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Abstract: Due to the nonlinear current-voltage (I-V) relationship of the photovoltaic (PV)
module, building a precise mathematical model of the PV module is necessary for evaluating
and optimizing the PV systems. This paper proposes a method of building PV parameter
estimation models based on golden jackal optimization (GJO). GJO is a recently developed
algorithm inspired by the idea of the hunting behavior of golden jackals. The explored
and exploited searching strategies of GJO are built based on searching for prey as well as
harassing and grabbing prey of golden jackals. The performance of GJO is considered on
the commercial KC200GT module under various levels of irradiance and temperature. Its
performance is compared to well-known particle swarm optimization (PSO), recent Henry
gas solubility optimization (HGSO) and some previous methods. The obtained results show
that GJO can estimate unknown PV parameters with high precision. Furthermore, GJO can
also provide better efficiency than PSO and HGSO in terms of statistical results over several
runs. Thus, GJO can be a reliable algorithm for the PV parameter estimation problem under
different environmental conditions.
Key words: golden jackal optimization, henry gas solubility optimization, particle swarm
optimization, PV parameter estimation, single diode model

1. Introduction

A high-precise photovoltaic (PV) module model for depicting the PV system characteristic
is essential for optimizing its energy. Current-voltage (I-V) and power-voltage (P-V) characters
are popular methods to present the non-linear feature of the PV module. I-V and P-V curves are
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determined by the mathematical models that consist of a single-diode model (SDM), double-
diode model (DDM) and triple-diode model (TDM), where, the SDM is often used to model the
PV module. The SDM has unknown parameters that play an important role in building I-V and
P-V. The unknown parameters of the PV module can be estimated by the reverse process relying
on the experimental data [1]. However, this is a nonlinear problem, which needs efficient solving
methods.

There are several methods that have been proposed for the PV parameter estimation problem.
They can be classified into categories consisting of deterministic and heuristic methods. In [2], the
interval branch and bound method is applied to find the parameters of three types of PV models.
In [3], the hybrid approach of numerical and analytical methods is used to find the parameters of
PV based on SDM and DDM models. In addition, some works have used the deterministic methods
for searching the PV parameters such as [4, 5] and [6]. By using these deterministic methods,
a nonlinear characteristic of PV is modeled by using different operation conditions combined
with datasheet of manufacturers like current and voltage at a maximum power point, short circuit
current and open circuit voltage [7,8]. The common point of this group of methods is that they are
described in a complex way, and sometimes the obtained results are affected by the initial values.
By using the heuristic methods, the PV parameter estimation problem is considered a type of
black-box problem. Thus, it overcomes the disadvantages of the deterministic methods. The main
strategy for finding the unknown PV parameters is adjusting the curve to predict the I-V curve,
wherein the data points on the predicted I-V curve match with the experiment values. There are
several heuristic methods used for the PV parameter estimation problem such as particle swarm
optimization (PSO) [9, 10], a genetic algorithm [11], cuckoo search [12], whippy Harris hawks
optimization (WHHO) [8], grey wolf optimization (WGO) [13], musical chairs algorithm [14],
arithmetic optimization algorithm [15], social spider algorithm (SSA) [16], symmetric chaotic
gradient-based optimizer [17], as well as hybrid PSO and WGO [18]. It can be seen that the
number of heuristic-based methods is larger than that of deterministic methods. In addition, there
are many newly developed algorithms such as Henry gas solubility optimization (HGSO) [19],
a coronavirus disease optimization algorithm [20], prairie dog optimization [21], evolutionary
mating algorithm [22], etc. and they have also been successfully applied to many problems in
electrical engineering such as power quality disturbance [23], optimal power flow [24–26] and
distributed generator placement [27]. However, there is no best method for every problem [28].
Some algorithms may produce good results when solving one problem but may give bad results
when solving another problem [29]. Thus, the application of new algorithms for the PV parameter
estimation problem should be promoted to show the efficiency of the algorithms.

