Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 83
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research was to analyze the possibility of using mobile laser scanning systems to acquire information for production and/or updating of a basic map and to propose a no-reference index of this accuracy assessment. Point clouds have been analyzed in terms of content of interpretation and geometric potential. For this purpose, the accuracy of point clouds with a georeference assigned to the base map objects was examined. In order to conduct reference measurements, a geodetic network was designed and also additional static laser scanning data has been used. The analysis of mobile laser scanning (MLS) data accuracy was conducted with the use of 395 check points. In the paper, application of the total Error of Position of the base-map Objects acquired with the use of MLS was proposed. Research results were related to reference total station measurements. The resulting error values indicate the possibility to use an MLS point cloud in order to accurately determine coordinates for individual objects for the purposes of standard surveying studies, e.g. for updating some elements of the base map content. Nevertheless, acquiring MLS point clouds with satisfying accuracy not always is possible, unless specific resolution condition is fulfilled. The paper presents results of accuracy evaluation in different classes of base-map elements and objects.
Go to article

Authors and Affiliations

Anna Fryskowska
Patryk Wróblewski
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses optimal control problem of mobile manipulators. Dynamic equations of those mechanisms are assumed herein to be uncertain. Moreover, unbounded disturbances act on the mobile manipulator whose end-effector tracks a desired (reference) trajectory given in a task (Cartesian) space. A computationally efficient class of two-stage cascaded (hierarchical) control algorithms based on both the transpose Jacobian matrix and transpose actuation matrix, has been proposed. The offered control laws involve two kinds of non-singular terminal sliding mode (TSM) manifolds, which were also introduced in the paper. The proposed class of cooperating sub-controllers is shown to be finite time stable by fulfilment of practically reasonable assumptions. The performance of the proposed control strategies is illustrated on an exemplary mobile manipulator whose end-effector tracks desired trajectory.

Go to article

Authors and Affiliations

M. Galicki
Download PDF Download RIS Download Bibtex

Abstract

Neutralisation of the terrorist explosive devices is a risky task. Such tasks may be carried out by robots in order to protect human life. The article describes chosen design problems concerning the new neutralisation and assisting robot SMR-100 Expert. The robot was to be designed for the use in confined spaces, particularly inside the air-crafts, buses and rail cars. In order to achieve this ambitious plan, new advanced technological designing tools had to be applied. A number of interesting design issues were approached. The successful development of the prototype robot Expert in Poland resulted in the creation of the first intervention robot in the world able to perform all necessary anti-terrorist tasks inside the passenger planes.

Go to article

Authors and Affiliations

P. Szynkarczyk
Download PDF Download RIS Download Bibtex

Abstract

The author suggests that a mobile counterweight mechanism could be introduced to the excavator structure for coupling the hydraulic system with the excavating equipment. It is shown that the mobile counterweight mechanism reduces power demand, at the same time improving stability of the excavator.

Go to article

Authors and Affiliations

Grzegorz Tora
Download PDF Download RIS Download Bibtex

Abstract

In order for a quadruped robot to be able to move on wheels while keeping its platform in horizontal position, and to walk, the kinematic system of its limbs should be so designed that each of the wheels has at least four degrees of freedom. Consequently, the designed system will have many DOFs and many controlled drives. This paper presents a novel solution in which, thanks to a suitable limb kinematic system geometry, the number of drives for the robot travel function, i.e. travelling on an uneven surface with the robot platform kept horizontal, has been reduced by four which are used only for walking. The robot structure, the required geometry of the limb links and the driving torque characteristics are presented. Moreover, an idea of the control system is sketched. Finally, selected results of the tests carried out on the robot prototype are reported.

Go to article

Authors and Affiliations

Antoni Gronowicz
Jarosław Szrek
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an in-pipe modular robotic system that can navigate inaccessible industrial pipes in order to check their condition, locate leakages, and clean the ventilation systems. The aspects concerning the development of a lightweight and energy efficient modular robotic system are presented. The paper starts with a short introduction about modular inspection systems in the first chapter, followed by design aspects and finalizing with the test of the developed robotic system.

