Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This research presents a method for the simulation of the magneto-mechanical system dynamics taking motion and eddy currents into account. The major contribution of this work leans on the coupling the field-motion problem considering windings as the current forced massive conductors, modelling of the rotor motion composed of two conductive materials and the torque calculation employing the special optimal predictor combined with the modified Maxwell stress tensor method. The 3D model of the device is analysed by the time stepping finite element method. Mechanical motion of the rotor is determined by solving the second order motion equation. Both magnetic and mechanical equations are coupled in the iterative solving process. Presented method is verified by solving the TEAM Workshop Problem 30.
Go to article

Authors and Affiliations

Jakub Bernat
Sławomir Stępień
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the possibility for increasing of the informational value of a response signal using tilt-shift eddy current probe. Numerical simulations based on the FEM method using the OPERA 3D software as well as gained experimental results are presented. The simulated cracks are evaluated at the selected eddy current probe tilts and shifts with respect to conductive plate to obtain additional data needed for its evaluation and localization. Obtained simulation results are compared and discussed with the experimental results.
Go to article

Authors and Affiliations

Vladimir Chudacik
Milan Smetana
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is presentation and comparison of calculation methods of the inductance matrix of a 3-column multi-winding autotransformer. Main and leakage autotransformer inductance was obtained using finite elements method. Static calculations were made at the current supply for 2D and 3D models, and mono-harmonic calculations were made at the voltage supply. In the mono-harmonic calculations the eddy current losses were taken into account, this made it possible to study relationship between the autotransformer parameters and the frequency. Calculations were made using Ansys and the authors' own programs in Matlab.

Go to article

Authors and Affiliations

Marek Gołębiowski
Damian Mazur
Download PDF Download RIS Download Bibtex

Abstract

The 15-winding and 3-column autotransformer supplying an 18-pulse rectifier circuit was developed. Presented methods can be used also for the autotransformers of other topologies supplying different kinds of converters. Presented methods make it possible to exactly calculate main and leakage inductances of the multi-winding autotransformer. The presented analysis of the eigenvalues and eigenvectors of the inductance matrix makes it possible to identify the influence nature of individual modes on the inductance matrix, and to compare the calculation results obtained using the presented methods. Frequency dependence of autotransformer parameters was shown. Also modes of the impedance matrix of the multi-winding autotransformer was investigated, this made it possible to identify the influence nature of individual modes on the inductance matrix. Using presented methods one can exactly calculate main and leakage inductances of the autotransformer. Thanks to this, one can design in optimal way autotransformers for supplying, for example, rectifier circuits, THD coefficients. The results of the measurements and simulations were also shortly presented at the end of the article.

Go to article

Authors and Affiliations

Marek Gołębiowski
Damian Mazur
Download PDF Download RIS Download Bibtex

Abstract

The optimization method using the ON/OFF sensitivity analysis has an advantage hat an epoch-making construction of magnetic circuit may be obtained. Therefore, it is attractive for designers of magnetic devices. We have already developed the ON/OFF method for the optimization of a static magnetic field problem, and the effectiveness is verified by applying it to the optimization of magnetic recording heads. In this paper, the ON/OFF sensitivity method is extended to the optimization of the eddy current problem using the adjoint variable. The newly developed ON/OFF method is applied to the determination of the optimal topology of the yoke of the billet heater for rolling wire rod. As a result, the optimal shape of yoke, which we could not imagine beforehand can be obtained. It is shown that the local heating of the yoke was reduced without decreasing the heating efficiency.

Go to article

Authors and Affiliations

Norio Takahashi
Shunsuke Nakazaki
Daisuke Miyagi
Naoki Uchida
Keiji Kawanaka
Hideyuki Namba
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of analysis of the influence of rotor construction on the steady-state torque-speed characteristics of a high-speed eddy-current brake. The investigation is carried out using two- and three-dimensional finite element models and measurements. A series of computations is carried out in order to find out the method for performance improvement of the considered system.
Go to article

Authors and Affiliations

Tomasz Garbiec
Marcin Kowol
Janusz Kołodziej
Download PDF Download RIS Download Bibtex

Abstract

Harmonic flux penetrating solid conductive material causes eddy currents inside. It seems plausible that its magnitude does not exceed the exciting magnetomotive force (mmf). However, under certain circumstances the opposite occurs. This article deals with a special case in which the eddy current is approximately 13% higher than the exciting mmf. An analytical field solution, a finite element calculation and a measurement proving this phenomenon are presented. A special flux linkage is turned out to be the reason for this phenomenon. Finally, another example with higher pronounced mmfexceeding in a coil is presented.

