Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of elastic bodies within a multibody simulation became more and more important within the last years. To include the elastic bodies, described as a finite element model in multibody simulations, the dimension of the system of ordinary differential equations must be reduced by projection. For this purpose, in this work, the modal reduction method, a component mode synthesis based method and a moment-matching method are used. Due to the always increasing size of the non-reduced systems, the calculation of the projection matrix leads to a large demand of computational resources and cannot be done on usual serial computers with available memory. In this paper, the model reduction software Morembs++ is presented using a parallelization concept based on the message passing interface to satisfy the need of memory and reduce the runtime of the model reduction process. Additionally, the behaviour of the Block-Krylov-Schur eigensolver, implemented in the Anasazi package of the Trilinos project, is analysed with regard to the choice of the size of the Krylov base, the blocksize and the number of blocks. Besides, an iterative solver is considered within the CMS-based method.

Go to article

Authors and Affiliations

Thomas Volzer
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a Lagrangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The twoway coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono::Fluid, is part of the Chrono project and available as an open-source software.

Go to article

Authors and Affiliations

Arman Pazouki
Radu Serban
Dan Negrut
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an innovative solution in the form of a virtual reality (VR) and high performance computing (HPC) system dedicated to aid designing rotary forming processes with laser beam reheating the material formed. The invented method allowing a virtual machine copy to be coupled with its actual counterpart and a computing engine utilizing GPU processors of graphic NVidia cards to accelerate computing are discussed. The completed experiments and simulations of the 316L stainless steel semi-product spinning process showed that the developed VR-HPC system solution allows the manufacturing process to be effectively engineered and controlled in industrial conditions.
Go to article

Authors and Affiliations

Marcin Hojny
Przemysław Marynowski
ORCID: ORCID
G. Lipski
1
ORCID: ORCID
T. Gądek
2
ORCID: ORCID
Ł. Nowacki
2
ORCID: ORCID

  1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Research Network Łukasiewicz – Metal Forming Institute, Jana Pawła II 14, 61-139 Poznań, Poland

This page uses 'cookies'. Learn more