GJO is a recently developed algorithm inspired by the hunting behavior of golden jackals [30].
In nature, they live in groups. In each group, there is usually a pair of male and female leaders.
In the process of hunting, golden jackals look for suitable prey, and then they annoy the prey to
weaken and attack it. Based on these behaviors, the GJO algorithm was developed that includes
an explored search phase based on the process of finding prey and an exploited phase based on the
process of harassing and grabbing prey. In [30], the efficiency of GJO was demonstrated, showing
several benchmark functions and some engineering problems. However, its performance for the
problem of PV parameter estimation is still a query. Therefore, this paper proposes a method for
solving the PV parameter estimation problem based on GJO. The contribution of this paper can
be summarized as follows:
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i. A PV parameter estimation approach relying on GJO is proposed when searching for the
parameter set of a PV module model.

ii. The performance of GJO is evaluated on the commercial PV module of KC200GT under
different irradiance and temperature levels.

iii. The GJO performance is compared with PSO and HGSO as well as with the previous
methods.

The rest of the paper consists of the following parts. The mathematical model of the photo-
voltaic module and the PV module parameter estimation problem model are shown in Section 2
and Section 3, respectively. The details of the application of golden jackal optimization for es-
timating the PV parameters are shown in Section 4. The numerical results are demonstrated in
Section 5. Finally, the conclusion is presented.

2. Mathematical model of photovoltaic module

There are three types of the equivalent circuit of the PV module consisting of the SDM, DDM
and TDM, wherein the SDM is often used to model the PV module. The model of the PV module
based on the SDM is presented in Fig. 1.
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Fig. 1. The equivalent circuit of PV module based on SDM model

The output current of the PV model (𝐼𝐿) is defined as follows:

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑠𝑑 ·
[
exp

(
𝑞 · (𝑉𝐿 + 𝑅𝑠 · 𝐼𝐿)

𝑛𝑚 · 𝑘 · 𝑇

)
− 1

]
− 𝑉𝐿 + 𝑅𝑠 · 𝐼𝐿

𝑅𝑠ℎ

, (1)

where: 𝐼𝑝ℎ is the photocurrent, 𝐼𝑠𝑑 is the reverse saturation current of the diode, 𝑞 is the electron
charge that is equal to 1.60217646E-19 C, 𝑉𝐿 is the output voltage of the cell, 𝑅𝑠 is the series
resistance, 𝑁𝑐 is the number of cells connected in series, 𝑛𝑚 is the coefficient that is determined
by 𝑛𝑚 = 𝑛𝑁𝑐 , 𝑛 and 𝑁𝑐 are the diode ideality coefficient and the number of serial cells of PV. 𝑘 is
the Boltzmann constant with a value of 1.3806503E-23 J/K. 𝑇 is the cell temperature in Kelvin.
𝑅𝑠ℎ is the shunt resistance.

Equation (1) shows that there are five unknown parameters consisting of 𝐼𝑝ℎ , 𝐼𝑠𝑑 , 𝑛, 𝑅𝑠 and
𝑅𝑠ℎ that need to be estimated from the experimental data of the PV module.
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3. Model of the PV module parameter estimation problem

The main objective of the PV module parameter estimation problem is to search for unknown
parameters. In order to find these parameters, the problem is converted into an optimization
problem. Wherein, the goal is to minimize the difference between the estimated and experimental
values. Therefore, the root mean square error (RMSE) of the estimated and experimental values
is considered as the objective function of the considered problem that is described as follows:

RMSE =

√√√
1

No

No∑︁
𝑘=1

𝑓 (𝑉𝐿 , 𝐼𝐿 , 𝑥)2 , (2)

where: No is the number of the experimental data, and 𝑥 is the vector of unknown parameters of
the PV module consisting of 𝐼𝑝ℎ , 𝐼𝑠𝑑 , 𝑛, 𝑅𝑠 , 𝑅𝑠ℎ , 𝑓 (𝑉𝐿 , 𝐼𝐿 , 𝑥) is determined as follows:

𝑓 (𝑉𝐿 , 𝐼𝐿 , 𝑥) = 𝐼𝑝ℎ − 𝐼𝑠𝑑 ·
[
exp

(
𝑞 · (𝑉𝐿 + 𝑅𝑠 · 𝐼𝐿)
𝑁𝑐 · 𝑛 · 𝑘 · 𝑇

)
− 1

]
− 𝑉𝐿 + 𝑁𝑐 · 𝑅𝑠 · 𝐼𝐿

𝑅𝑠ℎ

− 𝐼𝐿 . (3)

4. Estimation method of the PV parameters based on golden
jackal optimization

Golden jackals live and hunt in pairs, performing the stages of the hunt that include searching
and following prey, locking up and irritating prey, and capturing prey. GJO is developed based on
the hunting behavior of golden jackals. Details of GJO for the PV module parameter estimation
are presented as follows:

Step 1: Generate the initial solution population
In order to solve the parameter estimation problem of the PV module using GJO, each solution

is considered as prey. The first and second best solutions are considered as the male and female
golden jackals, respectively. At the beginning, the population is created as follows:

𝑥𝑖 = rand · (𝑈 − 𝐿) + 𝐿, (4)

where: 𝑥𝑖 is the prey 𝑖 with 𝑖 = 1, 2, . . . , 𝑁 , 𝑁 is the population size, 𝑈 and 𝐿 are the upper and
lower limit vectors of each solution. Each vector consists of 𝐷 variables. 𝐷 is the dimension
problem.

Each prey is evaluated by its objective value using (2). Then, the first- and second-best preys
are considered as the position of male (𝑥𝑀 ) and female (𝑥𝐹𝑀 ) golden jackals.

Step 2: Update new position
Based on the evading energy of their prey, jackals determine their hunting behavior. The

evading energy (𝐸𝑣 ) level of the prey is defined as follows:

𝐸𝑣 = 𝑐1 ·
(
1 − 𝑖𝑡

𝑖𝑡max

)
· (2 · rand − 1), (5)
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where: 𝑐1 is constant with a value of 1.5, 𝑖𝑡 and 𝑖𝑡max are the current and maximum number
of iterations. From (5), the 𝐸𝑣 value will be reduced linearly from 𝑐1 to zero as the number of
iterations increases.

In the hunting process, the male golden jackal is the leader, and the female one follows the
male jackal. In nature, the prey is not easy to be caught. As the evading energy of prey is high,
which is defined by |𝐸𝑣 | > 1, the jackals must wait or search for another one. These behaviors
are formulated as the exploration or the prey searching strategy of GJO as follows:{

𝑥𝑖,1 = 𝑥𝑀 − 𝐸𝑣 · |𝑥𝑀 − 𝑐2 · 𝐿𝐹 · 𝑥𝑖 |

𝑥𝑖,2 = 𝑥𝐹𝑀 − 𝐸𝑣 · |𝑥𝐹𝑀 − 𝑐2 · 𝐿𝐹 · 𝑥𝑖 |
, (6)

where: 𝑥𝑖,1 and 𝑥𝑖,2 are, respectively, the positions of male and female jackals compared to the
prey, 𝑐2 is constant with a value of 0.05, and 𝐿𝐹 is the levy distribution that simulates the
movement of the prey to escape the golden jackals.

The evading energy of the prey decreases as it is harassed that is defined by |𝐸𝑣 | < 1. Then,
a pair of jackals pounce on their prey. These behaviors are formulated as the exploitation, or the
prey enclosing and grabbing strategies of GJO as follows:{

𝑥𝑖,1 = 𝑥𝑀 − 𝐸𝑣 · |𝑐1 · 𝐿𝐹 · 𝑥𝑀 − 𝑥𝑖 |

𝑥𝑖,2 = 𝑥𝐹𝑀 − 𝐸𝑣 · |𝑐1 · 𝐿𝐹 · 𝑥𝐹𝑀 − 𝑥𝑖 |
. (7)

Finally, the new position of the prey is updated as follows:

𝑥𝑖 =

(
𝑥𝑖,1 + 𝑥𝑖,2

)
2

. (8)

The new position of the prey is checked and adjusted to its allowed limits as follows:

𝑥𝑖, 𝑗 =


𝑈 𝑗 ; if 𝑥𝑖, 𝑗 > 𝑈 𝑗

𝐿 𝑗 ; if 𝑥𝑖, 𝑗 < 𝐿 𝑗

𝑥𝑖, 𝑗 ; otherwise

, (9)

where: 𝑥𝑖, 𝑗 is the variable 𝑗 with 𝑗 = 1, 2, . . . , 𝐷 of the solution 𝑖, 𝑈 𝑗 and 𝐿 𝑗 are the upper and
lower limits of the variable 𝑗 .

Then, each prey is evaluated by its objective value using (2). Then, the position of male (𝑥𝑀 )
and female (𝑥𝐹𝑀 ) golden jackals is updated again by comparing their objective value with the
objective value of the prey.