Go to article

Authors and Affiliations

A. Adrianluţei
Mihai Tâtar
Vistrian Mâtieş
Download PDF Download RIS Download Bibtex

Abstract

Basic gesture sensors can play a significant role as input units in mobile smart devices. However, they have to handle a wide variety of gestures while preserving the advantages of basic sensors. In this paper a user-determined approach to the design of a sparse optical gesture sensor is proposed. The statistical research on a study group of individuals includes the measurement of user-related parameters like the speed of a performed swipe (dynamic gesture) and the morphology of fingers. The obtained results, as well as other a priori requirements for an optical gesture sensor were further used in the design process. Several properties were examined using simulations or experimental verification. It was shown that the designed optical gesture sensor provides accurate localization of fingers, and recognizes a set of static and dynamic hand gestures using a relatively low level of power consumption.

Go to article

Authors and Affiliations

Krzysztof Czuszyński
Jacek Rumiński
Jerzy Wtorek
Download PDF Download RIS Download Bibtex

Abstract

Mobile devices have become an integral part of our life and provide dozens of useful services to their users. However, usability of mobile devices is hindered by battery lifetime. Energy conservation can extend battery lifetime, however, any energy management policy requires accurate prediction of energy consumption, which is impossible without reliable energy measurement and estimation methods and tools. We present an analysis of the energy measurement methodologies and describe the implementations of the internal (profiling) software (proprietary, custom) and external software-based (Java API, Sensor API, GSM AT) energy measurement methodologies. The methods are applied to measure energy consumption on a variety of mobile devices (laptop PC, PDA, smart phone). A case study of measuring energy consumption on a mobile computer using 3DMark06 benchmarking software is presented

Go to article

Authors and Affiliations

Robertas Damaševičius
Vytautas Štuikys
Jevgenijus Toldinas
Download PDF Download RIS Download Bibtex

Abstract

Main topic of the paper is a problem of designing the input-output decoupling controllers for nonholonomic mobile manipulators. We propose a selection of output functions in much more general form than in [1,2]. Regularity conditions guaranteeing the existence of the input-output decoupling control law are presented. Theoretical considerations are illustrated with simulations for mobile manipulator consisting of RTR robotic arm mounted atop of a unicycle which moves in 3D-space.

Go to article

Authors and Affiliations

A. Mazur
Download PDF Download RIS Download Bibtex

Abstract

The authors describe the program undertaken at the Warsaw University of Technology (WUT), aimed at developing mobile aerodynamic laboratories to be used for investigation into aerodynamic properties of airfoils or lightweight propulsion systems - in natural scale and in natural atmosphere. The enterprise was named the EB-program, and has both: research and educational aspects; in all phases of the program (i.e. design, manufacturing and testing) the WUT students are involved. As the result of work, three mobile aerodynamic laboratories were build: EB-1 - which was tested on the car roof, EB-2 - unique flying laboratory based on the PW-6 glider, and EB-3 - a new generation of flying wind tunnel to be used on the AOS-71 glider, which currently is under preparation to the flight tests. The authors present in detail the measurement systems and procedures supported by the Lab View software.

Go to article

Authors and Affiliations

Mirosław Rodzewicz
Dominik Głowacki
Download PDF Download RIS Download Bibtex

Abstract

The study presents the issue of kinematic discrepancy of hydrostatic drive systems of high mobility vehicles, and its impact on the presence of the unfavourable phenomenon of circulating power. Furthermore, it presents a theoretical discussion concerning the capacity of the compensation of kinematic discrepancy by a hydrostatic drive system on the basis of tests using static characteristics.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Stanisław Konopka
Marian Janusz Łopatka
Mirosław Przybysz

Download PDF Download RIS Download Bibtex

Abstract

The paper concerns development of original method of optimal control at energy performance index and its application to dynamic processes surveillance of some mechatronic systems. The latter concerns chatter vibration surveillance during highspeed slender milling of rigid details, as well as motion control of two-wheeled mobile platform. Results of on-line computer simulations and real performance on the target objects reflect a great efficiency of the processes surveillance.

