Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Due to the nonlinear current-voltage (I-V) relationship of the photovoltaic (PV) module, building a precise mathematical model of the PV module is necessary for evaluating and optimizing the PV systems. This paper proposes a method of building PV parameter estimation models based on golden jackal optimization (GJO). GJO is a recently developed algorithm inspired by the idea of the hunting behavior of golden jackals. The explored and exploited searching strategies of GJO are built based on searching for prey as well as harassing and grabbing prey of golden jackals. The performance of GJO is considered on the commercial KC200GT module under various levels of irradiance and temperature. Its performance is compared to well-known particle swarm optimization (PSO), recent Henry gas solubility optimization (HGSO) and some previous methods. The obtained results show that GJO can estimate unknown PV parameters with high precision. Furthermore, GJO can also provide better efficiency than PSO and HGSO in terms of statistical results over several runs. Thus, GJO can be a reliable algorithm for the PV parameter estimation problem under different environmental conditions.
Go to article

Authors and Affiliations

Thuan Thanh Nguyen
1
ORCID: ORCID

  1. Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Since the induction motor operates in a complex environment, making the stator and rotor of the motor susceptible to damage, which would have significant impact on the whole system, efficient diagnostic methods are necessary to minimize the risk of failure. However, traditional fault diagnosis methods have limited applicability and accuracy in diagnosing various types of stator and rotor faults. To address this issue, this paper proposes a stator-rotor fault diagnosis model based on time-frequency domain feature extraction and Extreme Learning Machine (ELM) optimized with Golden Jackal Optimization (GJO) to achieve highprecision diagnosis of motor faults. The proposed method first establishes a platform for acquiring induction motor stator-rotor fault data. Next, wavelet threshold denoising is used to pre-process the fault current signal data, followed by feature extraction to perform time-frequency domain eigenvalue analysis. By comparison, the impulse factor is finally adopted as the feature vector of the diagnostic model. Finally, an induction motor fault diagnosis model is constructed by using the GJO to optimize the ELM. The resulting simulations are carried out by comparing with neural networks, and the results show that the proposed GJO-ELM model has the highest diagnostic accuracy of 94.5%. This finding indicates that the proposed method outperforms traditional methods in feature learning and classification of induction motor fault diagnosis, and has certain engineering application value.
Go to article

Authors and Affiliations

Lingzhi Yi
1 2
Jiao Long
1
Yahui Wang
1
Tao Sun
3
Jianxiong Huang
1
Yi Huang
1

  1. College of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan, 411105, China
  2. Hunan Engineering Research Center of Multi-Energy Cooperative Control Technology, Xiangtan, Hunan 411105, China
  3. State Grid Anhui Electric Power Ultra-High Voltage Company, Hefei, Anhui, 230000, China

This page uses 'cookies'. Learn more