Step 3: Stop searching
The process of searching for the optimal solution of GJO for the PV parameter estimation

problem is stopped as the current iteration reaches a given maximum value. Then, the position
of the male golden jackal is considered as the result. The GJO flowchart for the problem of PV
parameter estimation is shown in Fig. 2.
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- Set GJO parameters including N, D and itmax
- Generate the initial population by (4)
- Calculate the RMSE value of each solution by (2)
- Determine two male and female jackal positions
- Set current iteration it = 1

it = it + 1
No
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end
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The optimal result (the male jackal position)

Determine the evading energy E of the prey by (5)

- Update the new population by (8)
- Adjust the population by (9)

NoYes
|E| ≥ 1

Determine positions between  
jackals and current prey by (6)

Determine positions between  
jackals and current prey by (7)

Calculate the RMSE value of each solution by (2)

Update the positions of male and female jackals by comparing 
the RMSE value of them with the RMSE of new population

Fig. 2. The flowchart of GJO for the PV parameter estimation problem

5. Results and discussion

To validate the estimation of the parameters of the PV model using GJO, the commercial
KC200GT is used to find unknown parameters with different irradiance and temperature levels.
The experimental data at irradiance levels of 1 000, 800, 600, 400, and 200 W·m2 at 25◦ as well
as at temperature levels of 25, 50, and 75◦ at an irradiance level of 1 000 W·m2 of this module
is directly withdrawn from the I-V curves of its datasheet. The KC200GT datasheet can be taken
from [31, 32]. The estimation method of PV model parameters based on GJO is built in Matlab
and run on the personal computer. It can be seen that GJO is also based on warm intelligence and
individuals tend to follow the leaders. So, in this work, the performance of GJO is compared with
the well-known algorithm PSO, which also works based on the aforementioned idea. Moreover, the
performance of GJO is also compared with the recent HGSO, which is developed on the grounds
of physics-based optimization. For PSO, the learning factor parameters are set to 2 [9, 33]. The
maximum number of iterations is chosen to be 2 000. For HGSO, the cluster number is set to 5,
and the other constants are selected the same as in [19]. All methods are run 50 times, and the
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best solution in these runs is considered as the optimal result. The control variable limits for the
PV module are shown in Table 1 [34–36].

Table 1. Parameter Limits of KC200GT

Item Iph(A) Isd(µA) nm Rs(𝛀) Rsh(𝛀)

Lower bound 0 0 1 0.01 100

Upper bound 10 50e-6 60 0.5 1 000

To evaluate the accuracy of the results obtained by GJO, the gained parameters are substituted
to the output current of the PV model shown in (1) to determine the calculated current and
power at each experimental voltage point. To find the calculated current, a system of nonlinear
equations is used [37, 38]. The calculated current (𝐼cal), power (𝑃cal) and the RMSE between
the calculated and experimental current, as well as power data, are obtained. Furthermore, the
absolute error between the calculated and experimental current (AEI) and the absolute error
between the calculated power and experimental power (AEP), which are, respectively, defined as
(10) and (11), are also obtained.

AEI = |𝐼mea − 𝐼cal | , (10)

AEP = |𝑉mea · 𝐼mea −𝑉mea · 𝐼cal | . (11)

The results of the parameter estimation of the KC200GT module for different irradiation and
temperature cases obtained by GJO are presented in Table 2.

Table 2. Estimated parameter of KC200GT by GJO

Irradiation and temperature Iph (A) Isd (µA) nm Rs (𝛀) Rsh (𝛀)

1000 W·m2, 25◦ 8.2233 0.0002 52.3491 0.3489 157.6605

800 W·m2, 25◦ 6.5444 0.0009 55.8299 0.3349 461.4157

600 W·m2, 25◦ 4.9210 0.0042 59.9923 0.2800 426.2278

400 W·m2, 25◦ 3.2739 0.0003 53.3692 0.3396 662.0661

200 W·m2, 25◦ 1.6452 0.0034 59.8778 0.1754 997.5971

1000 W·m2, 50◦ 8.3006 0.0956 58.8863 0.3180 603.8909

1000 W·m2, 75◦ 8.4616 1.8264 58.6982 0.3119 285.2745

Based on the parameter estimation results, calculated results for the corresponding irradiations
and temperatures are presented in Tables 3–9. Wherein, the number of data points (No) is shown
in the first column, the measured voltage 𝑉mea), current (𝐼mea) are given in columns 2, 3. The
measured power (𝑃mea) that is defined by 𝑉mea · 𝐼mea is given in column 6, while the calculated
current (𝐼cal) and power (𝑃cal) values based on the parameters estimated by GJO are given in
columns 4 and 7. The absolute error between the calculated and experimental current AEI, and
the absolute error between the calculated power and experimental power AEP are shown in
column 5 and column 8.
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Table 3. Simulated results of GJO for KC200GT at condition of 1 000 W·m2 and 25◦