Go to article

Authors and Affiliations

Roman Vogel
Download PDF Download RIS Download Bibtex

Abstract

The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained.

Go to article

Authors and Affiliations

Dariusz Koteras
Download PDF Download RIS Download Bibtex

Abstract

Precise measurement of rail vehicle velocities is an essential prerequisite for the implementation of modern train control systems and the improvement of transportation capacity and logistics. Novel eddy current sensor systems make it possible to estimate velocity by using cross-correlation techniques, which show a decline in precision in areas of high accelerations. This is due to signal distortions within the correlation interval. We propose to overcome these problems by employing algorithms from the field of dynamic programming. In this paper we evaluate the application of correlation optimized warping, an enhanced version of dynamic time warping algorithms, and compare it with the classical algorithm for estimating rail vehicle velocities in areas of high accelerations and decelerations.

Go to article

Authors and Affiliations

Stefan Hensel
Marin B. Marinov
Download PDF Download RIS Download Bibtex

Abstract

A limited ability to discriminate between different materials is the fundamental problem with all conventional eddy-current-based metal detectors. This paper presents the use, evaluation and classification of nontraditional excitation signals for eddy-current metal detectors to improve their detection and discrimination ability. The presented multi-frequency excitation signals are as follows: a step sweep sine wave, a linear frequency sweep and sin(x)/x signals. All signals are evaluated in the frequency domain. Amplitude and phase spectra and polar graphs of the detector output signal are used for classification and discrimination of the tested objects. Four different classifiers are presented. The classification results obtained with the use of poly-harmonic signals are compared with those obtained with a classical single-tone method. Multifrequency signals provide more detailed information, due to the response function – the frequency characteristic of a detected object, than standard single-tone methods. Based on the measurements and analysis, a metal object can be better distinguished than when using a single-tone method.
Go to article

Authors and Affiliations

Jakub Svatoš
Tomáš Pospíšil
Josef Vedral
Download PDF Download RIS Download Bibtex

Abstract

Rare-earth permanent magnets are coated in order to avoid corrosion. When considering the rated geometrical properties of a sample, the coating thickness has to be known precisely as it wrongly enlarges the magnetically active volume which in turn affects the accuracy of the measured magnetic properties. In this work, the sensitivity of hard magnetic material property measurements regarding the consideration of different coating thicknesses is evaluated. Moreover, the impact of eddy current effects on the magnetic properties is studied when measuring in an open circuit. Additionally, an outlook for a measurement-based determination of the electric conductivity of permanent magnet samples is given.
Go to article

Authors and Affiliations

Alexander Kern
1
ORCID: ORCID
Nora Leuning
1
ORCID: ORCID
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Schinkelstr. 4, D-52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

The current passed by the stator coil of the permanent magnet synchronous motor (PMSM) provides rotating magnetic field, and the number of turns will directly affect the performance of PMSM. In order to analyze its influence on the PMSM performance, a 3 kW, 1500 r/min PMSM is taken as an example, and the 2D transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM. The performance parameters of the PMSM are obtained. On this basis, the influence of the number of turns on PMSM performance is quantitatively analyzed, including current, no-load back electromotive force (EMF), overload capacity and torque. In addition, the influence of the number of turns on eddy current loss is further studied, and its variation rule is obtained, and the variation mechanism of eddy current loss is revealed. Finally, the temperature field of the PMSM is analyzed by the coupling method of electromagnetic field and temperature field, and the temperature rise law of PMSM is obtained. The analysis of this paper provides reference and practical value for the optimization design of PMSM.

Go to article

Authors and Affiliations

H. Qiu
Y. Zhang
C. Yang
R. Yi
Download PDF Download RIS Download Bibtex

Abstract

In conventional finite element simulations, foil windings with thin foils and with a large number of turns require many mesh elements. This renders models quickly computationally infeasible. This paper uses a homogenized foil winding model and approximates the voltage distribution in the foil winding domain by globally supported polynomials. This way, the small-scale structure in the foil winding domain does not have to be resolved by the finite element mesh. The method is validated successfully for a stand-alone foil winding example and for a pot inductor example. Moreover, a transformer equipped with a foil winding at its primary side is simulated using a field-circuit coupled model.
Go to article

Authors and Affiliations

Jonas Bundschuh
1 2
ORCID: ORCID
Yvonne Späck-Leigsnering
1 2
ORCID: ORCID
Herbert De Gersem
1 2
ORCID: ORCID

