surgery, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  4. Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland
  5. Department of Integrated Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
  6. Department of Neurosurgery, Tulane University, New Orleans, USA
  7. Department of Clinical Nursing, Institute of Nursing and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Screening sinonasal evaluation is routinely performed before allogeneic hematopoietic cell transplantation (allo-HCT), however, data supporting such evaluation is inconsistent.
Objectives: Assessment of the utility of screening sinonasal evaluation with computed tomography (CT).
Methods: A retrospective analysis of acute leukemia patients who underwent allo-HCT, for whom screening sinonasal CT scans were reevaluated, and for whom Lund-Mackay score (LMS) was calculated.
Results: Forty-eight patients, the median age at allo-HCT 38 years (18–58), 52% males, were included. 79% had acute myeloid leukemia (AML), 21% acute lymphoblastic leukemia (ALL). Conditioning inten-sity was myeloablative in 96% of patients, 21% of patients received total body irradiation. 19% of patients had a history of sinusitis before allo-HCT. Screening sinus CT was performed a median of 22 days before allo-HCT. The median LMS was 1 point (0– 10). The severity of sinus abnormalities was: no abnormalities (31%), mild (67%), moderate (2%), severe (0%). Mucosal thickening was the most frequent abnormality (69%). Eleven patients experienced sinusitis after a median of 93 days (11–607) after allo-HCT. 1-year cumulative incidence of sinusitis was 22%. No threshold of LMS and no type of sinus abnormalities were correlated with sinusitis development after allo-HCT. Mild sinus disease at screening did not negatively impact survival in comparison to no sinus disease.
Conclusions: Despite the fact, that majority of analyzed patients had either no or mild sinus disease at screening a significant proportion of patients developed sinusitis after allo-HCT. Evaluation of LMS before allo-HCT did not help predict the development of sinusitis after the procedure.
Go to article

Authors and Affiliations

Jacek Sokołowski
1
Joanna Drozd-Sokołowska
2
Katarzyna Kobylińska
3
Przemysław Biecek
3
Ewa Karakulska-Prystupiuk
2
Agnieszka Tomaszewska
2
Tomasz Gotlib
1
Kazimierz Niemczyk
1
Wiesław Wiktor-Jędrzejczak
2
Grzegorz Władysław Basak
2

  1. Department of Otolaryngology, Medical University of Warsaw, Warsaw, Poland
  2. Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
  3. Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

O b j e c t i v e s: To identify tooth diseases as potential causative factors in the development of maxillary sinus lesions, with the aid of clinical examination combined with Cone Beam Computed Tomography (CBCT), in the patients with persistent sinus-like ailments, unresponsive to routine treatment offered by otolaryngologists.

M a t e r i a l s a n d M e t h o d s: In 44 patients with suspected odontogenic maxillary sinusitis, a dental examination with tooth vitality test was carried out, in conjunction with CBCT. The study involved 29 women and 15 men (age range 19–69 years, mean age 43 (SD = 13.9) years).

R e s u l t s: In 15 (34.1%) patients the odontogenic lesions were encountered in maxillary sinuses. A total of 33 causative teeth were identified, of which 13 (39%) were after root canal treatment (RCT). Only one of the teeth had a properly reconstructed crown, and only one tooth had the root canals properly filled-in. Most frequently, the lesions in the sinuses were attributed to the inflammation of periapical tissues; the first molar having been established as the most common causative tooth.

C o n c l u s i o n s: A detailed dental examination, pursued in conjunction with CBCT analysis, allow to diagnose odontogenic maxillary lesions. The incidence of long-term ailments originating in the maxillary sinuses should prompt a detailed assessment of the teeth, especially those after RCT.

Go to article

Authors and Affiliations

Katarzyna Dobroś
Joanna Zarzecka

This page uses 'cookies'. Learn more