Go to article

Authors and Affiliations

Krzysztof Kaliński
Marek Galewski
Michał Mazur
Download PDF Download RIS Download Bibtex

Abstract

A method of planning collision-free trajectory for a mobile manipulator tracking a line section path is presented. The reference trajectory of a mobile platform is not needed, mechanical and control constraints are taken into account. The method is based on a penalty function approach and a redundancy resolution at the acceleration level. Nonholonomic constraints in a Pfaffian form are explicitly incorporated to the control algorithm. The problem is shown to be equivalent to some point-to-point control problem whose solution may be easier determined. The motion of the mobile manipulator is planned in order to maximise the manipulability measure, thus to avoid manipulator singularities. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2,0) class and a 3 DOF RPR type holonomic manipulator operating in a three-dimensional task space is also presented.

Go to article

Authors and Affiliations

Grzegorz Pajak
Iwona Pajak
Download PDF Download RIS Download Bibtex

Abstract

This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audio decoder and music synthesizer platform developed by the authors. The decoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to keep the complexity low, most of the processing is performed in the parametric domain. This parametric processing includes pitch and tempo shifting, volume adjustment, selection of psychoacoustically relevant components for synthesis and stereo image creation. The decoder allows for good quality 44.1 kHz stereo audio streaming at 24 kbps. The synthesizer matches the audio quality of industry-standard sample-based synthesizers while using a twenty times smaller memory footprint soundbank. The presented decoder/synthesizer is designed for low-power mobile platforms and supports music streaming, ringtone synthesis, gaming and remixing applications.

Go to article

Authors and Affiliations

Marek Szczerba
Werner Oomen
Dieter Therssen
Download PDF Download RIS Download Bibtex

Abstract

The growing number of mobile devices and the increasing popularity of multimedia services result in a new challenge of providing mobility in access networks. The paper describes experimental research on media (audio and video) streaming in a mobile IEEE 802.11 b/g/n environment realizing network-based mobility. It is an approach to mobility that requires little or no modification of the mobile terminal. Assessment of relevant parameters has been conducted in an IPv6 testbed. During the tests, both Quality of Service (QoS) and Quality of Experience (QoE) parameters have been considered. Against the background of standard L3 and L2 handovers, an emerging mobility solution named Proxy Mobile IPv6 (PMIPv6) has been examined. Its advantages (L3 connectivity maintenance) and disadvantages (packet loss during handover) are emphasized based on the obtained results. Moreover, a new solution for handover optimization has been proposed. A handoff influence upon audio/video generation and transfer imperfections has been studied and found to be an interesting direction of future work.

Go to article

Authors and Affiliations

M. Hoeft
K. Gierlowski
T. Gierszewski
J. Konorski
K. Nowicki
J. Wozniak
Download PDF Download RIS Download Bibtex

Abstract

In this paper we propose a sensor-based navigation method for navigation of wheeled mobile robot, based on the Kohonen self-organising map (SOM). We discuss a sensor-based approach to path design and control of wheeled mobile robot in an unknown 2-D environment with static obstacles. A strategy of reactive navigation is developed including two main behaviours: a reaching the middle of a collision-free space behaviour, and a goal-seeking behaviour. Each low-level behaviour has been designed at design stage and then fused to determine a proper actions acting on the environment at running stage. The combiner can fuse low-level behaviours so that the mobile robot can go for the goal position without colliding with obstacles one for the convex obstacles and one for the concave ones. The combiner is a softswitch, based on the idea of artificial potential fields, that chooses more then one action to be active with diRerent degrees at each time step. The output of the navigation level is fed into a neural tracking controller that takes into account the dynamics of the mobile robot. The purpose of the neural controller is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. Computer simulation has been conducted to illustrate the performance of the proposed solution by a series of experiments on the emulator of wheeled mobile robot Pioneer-2DX.

