Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Energetic efficiency depicting the fraction of energy dissipation rate used to perform processes of drop breakup and mass transfer in two-phase, liquid-liquid systems is considered. Results of experiments carried out earlier in two types of high-shear mixers: an in-line rotor-stator mixer and a batch rotor-stator mixer, have been applied to identify and compare the efficiency of drop breakage and mass transfer in both types of mixers. The applied method is based on experimental determination of both: the product distribution of chemical test reactions and the drop size distributions. Experimental data are interpreted using a multifractal model of turbulence for drop breakage and the model by Favelukis and Lavrenteva for mass transfer. Results show that the energetic efficiency of the in-line mixer is higher than that of the batch mixer; two stator geometries were considered in the case of the batch mixer and the energetic efficiency of the device equipped with a standard emulsor screen (SES) was higher than the efficiency of the mixer equipped with a general purpose disintegrating head (GPDH) for drop breakup but smaller for mass transfer.

Go to article

Authors and Affiliations

Magdalena Jasińska
Jerzy Bałdyga
Download PDF Download RIS Download Bibtex

Abstract

The homogeneity of an immiscible liquid–liquid system was investigated in a baffled vessel agitated by a Rushton turbine. The dispersion homogeneity was analyzed by comparing Sauter mean diameters and drop size distribution (DSD) determined in different measured regions for various impeller speeds. The sizes of droplets were obtained by the in-situ measurement technique and by the Image Analysis (IA) method. Dispersion kinetics was successfully fitted with Hong and Lee (1983) model. The effect of intermittency turbulence on drop size reported by Bałdyga and Podgórska (1998) was analyzed and the multifractal exponent ������ was evaluated.
Go to article

Bibliography

Bałdyga J., Bourne J.R., 1993. Drop breakup and intermittent turbulence. J. Chem. Eng. Japan, 26, 738–741. DOI: 10.1252/jcej.26.738.

Bałdyga J., Bourne J.R., 1995. Interpretation of turbulent mixing using fractals and multifractals. Chem. Eng. Sci., 50, 381–400. DOI: 10.1016/0009-2509(94)00217-F.

Bałdyga J., PodgórskaW., 1998. Drop break-up in intermittent turbulence. Maximum stable drop size and transient sizes of drops. Can. J. Chem. Eng., 76, 456–470. DOI: 10.1002/cjce.5450760316.

Bucciarelli E., Formánek R., Kysela B., Fort I., Šulc R., 2019. Dispersion kinetics in mechanically agitated vessel. EPJ Web Conf., 213, 02008. DOI: 10.1051/epjconf/201921302008.

Chen H.T., Middleman S., 1967. Drop size distribution in agitated liquid–liquid systems. AIChE J., 13, 989–995. DOI: 10.1002/aic.690130529.

Formánek R., Kysela B., Šulc R., 2019a. Drop size evolution kinetics in a liquid–liquid dispersions system in a vessel agitated by a Rushton turbine. Chem. Eng. Trans., 74, 1039–1044. DOI: 10.3303/CET1974174.

Formánek R., Kysela B., Šulc R., 2019b. Image analysis of particle size: effect of light source type. EPJ Web Conf., 213, 02021. DOI: 10.1051/epjconf/201921302021.

Formánek R., Šulc R., 2019c. Dispersion of immiscible liquid–liquid system in a vessel agitated by a Sawtooth impeller: Drop size time evolution. Proceedings of the International Conference Experimental Fluid Mechanics 2019. Franzensbad, Czech Republic, 19–22 November 2019, 136–139.

Formánek R., Šulc R., 2020. The liquid–liquid dispersion homogeneity in a vessel agitated by a high-shear sawtooth impeller. Processes, 8, 1012. DOI: 10.3390/pr8091012.

Hinze J.O., 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J., 1, 289–295. DOI: 10.1002/aic.690010303.

Hong P.O., Lee J.M., 1983. Unsteady-state liquid–liquid dispersions in agitated vessels. Ind. Eng. Chem. Process Des. Dev., 22, 130–135. DOI: 10.1021/i200020a021.