No Vmea Imea Ical AEI Pmea Pcal AEP
1 32.8200 0.1559 0.1558 0.0001 5.1166 5.1148 0.0018
2 31.9900 1.6990 1.6954 0.0036 54.3510 54.2364 0.1146
3 30.8300 3.6280 3.6218 0.0062 111.8512 111.6587 0.1925
4 29.9900 4.8180 4.8138 0.0042 144.4918 144.3670 0.1249
5 28.9600 6.0040 5.9980 0.0060 173.8758 173.7028 0.1731
6 27.6100 7.0550 7.0547 0.0003 194.7886 194.7809 0.0077
7 25.9700 7.6970 7.7000 0.0030 199.8911 199.9694 0.0783
8 24.3700 7.9370 7.9405 0.0035 193.4247 193.5104 0.0857
9 21.9700 8.0450 8.0470 0.0020 176.7487 176.7934 0.0447

10 18.7300 8.0840 8.0849 0.0009 151.4133 151.4295 0.0162
11 15.0400 8.1100 8.1098 0.0002 121.9744 121.9719 0.0025
12 11.7400 8.1320 8.1308 0.0012 95.4697 95.4559 0.0138
13 8.8360 8.1520 8.1492 0.0028 72.0311 72.0064 0.0247
14 5.9340 8.1710 8.1676 0.0034 48.4867 48.4664 0.0203
15 3.2960 8.1880 8.1843 0.0037 26.9877 26.9754 0.0123
16 0.0643 8.2100 8.2047 0.0053 0.5279 0.5276 0.0003

Table 4. Simulated results of GJO for KC200GT at condition of 800 W·m2 and 25◦

No Vmea Imea Ical AEI Pmea Pcal AEP
1 32.4600 0.2478 0.2504 0.0026 8.0436 8.1294 0.0858
2 31.7400 1.4580 1.4683 0.0103 46.2769 46.6049 0.3280
3 31.0500 2.5270 2.5198 0.0072 78.4634 78.2396 0.2237
4 30.2600 3.5810 3.5654 0.0156 108.3611 107.8886 0.4724
5 29.3600 4.5420 4.5305 0.0115 133.3531 133.0142 0.3389
6 28.1200 5.4720 5.4604 0.0116 153.8726 153.5459 0.3268
7 26.8900 5.9920 5.9923 0.0003 161.1249 161.1321 0.0072
8 25.2700 6.2950 6.3144 0.0194 159.0747 159.5660 0.4914
9 23.3200 6.4130 6.4440 0.0310 149.5512 150.2741 0.7230

10 21.4600 6.4480 6.4807 0.0327 138.3741 139.0759 0.7018
11 18.6300 6.4710 6.4975 0.0265 120.5547 121.0491 0.4944
12 15.1300 6.4910 6.5067 0.0157 98.2088 98.4464 0.2376
13 11.5100 6.5100 6.5147 0.0047 74.9301 74.9840 0.0539
14 8.2110 6.5270 6.5218 0.0052 53.5932 53.5508 0.0424
15 4.9150 6.5450 6.5290 0.0160 32.1687 32.0899 0.0788
16 0.2349 6.5700 6.5391 0.0309 1.5433 1.5360 0.0073
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Table 5. Simulated results of GJO for KC200GT at condition of 600W·m2 and 25◦