Go to article

Authors and Affiliations

Z. Hendzel
Download PDF Download RIS Download Bibtex

Abstract

Vibration intensity in mobile machines depends on the road roughness profile, ride velocity and dissipative properties of machine components. To reduce vibrations of a mobile machine with a boom equipment one of the available passive methods, utilizing a hydropnematic system for boom support to improve flexibility, the system incorporating throttling valves. Energy dissipation in a hydropneumatic system controls the decay of vibrations of the machine body and equipment. In the range of large velocities, passive methods prove inadequate. When ride velocity is to be increased, at the same time the required safety features and stabilization of the position of machine equipment are to be provided, further dynamic analyses are fully merited to identify processes taking place in the driving system. The final result should be the synthesis of the LQR control system to modulate the loading characteristics of the motor and to control the flow in a hydraulic boom-support system.

Go to article

Authors and Affiliations

Stefan Chwastek
Stanisław Michałowski
Download PDF Download RIS Download Bibtex

Abstract

In this work, a novel approach to designing an on-line tracking controller for a nonholonomic wheeled mobile robot (WMR) is presented. The controller consists of nonlinear neural feedback compensator, PD control law and supervisory element, which assure stability of the system. Neural network for feedback compensation is learned through approximate dynamic programming (ADP). To obtain stability in the learning phase and robustness in face of disturbances, an additional control signal derived from Lyapunov stability theorem based on the variable structure systems theory is provided. Verification of the proposed control algorithm was realized on a wheeled mobile robot Pioneer–2DX, and confirmed the assumed behavior of the control system.

Go to article

Authors and Affiliations

Zenon Hendzel
Marcin Szuster
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a design of a tracked in-pipe inspection mobile robot with an adaptive drive positioning system. The robot is intended to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically. The paper covers a design process of a virtual prototype, focusing on track adaptation to work environment. A mathematical description of a kinematic model of the robot is presented. Operation of the prototype in pipes with a cross-section greater than 210 mm is described. Laboratory tests that validate the design and enable determination of energy consumption of the robot are presented.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Michał Ciszewski
Michał Wacławski
Tomasz Buratowski
Mariusz Giergiel
Krzysztof Kurc

Download PDF Download RIS Download Bibtex

Abstract

This paper presents a control concept for a single-axle mobile robot moving on the horizontal plane. A mathematical model of the nonholonomic mechanical system is derived using Hamel’s equations of motion. Subsequently, a concept for a tracking controller is described in detail. This controller keeps the mobile robot on a given reference trajectory while maintaining it in an upright position. The control objective is reached by a cascade control structure. By an appropriate input transformation, we are able to utilize an input-output linearization of a subsystem. For the remaining dynamics a linear set-point control law is presented. Finally, the performance of the implemented control law is illustrated by simulation results.

Go to article

Authors and Affiliations

Tobias Zaiczek
Matthias Franke
Download PDF Download RIS Download Bibtex

Abstract

Sewage sludge from municipal wastewater treatment plants is currently a serious environmental problem, given its diversity due to the variability of time and heavy metal content. Current research on the monitoring of heavy metals is based on the determination of Pb, Cd, Hg, Ni, Zn, Cu and Cr. This makes any thallium content data difficult to access. The study estimated the degree of contamination of sewage sludge with thallium. The sludge samples came from a sewage treatment plant located in Poland. The results are presented for the total concentration of thallium and its mobile forms. These samples were analyzed by differential pulse voltammetry. The results showed that the average thallium content was 0.203 μg/g and its mobile form was 0.025 μg/g. The conducted research shows that almost 13% of thallium from sewage sludge can be gradually released into the environment.
Go to article