Jasikova D., Kotek M., Kysela B., Sulc R., Kopecky V., 2018. Compiled visualization with IPI method for analysing of liquid–liquid mixing process. EPJ Web Conf., 180, 02039. DOI: 10.1051/epjconf/201818002039.

Khalil A., Puel F., Chevalier Y., Galvan J.-M., Rivoire A., Klein J.-P., 2010. Study of droplet size distribution during an emulsification process using in situ video probe coupled with an automatic image analysis. Chem. Eng. J., 165, 946–957. DOI: 10.1016/j.cej.2010.10.031.

Kolmogorov A.N., 1949. On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR, 66, 825–828. Kraume M., Gäbler A., Schulze K., 2004. Influence of physical properties on drop size distribution of stirred liquid–liquid dispersions. Chem. Eng. Technol., 27, 330–334. DOI: 10.1002/ceat.200402006.

Maaß S., Kraume M., 2012. Determination of breakage rates using single drop experiments. Chem. Eng. Sci., 70, 146–164. DOI: 10.1016/j.ces.2011.08.027.

Malík M., Primas J., Kotek M., Jašíková D., Kopecký V., 2019. Mixing of two immiscible phases measured by industrial electrical impedance tomography system. Mech. Ind., 20, 707. DOI: 10.1051/meca/2019081.

Maluta F., Montante G., Paglianti A., 2020. Analysis of immiscible liquid–liquid mixing in stirred tanks by Electrical Resistance Tomography. Chem. Eng. Sci., 227, 115898. DOI: 10.1016/j.ces.2020.115898.

Pacek A.W., Chamsart S, Nienow A.W., Bakker A., 1999. The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci., 54, 4211–4222. DOI: 10.1016/S0009-2509(99)00156-6.

Rodgers T.L., Cooke M., 2012. Correlation of drop size with sheat tip speed. 14��ℎ European Conference on Mixing. Warszawa, Poland, 10–13 September 2012, 407–412.

Šulc R., Ditl P., Fort I., Jašíkova D., Kotek M., Kopecký V., Kysela B., 2017. Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region. EPJ Web Conf., 143, 02120. DOI: 10.1051/epjconf/201714302120.

Šulc R., Pešava V., Ditl P., 2015. Local turbulent energy dissipation rate in a vessel agitated by a Rushton turbine. Chem. Process Eng., 36, 135–149. DOI: 10.1515/cpe-2015-0011.

Zhou G, Kresta S.M., 1998. Evolution of drop size distribution in liquid–liquid dispersions for various impellers. Chem. Eng. Sci., 53, 2099–2113. DOI: 10.1016/S0009-2509(97)00437-5.
Go to article

Authors and Affiliations

Roman Formánek
1
Radek Šulc
1

  1. Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technická 4, 160 00 Prague, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this article, we present the results of the first application of 2–benzoylpyridine (2–BP) as a carrier in adsorptive polymeric materials dedicated for the removal of Ag(I) and Cu(II) ions from model acidic solutions. In the first stage of the research, the classical solvent extraction, in which 2–BP was used as an extractant, allowed to determine the proper conditions for conducting adsorptive processes. The stability constants of 2–BP complexes with analyzed metal ions were determined using the spectrophotometric method. The electrospray ionization (ESI) high-resolution mass spectrometry (HRMS) method was applied for the confirmation of the ability of 2–BP molecules to form complexes with Cu 2+¸ metal ions in a solution and to determine the elemental composition of generated complexes (to identify the ratio of the number of metal ions to the number of molecules of 2–BP). The obtained results indicate that both the adsorptive processes and solvent extraction strongly depend on the properties of metal ions and that the use of 2–BP as a carrier/extractant allows for efficient removal of silver(I) ions and much less effective removal of copper(II) ions. The utilization of adsorptive polymeric materials is in line with the contemporary research trends that focus on eco-friendly and cost-effective methods.
Go to article

Authors and Affiliations

Małgorzata A. Kaczorowska
1
ORCID: ORCID
Daria Bożejewicz
1
ORCID: ORCID
Katarzyna Witt
1
ORCID: ORCID
Włodzimierz Urbaniak
2
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
  2. Adam Mickiewicz University, Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-712 Poznan, Poland

This page uses 'cookies'. Learn more