No Vmea Imea Ical AEI Pmea Pcal AEP

1 32.0600 0.2035 0.1974 0.0061 6.5242 6.3292 0.1950

2 31.2800 1.3690 1.3757 0.0067 42.8223 43.0311 0.2087

3 30.3200 2.5340 2.5455 0.0115 76.8309 77.1782 0.3474

4 29.2700 3.4800 3.4714 0.0086 101.8596 101.6092 0.2504

5 28.0400 4.1750 4.1503 0.0247 117.0670 116.3757 0.6913

6 26.6500 4.5690 4.5491 0.0199 121.7639 121.2343 0.5295

7 25.3500 4.7280 4.7224 0.0056 119.8548 119.7130 0.1418

8 23.6800 4.8060 4.8155 0.0095 113.8061 114.0303 0.2243

9 21.4300 4.8400 4.8566 0.0166 103.7212 104.0766 0.3554

10 18.3300 4.8570 4.8733 0.0163 89.0288 89.3282 0.2994

11 15.0300 4.8710 4.8824 0.0114 73.2111 73.3820 0.1708

12 10.0300 4.8910 4.8943 0.0033 49.0567 49.0894 0.0327

13 4.9520 4.9110 4.9062 0.0048 24.3193 24.2953 0.0239

14 0.1424 4.9300 4.9174 0.0126 0.7020 0.7002 0.0018

Table 6. Simulated results of GJO for KC200GT at condition of 400 W·m2 and 25◦

No Vmea Imea Ical AEI Pmea Pcal AEP

1 31.6500 0.0069 0.0043 0.0025 0.2168 0.1367 0.0801

2 30.6700 1.1410 1.1389 0.0021 34.9945 34.9307 0.0638

3 29.6900 1.9680 1.9721 0.0041 58.4299 58.5514 0.1215

4 28.1800 2.7200 2.7266 0.0066 76.6496 76.8351 0.1855

5 26.6500 3.0450 3.0533 0.0083 81.1493 81.3692 0.2200

6 25.0300 3.1680 3.1779 0.0099 79.2950 79.5421 0.2470

7 22.8400 3.2170 3.2261 0.0091 73.4763 73.6851 0.2088

8 20.0100 3.2340 3.2405 0.0065 64.7123 64.8430 0.1306

9 15.0700 3.2490 3.2494 0.0004 48.9624 48.9688 0.0064

10 10.0600 3.2620 3.2570 0.0050 32.8157 32.7657 0.0500

11 5.0560 3.2750 3.2646 0.0104 16.5584 16.5057 0.0527

12 0.0505 3.2880 3.2721 0.0159 0.1660 0.1652 0.0008

The results in columns 5 and 8 in the tables show that the absolute error between the experi-
mental data and calculated data is very small at most data points. The I-V and P-V characteristics
constructed from the dataset estimated by GJO for the variable irradiance and temperature cases
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Table 7. Simulated results of GJO for KC200GT at condition of 200 W·m2 and 25◦

No Vmea Imea Ical AEI Pmea Pcal AEP
1 30.6900 0.0214 0.0208 0.0007 0.6574 0.6374 0.0199

2 29.5000 0.8035 0.8109 0.0074 23.7033 23.9215 0.2183

3 28.1900 1.2660 1.2555 0.0105 35.6885 35.3927 0.2959

4 26.7300 1.4860 1.4748 0.0112 39.7208 39.4207 0.3001

5 24.9200 1.5790 1.5752 0.0038 39.3487 39.2547 0.0940

6 22.6100 1.6090 1.6122 0.0032 36.3795 36.4529 0.0735

7 20.1000 1.6170 1.6228 0.0058 32.5017 32.6184 0.1167

8 15.0300 1.6250 1.6298 0.0048 24.4238 24.4955 0.0718

9 10.0300 1.6320 1.6349 0.0029 16.3690 16.3976 0.0287

10 5.0280 1.6380 1.6399 0.0019 8.2359 8.2453 0.0094

11 0.0908 1.6450 1.6448 0.0002 0.1494 0.1494 0.0000

Table 8. Simulated results of GJO for KC200GT at condition of 1 000 W·m2 and 50◦

No Vmea Imea Ical AEI Pmea Pcal AEP
1 29.8900 0.1553 0.1457 0.0096 4.6419 4.3563 0.2856