Bibliography

  1. Ahumada, I., Escudero, P., Ascar, L., Mendoza, J.& Richter, P. (2004). Extractability of Arsenic, Copper, and Lead in Soils of a Mining and Agricultural Zone in Central Chile. Communications in Soil Science and Plant Analysis, 35, pp. 1615-1634. DOI:10.1081/CSS-120038558
  2. Alvarez-Ayuso, E., Otones, V., Murciego, A., Garcia-Sanchez, A. & Santa Regina, I. (2013). Zinc, cadmium and thallium distribution in soils and plants of area impacted by sphalerite-bearing mine wastes. Geoderma, 207-208, pp. 25-34. DOI:10.1016/j.geoderma.2013.04.033
  3. Council Directive of 21.III.1991 concerning urban wastewater treatment. 91/271/EEC.
  4. De La Rochebrochard, S., Naffrechoux, E., Drogui, P., Mercier, G. & Blais, J. (2013). Low frequencyultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizingproperties preservation. Ultrasonics Sonochemistry, 20, pp. 109-117. DOI:10.1016/j.ultsonch.2012.08.001
  5. Dmowski, K., Kozakiewicz, A. & Kozakiewicz, M. (2002). Bioindication thallium search in southern Poland. Kosmos, 51(2), pp. 151–163. (in Polish)
  6. Finkelman, R. (1999). Trace elements in coal. Environmental and health significance. Biological Trace Element Research, 67(3), pp. 197–204. DOI:10.1007/BF02784420 .
  7. Frankowski, M., Zioła-Frankowska A., Kowalski, A. & Siepak., J. (2010). Fractionation of heavy metals in bottom sediments using Tessier procedure. Environmental Earth Sciences, 60, pp. 1165-1178. DOI:10.1007/s12665-009-0258-3
  8. Fytili, D. & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods a review. Renewable and Sustainable Energy Reviews, 12 (1), pp. 116-140. DOI: 10.1016/j.rser.2006.05.014
  9. Galván–Arzate, S. & Santamaria, A. (1998). Thallium toxicity. Toxicology Letters, 99(1), pp. 1–13. DOI:10.1016/s0378-4274(98)00126-x
  10. Ibragimow, A., Głosińska., G., Siepak, M. & Walna, B. (2010). Heavy metals in fluvial sediments of the Odra river flood plains-introductory research. Quaestiones geographicae, 29, pp. 37-47. DOI:10.2478/v10117-010-0004-7
  11. Kowalik, R,, Gawdzik, J., Gawdzik. B. & Gawdzik, A. (2020). Analysis of the mobility of heavy metals in sludge for the sewage treatment plant in Daleszyce. Structure and Environment, 12, 85 DOI: 10.30540/sae-2020-010
  12. Larner, B., Seen, A. & Townsend, A. (2006). Comparative study of optimized BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711. Analytica Chimica Acta, 556, pp. 444-449. DOI:10.1016/j.aca.2005.09.058
  13. Łukaszewski, Z., Jakubowska, M., Zembrzuski, W., Karbowska, B. & Pasieczna,A. (2010). Flow – injection differential pulse anodic stripping voltammetry as a tool for thallium monitoring in the environment. Electroanalysis, 22 (17-18), pp. 1963-1966. DOI:10.1002/elan.201000151
  14. Lukaszewski, Z., Karbowska, B., Zembrzuski, W. & Siepak, M. (2012). Thallium in fractions of sediments formed during the 2004 tsunami in Thailand. Ecotoxicology and Environmwntal Safety, 80, pp. 184-189. DOI:10.1016/j.ecoenv.2012.02.026
  15. Madrid, F., Reinoso, R., Florido, M., Barrientos, E., Ajmone - Marsan, F., Davidson, C. & Madrid, L. (2007). Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions. Environmental Pollution, 147, pp. 713-722. DOI:10.1016%2Fj.envpol.2006.09.005
  16. Merrington, G., Oliver, I., Smernik., R. & McLaughlin, M. (2003). The influence of sewage sludge properties on sludge-borne metal availability. Advances in Environmental Research, 8, pp.21-36. DOI:10.1016/S1093-0191(02)00139-9
  17. Pathak, A., Dastidar, M. & Sreekrishnan, T. (2009). Bioleaching of heavy metals from sewage sludge: A review. Journal of Environmental Management, 90, pp. 2343-2353. DOI:10.1016/j.jenvman.2008.11.005
  18. Querol, X., Fernandez-Turiel, J. & Lopez-Soler, A. (1995). Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74(3), pp. 331–343. DOI:10.1016/0016-2361(95)93464-O