  1. Institute for Accelerator Science and Electromagnetic Fields (TEMF) Technical University of Darmstadt Schloßgartenstraße 8, 64289 Darmstadt, Germany
  2. Graduate School of Excellence Computational Engineering Technical University of Darmstadt Dolivostraße 15, 64293 Darmstadt, Germany
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the inverse problem associated to 3D crack identification inside a conductive material using eddy current measurements. In order to accelerate the time-consuming direct optimization, the reconstruction is provided by the minimization of a last-square functional of the data-model misfit using space mapping (SM) methodology. This technique enables to shift the optimization burden from a time consuming and accurate model to the less precise but faster coarse surrogate model. In this work, the finite element method (FEM) is used as a fine model while the model based on the volume integral method (VIM) serves as a coarse model. The application of the proposed method to the shape reconstruction allows to shorten the evaluation time that is required to provide the proper parameter estimation of surface defects.

Go to article

Authors and Affiliations

Piotr Putek
Guillaume Crevecoeur
Marian Slodička
Konstanty Gawrylczyk
Roger van Keer
Luc Dupré
Download PDF Download RIS Download Bibtex

Abstract

The calculations results of the temperature distribution in a 3-phase transformer with modular amorphous core are presented. They were performed for two frequency values which were higher than the power system one. For the 3D field analyses the Finite Element Method (FEM) was used. The calculated temperature at the points of the core surface has been verified using an infrared camera.

Go to article

Authors and Affiliations

Bronisław Tomczuk
Dariusz Koteras
Download PDF Download RIS Download Bibtex

Abstract

This paper considers a Brushless Direct Current (BLDC) machine prototype with six poles and 36 stator slots including a three phase double-layered distributed winding. Presented modifications of rotor construction are identified in order to achieve the best possible compromise of eddy-current losses and cogging torque characteristics. The permanent magnet (PM) eddy-current loss is relatively low compared with the iron loss; it may cause significant heating of the PMs due to the relatively poor heat dissipation from the rotor and it results in partial irreversible demagnetization. A reduction in both losses is achieved by magnet segmentation mounted on the rotor. Various numbers of magnet segmentation is analysed. The presented work concerns the computation of the no-load iron loss in the stator, rotor yoke and eddy-current loss in the magnets. It is shown that the construction of the rotor with segmented magnets can significantly reduce the PM loss (eddy-current loss). The eddy-current loss in PMs is caused by several machine features; the winding structure and large stator slot openings cause flux den sity variations that induce eddy-currents in the PMs. The effect of these changes on the BLDC motor design is examined in order to improve the machine performance. 3-D finite-element analysis (FEA) is used to investigate the electromagnetic behaviour of the BLDC motor.

Go to article

Authors and Affiliations

Adrian Młot
Mariusz Korkosz
Marian Łukaniszyn
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present the results of simulations of the Magnetic Induction Tomography (MIT) forward problem. Two complementary calculation techniques have been implemented and coupled, namely: the finite element method (applied in commercial software Comsol Multiphysics) and the second, algebraic manipulations on basic relationships of electromagnetism in Matlab. The developed combination saves a lot of time and makes a better use of the available computer resources.

Go to article

Authors and Affiliations

Krzysztof Stawicki
Beata Szuflitowska
Marcin Ziolkowski
Download PDF Download RIS Download Bibtex

Abstract

Due to the skin effect of eddy currents, the depth of cracks which can be detected by the traditional eddy current probe is very limited. In order to improve the ability of eddy current probes to inspect deep cracks in metal thick-walled structures, a new eddy current probe using an excitation system with phase shifted fields was proposed. Its feasibility for detecting deep cracks was verified by simulation and experiments. The results showed that the penetration depth of eddy currents in austenitic stainless steel is effectively enhanced by using the new probe.

Go to article

Authors and Affiliations

Meixian Wu
Dongli Zhang
Chuanglong Wang
Download PDF Download RIS Download Bibtex

Abstract

Pot-cored coils are commonly used as probes in eddy current testing. In this paper, an analytical model of such a coil placed over a three-layer plate with a hole has been presented. The proposed solution enables the modelling of both magnetic and non-magnetic conductive plates that contain different types of hole, i.e. a through, a surface, an inner or a subsurface hole. The problem was solved by using the truncated region eigenfunction expansion (TREE) method. The analysis was carried out in a cylindrical coordinate system in which the solution domain was radially limited. With the employment of the filamentary coil, the expressions for the magnetic vector potential, and subsequently for the impedance of the cylindrical coil were obtained. The final formulas were presented in a closed form and then implemented in Matlab. The resistance and reactance values were compared with the results obtained in the experiment and using the finite element method in the Comsol Multiphysics package. In each of the cases, good agreement was obtained.