2 29.2300 1.3610 1.3740 0.0130 39.7820 40.1625 0.3805

3 28.4300 2.7290 2.7443 0.0153 77.5855 78.0214 0.4359

4 27.5500 4.0800 4.0801 0.0001 112.4040 112.4066 0.0026

5 26.7000 5.1850 5.1787 0.0063 138.4395 138.2715 0.1680

6 25.5800 6.3480 6.3178 0.0302 162.3818 161.6094 0.7725

7 23.9700 7.3990 7.3675 0.0315 177.3540 176.5989 0.7551

8 22.0700 7.9450 7.9474 0.0024 175.3462 175.3997 0.0535

9 20.4300 8.1150 8.1431 0.0281 165.7895 166.3641 0.5747

10 18.2300 8.1930 8.2343 0.0413 149.3584 150.1121 0.7537

11 14.9900 8.2320 8.2670 0.0350 123.3977 123.9227 0.5250

12 11.7600 8.2550 8.2762 0.0212 97.0788 97.3279 0.2491

13 8.8590 8.2740 8.2815 0.0075 73.2994 73.3658 0.0664

14 5.8910 8.2940 8.2865 0.0075 48.8600 48.8158 0.0442

15 3.3190 8.3110 8.2908 0.0202 27.5842 27.5171 0.0672

16 0.0878 8.3320 8.2961 0.0359 0.7316 0.7284 0.0032

are shown in Fig. 3 and Fig. 4. The figures show that in all cases, the location of the measured cur-
rent and power data is located on the calculated curves. This shows that the estimated parameter
set obtained by GJO has high accuracy.
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Table 9. Simulated results of GJO for KC200GT at condition of 1 000 W·m2 and 75◦

No Vmea Imea Ical AEI Pmea Pcal AEP

1 26.9000 0.2266 0.2087 0.0179 6.0955 5.6151 0.4804

2 26.2100 1.4640 1.4719 0.0079 38.3714 38.5786 0.2072

3 25.4400 2.7490 2.7672 0.0182 69.9346 70.3970 0.4624

4 24.4900 4.1530 4.1776 0.0246 101.7070 102.3105 0.6035

5 23.5600 5.3300 5.3366 0.0066 125.5748 125.7301 0.1553

6 22.4600 6.4270 6.4096 0.0174 144.3504 143.9585 0.3919

7 21.3300 7.2190 7.1903 0.0287 153.9813 153.3700 0.6112

8 19.9400 7.8050 7.7836 0.0215 155.6317 155.2040 0.4277

9 18.6200 8.1350 8.0884 0.0466 151.4737 150.6056 0.8681

10 17.0300 8.2530 8.2677 0.0147 140.5486 140.7986 0.2500

11 14.9600 8.3320 8.3607 0.0287 124.6467 125.0764 0.4296

12 11.7200 8.3750 8.4050 0.0300 98.1550 98.5068 0.3518

13 8.8830 8.3960 8.4200 0.0240 74.5817 74.7946 0.2130

14 5.9150 8.4170 8.4314 0.0144 49.7866 49.8717 0.0851

15 3.2770 8.4340 8.4408 0.0068 27.6382 27.6605 0.0223

16 0.1113 8.4550 8.4519 0.0031 0.9410 0.9407 0.0003

(a) (b)

Fig. 3. The experiment and simulation data obtained by GJO for KC200GT module at irradiation levels from
200 to 1 000 W·m2 at temperature of 25◦: I-V curve (a); P-V curve (b)
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A comparison of GJO, PSO, and HGSO for all cases of irradiance and temperature in terms
of statistical results is shown in Table 10. From the table, the values of all components consisting
of the maximum (objmax), minimum (objmin), average (objaver) objective, and standard deviation
(std) in 50 runs of GJO are always lower than those of PSO and HGSO. For the calculated
times, the execution time for GJO to search for the optimal solution of the PV module parameter
estimation problem is faster than that of HGSO. In comparison with PSO, GJO is slower than that
of PSO because the mechanism for updating new solutions of PSO only depends on a velocity
expression, which is simpler than the updated mechanisms of GJO. Figure 5 presents the boxplot
of GJO, PSO, and HGSO for cases of irradiance of 1 000, 800, 600, 400, and 200 W·m2 at 25◦,
and cases of irradiance of 1 000 W·m2 at 50 and 75◦, corresponding to positions from 1 to 7 on
the horizontal axis. The figure shows that the fluctuation and concentration tendency of objective
values of GJO are much lower than PSO and HGSO. These results confirm the high performance
of GJO for the parameter estimation of the PV module.