  19. Quevauviller, Ph. (2002). SM&T activities in support of standardization of operationally defined extraction procedures for soil and sediment analysesd, [In] Ph. Quevauviller (ed.), Methodologies in soil and sediment fractionation studies. Single and sequential extraction procedures, European Commission, DG Research, Brussels, Belgium, pp. 1–9.
  20. Regulation of the Minister of the Environment (Rozporządzenie Ministra Środowiska z dnia 6 lutego 2015 r. w sprawie komunalnych osadów ściekowych. Dz.U. 2015 poz. 257)
  21. Regulation of the Minister of the Environment dated. 1.8.2002r. on municipal sewage sludge, Acts. Laws No. 134, item 1140.
  22. Resolution of the Council of Ministers of Polish Government No 233, 29.12.2006.
  23. Smith, K., Fowler, G., Pullket, S. & Graham, N. (2009). Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43, pp. 2569-2594. DOI:10.1016/j.watres.2009.02.038.
  24. Svancara, I., Ostapczuk, P., Arunchalam, J., Emons, H.E. & Vytras, K. (1997). Determination of thallium in environmental samples using potentiometric stripping analysis. Method development, Electroanalysis, 9(1), pp. 26-31. DOI:10.1002/elan.1140090108
  25. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46(3), pp. 49–59. DOI:10.24425/aep.2020.134535
  26. Vanek, A., Chrastny, V., Komarek, M., Penizek, V., Teper, L., Cabala, J. & Drabek, O. (2013). Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration, 124, pp. 176-182. DOI:org/10.1016%2Fj.gexplo.2012.09.002
  27. Vanek, A., Komarek, M., Vokurkova, P., Mihaljevic, M., Sebek, O., Panuskova, G., Chrastny, V. & Drabek, O. (2011). Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials, 191, pp. 170-176. DOI:10.1016/j.jhazmat.2011.04.065
  28. Viraraghavan, T. & Srinivasan, A. (2011). Thallium: Environmental Pollution and Health Effects, Encyclopedia of Environmental Health, pp. 325-333. DOI:10.1016/B978-0-444-52272-6.00643-7
  29. Woźniak, M., Żygadło, M. & Latońska, J. (2004). Assessing the Chemical Stability of Sewage Sludges Deposited Landfills under Natural Conditions. Ochrona Środowiska, 26, pp. 25-31.
  30. Xiao, T., Guha, J., Boyle, D., Liu, C. & Chen, J.(2004). Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Science of The Total Environment, 318(1-3), pp. 223-244. DOI:10.1016/S0048-9697(03)00448-0
  31. Zitko, V. (1975). Toxicity and pollution potential of thallium, The Science of the Total Environment, 4, pp. 185-192. DOI:10.1016/0048-9697(75)90039-X
Go to article

Authors and Affiliations

Bożena Karbowska
1
ORCID: ORCID
Włodzimierz Zembrzuski
1
ORCID: ORCID
Joanna Zembrzuska
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Chemical Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Recent research has reported that an increasing number of migrants in Norway are concentrated in the low-skilled sectors of the labour market, irrespective of their educational background, thus facilitating the formation of migrant niches in the long term. Despite the growing body of literature that raises the problem of downward professional mobility and deskilling among migrant populations, little scholarly attention has been paid to migrants’ struggles and vulnerabilities as a result of underemployment. Drawing on 30 in-depth interviews, this article explores the common experience of habitus mismatch and suffering among Poles who have worked below their level of competence or professional experience since migrating to Norway. By an-alysing subjective experiences of downward professional and social mobility and the conflict between valued and stigmatised identities, the article examines the various habitus mismatches that contribute to suffering in downwardly mobile Polish migrants.

Go to article

Authors and Affiliations

Anna Przybyszewska

This page uses 'cookies'. Learn more