Go to article

Authors and Affiliations

G. Tytko
Download PDF Download RIS Download Bibtex

Abstract

A mathematical method for nonlinear surrogate synthesis of frame surface eddy current probes providing a uniform eddy current density distribution in the testing object area is proposed. A metamodel of a frame movable eddy-current probe with a planar excitation system structure, used in the algorithm for surrogate optimal synthesis was created. The examples of a nonlinear synthesis of excitation systems with the application of the modern metaheuristic stochastic algorithms for finding the global extremum are considered. The numerical findings of the problem analyses are presented. The efficiency of the synthesized excitation structures was demonstrated on the basis of the eddy current density distribution graphs on the surface of the control zone of the object in comparison with classical analogues.
Go to article

Bibliography

[1] Rosado, L. S., Gonzalez, J. C., Santos, T. G., Ramos, P. M., & Pieda, M. (2013). Geometric optimization of a differential planar eddy currents probe for non-destructive testing. Sensors and Actuators A: Physical., 197, 96–105. https://doi.org/10.1016/j.sna.2013.04.010
[2] Su, Z., Efremov, A., Safdarnejad, M., Tamburrino, A., Udpa, L., & Udpa, S. (2015). Optimization of coil design for near uniform interrogating field generation. AIP Conference Proceedings, 1650, 405–413. https://doi.org/10.1063/1.4914636
[3] Su, Z.,Ye, C., Tamburrino, A., Udpa, L.,&Udpa, S. (2016). Optimization of coil design for eddy current testing of multi-layer structures. International Journal of Applied Electromagnetics and Mechanics, 52(1–2), 315–322. https://doi.org/10.3233/JAE-162030
[4] Liu, Z., Yao, J., He, C., Li, Z., Liu, X., & Wu, B. (2018). Development of a bidirectional-excitation eddy-current sensor with magnetic shielding: Detection of subsurface defects in stainless steel. IEEE Sensors J., 18(15), 6203–6216. https://doi.org/10.1109/JSEN.2018.2844957
[5] Ye, C., Udpa, L., & Udpa, S. (2016). Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection. Sensors, 16(9), 1512. https://doi.org/10.3390/s16091512
[6] Rekanos, I. T., Antonopoulos, C. S., & Tsiboukis, T. D. (1999). Shape design of cylindrical probe coils for the induction of specified eddy current distributions. IEEE Transactions Magnetics, 35(3), 1797–1800. https://doi.org/10.1109/20.767380
[7] Li, Y., Ren, S., Yan, B., Zainal Abidin, I. M., & Wang, Y. (2017). Imaging of subsurface corrosion using gradient-field pulsed eddy current probes with uniform field excitation. Sensors, 17, 1747. https://doi.org/10.3390/s17081747
[8] Hashimoto, M., Kosaka, D., Ooshima, K., & Nagata, Y. (2002). Numerical analysis of eddy current testing for tubes using uniform eddy current distribution. International Journal of Applied Electromagnetics and Mechanics, 15(1–4), 27–32. https://doi.org/10.3233/JAE-2002-511
[9] Repelianto, A. S., Kasai, N., Sekino, K., & Matsunaga, M. (2019). A Uniform Eddy Current Probe with a Double-Excitation Coil for Flaw Detection on Aluminium Plates. Metals, 9(10), 1116. https://doi.org/10.3390/met9101116
[10] Halchenko, V. Ya., Trembovetskaya, R. V., & Tychkov, V. V. (2020). Surface eddy current probes: excitation systems of the optimal electromagnetic field (review). Devices and Methods of Measurements, 11(2), 91–104. https://doi.org/10.21122/2220-9506-2020-11-2-91-104
[11] Trembovetska, R. V., Halchenko, V. Ya., Tychkov, V. V., & Storchak, A. V. (2020). Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System. International Journal “NDT Days”, 3(4), 184–190. https://www.bg-s-ndt.org/journal/ vol3/JNDTD-v3-n4-a01.pdf (in Russian)
[12] Halchenko, V. Ya., Yakimov, A. N., & Ostapuschenko, D. L. (2010). Global optimum search of functions with using of multiagent swarm optimization hybrid with evolutional composition formation of population. Information Technology, 10, 9–16. http://novtex.ru/IT/it2010/It1010.pdf (in Russian)
[13] Itaya, T., Ishida, K., Kubota, Y., Tanaka, A., & Takehira, N. (2016). Visualization of Eddy Current Distributions for Arbitrarily Shaped Coils Parallel to a Moving Conductor Slab. Progress In Electromagnetics Research M, 47, 1–12. https://doi.org/10.2528/PIERM16011204