Table 10. The compared results among GJO, PSO and HGSO at irradiance and temperature levels

Irradiation
and temperature Method objmax objmin objaver std Run time (s)

PSO 524.6750 0.5047 35.3192 88.9386 3.3256
1 000 W·m2, 25◦ HGSO 2.4274 0.0236 2.2071 0.6669 12.3753

GJO 2.4252 0.0056 1.1338 1.2041 7.1188

PSO 135.2914 0.7057 21.5304 29.9484 3.4597
800 W·m2, 25◦ HGSO 1.9334 0.0280 1.8952 0.2695 12.2081

GJO 1.9333 0.0203 0.6402 0.8962 8.0353

PSO 46.0573 0.4471 9.3466 12.5196 4.3362
600 W·m2, 25◦ HGSO 1.4020 0.04535 1.3497 0.2579 12.2228

GJO 1.4017 0.0142 0.4683 0.6477 7.4112

PSO 57.0946 0.5933 9.5941 10.8020 4.4125
400 W·m2, 25◦ HGSO 0.9550 0.0141 0.9015 0.2124 13.2263

GJO 0.9544 0.0082 0.3920 0.4640 8.0581

PSO 25.1278 0.1903 5.5655 3.8630 4.4081
200 W·m2, 25◦ HGSO 0.4351 0.0155 0.4132 0.0891 13.2363

GJO 0.4350 0.0061 0.2220 0.2153 7.9481

PSO 7.6889 0.0535 1.7576 1.6476 5.6675
1000 W·m2, 50◦ HGSO 2.6167 0.0299 1.4456 1.2567 15.2491

GJO 2.6165 0.0271 0.3956 0.9052 7.3281

PSO 1.1657 0.0308 0.4263 0.3477 4.4641
1000 W·m2, 75◦ HGSO 2.6213 0.0306 0.2117 0.4182 14.9991

GJO 2.6213 0.0285 0.1392 0.5119 8.0156
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(a) (b)

Fig. 4. The experiment and simulation data obtained by GJO for KC200GT module at irradiation level of
1 000 W·m2 at temperature of 25, 50 and 75◦: I-V curve (a); P-V curve (b)

Fig. 5. The boxplot of GJO, PSO and HGSO in 50 runs for irradiation and temperature levels

In comparison with some previous methods, the optimal results obtained by GJO and some
other methods for the KC200GT module at 1 000 W·m2 and 25◦ are presented in Table 11.
The table shows that GJO finds a better RMSE value compared to PSO, HGSO, and the previous
methods such as GWO [13], SSA [16], and CWOA [16], while the RMSE gained by GJO is slightly
higher than those of SC-GBO [17] and WHHO [8]. This result confirms that the application of
GJO for the PV module parameter estimation is reliable.
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Table 11. Comparison of GJO and other methods for KC200GT module

Method Iph (A) Isd (µA) nm Rs (𝛀) Rsh (𝛀) RMSE

GJO 8.2233 0.0002 52.3491 0.3489 157.6605 0.0056

PSO 7.9778 0.0048 60.0000 0.1337 347.5834 0.5047

HGSO 8.2213 0.0023 58.2241 0.3197 201.5652 0.0236

GWO [13] 8.2121 3.2661 75.1518 0.1832 705.1926 0.2100

SSA [16] 8.1445 0.0103 62.4186 0.2196 477.2540 0.0383

CWOA [16] 8.2149 0.0018 57.6126 0.2381 136.0336 0.0283

SC-GBO [17] 8.2168 0.0262 65.4966 0.0048 6.2802 0.0006

WHHO [8] 8.2105 0.0022 57.3210 0.3416 765.3519 0.0015

6. Conclusions

This paper presents a method of estimating the parameters of a photovoltaic module based
on GJO. The performance of the proposed GJO for the PV parameter estimation problem is
demonstrated via the parameter estimation of the commercial KC200GT module under irradiance
levels of 1 000, 800, 600, 400, and 200 W·m2 at the temperature at 25◦, as well as an irradiance
level of 1 000 W·m2, and temperature levels of 25, 50 and 75◦. The performance of GJO is
compared with PSO and HGSO in terms of statistical results in several independent runs. The
numerical results show that the calculated I-V and P-V characteristics of the KC200GT module
under different irradiance and temperature levels determined by the proposed GJO method are
matched with the extracted dataset. In comparison with PSO and HGSO, GJO reaches better
results than PSO and HSGO for most cases of irradiance and temperature, showing lower RMSE
values. Furthermore, the results compared with some previous methods also show the reliability of
GJO for the considered problem. Therefore, GJO can be a reliable approach for the PV parameter
estimation problem under various environmental conditions. In the future, the efficiency of GJO
may be applied to determining the parameters of the PV module, taking into account the noise of
data.
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