Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the development of a method for increasing the efficiency of communication channels of unmanned aerial vehicles (UAVs) in the conditions of electronic warfare (EW). The author analyses the threats that may be caused by the use of electronic warfare against autonomous UAVs. A review of some technologies that can be used to create original algorithms for countering electronic warfare and increasing the autonomy of UAVs on the battlefield is carried out. The structure of modern digital communication systems is considered. The requirements of unmanned aerial vehicle manufacturers for onboard electronic equipment are analyzed, and the choice of the hardware platform of the target radio system is justified. The main idea and novelty of the proposed method are highlighted. The creation of a model of a cognitive radio channel for UAVs is considered step by step. The main steps of modelling the spectral activity of electronic warfare equipment are proposed. The main criteria for choosing a free spectral range are determined. The type of neural network for use in the target cognitive radio system is substantiated. The idea of applying adaptive coding in UAV communication channels using multicomponent turbo codes in combination with neural networks, which are simultaneously used for cognitive radio, has been further developed.
Go to article

Authors and Affiliations

Serhii Semendiai
1
Yuliіa Tkach
1
Mykhailo Shelest
1
Oleksandr Korchenko
2
Ruslana Ziubina
3
Olga Veselska
3

  1. Chernihiv Polytechnic NationalUniversity, Chernihiv, Ukraine
  2. Department of Information Technology Security of National Aviation University, Kyiv, Ukraine
  3. Department of Computer Science andAutomatics of the University of Bielsko-Biala, Bielsko-Biala, Poland
Download PDF Download RIS Download Bibtex

Abstract

The determination of precise emitter location is a very important task in electronic intelligence systems. Its basic requirements include the detection of the emission of electromagnetic sources (emitters), measurement of signal parameters, determining the direction of emitters, signal analysis, and the recognition and identification of their sources. The article presents a new approach and algorithm for calculating the location of electromagnetic emission sources (radars) in a plane based on the bearings in the radio-electronic reconnaissance system. The main assumptions of this method are presented and described i.e. how the final mathematical formulas for calculating the emitter location were determined for any number of direction finders (DFs). As there is an unknown distance from the emitter to the DFs then in the final formulas it is stated how this distance should be calculated in the first iteration. Numerical simulation in MATLAB showed a quick convergence of the proposed algorithm to the fixed value in the fourth/fifth iteration with an accuracy less than 0.1 meter. The computed emitter location converges to the fixed value regardless of the choice of the starting point. It has also been shown that to precisely calculate the emitter position, at least a dozen or so bearings from each DFs should be measured. The obtained simulation results show that the precise emitter location depends on the number of DFs, the distances between the localized emitter and DFs, their mutual deployment, and bearing errors. The research results presented in the article show the usefulness of the tested method for the location of objects in a specific area of interest. The results of simulation calculations can be directly used in radio-electronic reconnaissance systems to select the place of DFs deployment to reduce the emitter location errors in the entire reconnaissance area.
Go to article

Bibliography

[1] Willey, R. G. (1985). Electronic Intelligence: The Interception of Radar Signals. Artech House.
[2] Oshman, Y., & Davidson, P. (1999). Optimization of observer trajectories for bearings-only target localization. IEEE Transactions on Aerospace and Electronic Systems, 35(3), 892–902. https://doi.org/10.1109/7.784059
[3] Tehrani, M. A., Laurin, J. J., & Savaria, Y. (2016). Multiple targets direction-of-arrival estimation in frequency scanning array antennas. IET Radar, Sonar & Navigation, 10(3), 624–631. https://doi.org/10.1049/iet-rsn.2015.0401
[4] Rutkowski, A., & Kawalec, A. (2020). Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle. Sensors, 20(18), 5186. https://doi.org/10.3390/s20185186
[5] Wang, Y., Jie, H., & Cheng, L. (2019). A Fusion Localization Method based on a Robust Extended Kalman Filter and Track-Quality forWireless Sensor Networks. Sensors, 19(16), 3638. https://doi.org/10.3390/s19173638
[6] Chow, T. L. (2001). Passive emitter location using digital terrain data [Doctoral dissertation, Binghamton University State University of New York].
[7] Poisel, R. A. (2012). Electronic Warfare Target Location Methods (2nd. ed.). Artech House.
[8] Willey, R. G. (2006). ELINT. The Interception and Analysis of Radar Signals. Horizon House Publications.
[9] Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42(8), 1905–1915. https://doi.org/10.1109/78.301830
[10] Bugaj, J., & Górny, K. (2019, March). Analysis of estimation algorithms for electromagnetic source localization. In XII Conference on Reconnaissance and Electronic Warfare Systems (Vol. 11055, p. 110550W). International Society for Optics and Photonics. https://doi.org/10.1117/12.2524927
[11] O’Connor, A., Setlur, P., & Devroye, N. (2015). Single-sensor RF emitter localization based on multipath exploitation. IEEE Transactions on Aerospace and Electronic Systems, 51(3), 1635–1651. https://doi.org/10.1109/TAES.2015.120807
[12] Adamy, D. L. (2001). EW 101. A First Course in Electronic Warfare. Artech House. [13] Adamy, D. L. (2004). EW 102. A Second Course in Electronic Warfare. Horizon House Publications.
[14] Becker, K. (1992). An efficient method of passive emitter location. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1091–1104. https://doi.org/10.1109/7.165371
[15] Foy, W. H. (1976). Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems, AES-12(2), 187–194. https://doi.org/10.1109/TAES.1976.308294
[16] Mangel, M. (1981). Three Bearing Method for Passive Triangulation in Systems with Unknown Deterministic Biases. IEEE Transactions on Aerospace and Electronic Systems, AES-17(6), 814–819. https://doi.org/10.1109/TAES.1981.309133
[17] Adamy, D. L. (2005). Emitter Location: Reporting Location Accuracy. The Journal of Electronic Defense, (7).
[18] Kelner, J. M., & Ziółkowski, C. (2020). Effectiveness of Mobile Emitter Location by Cooperative Swarm of Unmanned Aerial Vehicles in Various Environmental Conditions. Sensors, 20(9), 2575. https://doi.org/10.3390/s20092575
[19] Mahapatra, P. R. (1980). Emitter location independent of systematic errors in direction finders. IEEE Transactions on Aerospace and Electronic Systems, AES-16(6), 851–855. https://doi.org/10.1109/TAES.1980.309009
[20] Matuszewski, J., & Dikta, A. (2017, April). Emitter location errors in electronic recognition system. In XI Conference on Reconnaissance and Electronic Warfare Systems (Vol. 10418, p. 104180C). International Society for Optics and Photonics. https://doi.org/10.1117/12.2269295
[21] Stansfield, R. G. (1947). Statistical theory of DF fixing. Journal of the Institution of Electrical Engineers-Part IIIA: Radiocommunication, 94(14), 762–770. https://doi.org/10.1049/ji-3a-2.1947.0096
[22] Vakin, S. A., Shustov, L. N., Dunwell, R. H. (2001). Fundamentals of Electronic Warfare. Artech House.
[23] Bature, U. I., Tahir, N. M., Yakub, N. A., & Baba, M. A. (2020). Multi-baseline Emitter Location System: A Correlative Interferometer Approach. Nigerian Journal of Engineering, 27(2), 92–98.
[24] Becker, K. (1992). An efficient method of passive emitter location. IEEE Transactions on Aerospace and Electronic Systems, 28(4), 1091–1104. https://doi.org/10.1109/7.165371
[25] Tian, B., Huang, H., & Li, Y. (2009, September). Direction of arrival estimation using nonlinear function of sum and difference beam. In 2009 IEEE Youth Conference on Information, Computing and Telecommunication (pp. 311–314). IEEE. https://doi.org/10.1109/YCICT.2009.5382360
[26] Ghilani, C. D., &Wolf, P. R. (2007). Adjustment Computations: Spatial Data Analysis (4th ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470121498
[27] Gavish, M., & Weiss, A. J. (1992). Performance analysis of bearing-only target location algorithms. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 817–828. https://doi.org/10.1109/7.256302
[28] He, Y., Behnad, A., & Wang, X. (2015). Accuracy analysis of the two-reference-node angle-of-arrival localization system. IEEE Wireless Communications Letters, 4(3), 329–332. https://doi.org/10.1109/LWC.2015.2415788
[29] Kukes, I. S., Starik, M. Ye. (1964). Principles of Radio Direction Finding. Soviet Radio Publishing House. (in Russian)
[30] Paradowski, L. R. (1998, May). Microwave emitter position location: present and future. In 12th International Conference on Microwaves and Radar. MIKON-98. Conference Proceedings (IEEE Cat. No. 98EX195) (pp. 97–116). IEEE. https://doi.org/10.1109/MIKON.1998.738464
[31] Paradowski, L. R. (1997). Uncertainty ellipses and their application to interval estimation of emitter position. IEEE Transactions on Aerospace and Electronic Systems, 33(1), 126–133. https://doi.org/10.1109/7.570715
[32] Rui, L., & Ho, K. C. (2014). Elliptic localization: Performance study and optimum receiver placement. IEEE Transactions on Signal Processing, 62(18), 4673–4688. https://doi.org/10.1109/TSP.2014.2338835
[33] Shirman Ya. D. (Eds.). (1970). Theoretical fundamentals of radiolocation. Sovietskoe Radio. (in Russian)
[34] Tondwalkar, A. V., & Vinayakray-Jani, P. (2015, December). Terrestrial localization by using angle of arrival measurements in wireless sensor network. In 2015 International Conference on Computational Intelligence and CommunicationNetworks (CICN) (pp. 188–191). IEEE. https://doi.org/10.1109/CICN.2015.44
[35] Wang, Z., Luo, J. A.,&Zhang, X. P. (2012).Anovel location-penalized maximum likelihood estimator for bearing-only target localization. IEEE Transactions on Signal Processing, 60(12), 6166–6181. https://doi.org/10.1109/TSP.2012.2218809
[36] Ziółkowski, C., & Kelner, J. M. (2015). The influence of propagation environment on the accuracy of emission source bearing. Metrology and Measurement Systems, 22(4), 591–600.
Go to article

Authors and Affiliations

Jan Matuszewski
1
Tomasz Kraszewski
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, gen. S. Kaliskiego 2, 00–908 Warsaw, Poland

This page uses 'cookies'. Learn more