[14] Itaya, T., Ishida, K., Tanaka, A., Takehira, N., & Miki, T. (2012). Eddy Current Distribution for a Rectangular Coil Arranged Parallel to a Moving Conductor Stab. IET Science, Measurement & Technology, 6(2), 43–51. https://doi.org/10.1049/iet-smt.2011.0015
[15] Kozieł, S., & Bekasiewicz, A. (2017). Multi-objective design of antennas using surrogate models, World Scientific Publishing Europe Ltd. [16] Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2008). Engineering design via surrogate modelling: a practical guide. Chichester: Wiley.
[17] Burnaev, E. V., Erofeev, P., Zaitsev, A., Kononenko, D., & Kapushev E. (2015). Surrogate modeling and optimization of the airplane wing profile based on Gaussian processes. http://itas2012.iitp.ru/pdf/ 1569602325.pdf (in Russian)
[18] Koziel, S., Echeverría Ciaurri, D., & Leifsson L. (2011). Surrogate-based methods. In Koziel S., Yang XS. (Eds.), Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, 356, Springer-Verlag. https://doi.org/10.1007/978-3-642-20859-1_3
[19] Halchenko, V. Ya., Trembovetska, R. V., Tychkov, V. V., & Storchak, A. V. (2019). Nonlinear surrogate synthesis of the surface circular eddy current probes. Przegla˛d Elektrotechniczny, 9, 76–82. https://doi.org/10.15199/48.2019.09.15
[20] Halchenko,V. Ya., Trembovetska, R. V.,&Tychkov, V. V. (2019). Linear synthesis of non-axial surface eddy current probes. International Journal “NDT Days”, 2(3), 259–268. https://www.ndt.net/article/ NDTDays2019/papers/JNDTD-v2-n3-a03.pdf (in Russian)
[21] Trembovetska, R. V., Halchenko, V. Y., & Tychkov, V. V. (2019). Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system. International Scientific Journal Mathematical Modeling, 4(3), 113–116. https://stumejournals.com/journals/ mm/2019/4/113
[22] Koshevoy, N. D., Gordienko, V. A., & Sukhobrus, Ye. A. (2014). Optimization for the design matrix realization value with the aim to investigate technological processes. Telecommunications and radio engineering, 73(15), 1383–1386. https://doi.org/10.1615/TelecomRadEng.V73.i15.60 (in Russian)
[23] Halchenko, V. Ya., Trembovetska, R. V., Tychkov, V. V., & Storchak, A. V. (2020). The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd–sequence. Applied Computer Systems, 25(1), 70–76. https://doi.org/10.2478/ acss-2020-0009
[24] Brink, H., Richards, J., & Fetherolf, M. (2017). Real-World Machine Learning. Manning Publications Co.
[25] Kuznetsov, B. I., Nikitina, T. B.,& Bovdui, I. V. (2020). Active shielding of magnetic field of overhead power line with phase conductors of triangle arrangement. Tekhnichna elektrodynamika, 4, 25–28. https://doi.org/10.15407/techned2020.04.025
Go to article

Authors and Affiliations

Volodymyr Ya. Halchenko
1
Ruslana Trembovetska
1
ORCID: ORCID
Volodymyr Tychkov
1
ORCID: ORCID

  1. Cherkasy State Technological University, Instrumentation, Mechatronics and Computer Technologies Department, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Existing scientific studies devoted to the design of eddy-current probes with a priori given configuration of the electromagnetic excitation field, which provide a uniform eddy current density distribution, consider a wide class of such, but are limited to the case when the probe is stationary relative to the testing object. Therefore, the actual problem is the synthesis of moving tangential eddy current probes with a frame excitation system that provides a uniform eddy current density distribution in the testing object, the solution of which is proposed in this study.
A mathematical method for nonlinear surrogate synthesis of excitation systems for frame moving tangential surface eddy current probes, which implements a uniform eddy current density distribution of the testing zone object, is proposed. A metamodel of the volumetric structure of the excitation system of the frame tangential eddy current probe, applied in the process of surrogate optimal parametric synthesis, has been created. The examples of nonlinear synthesis of excitation systems using modern metaheuristic stochastic algorithms for finding the global extremum are considered. The numerical results of the obtained solutions of the problems are presented. The efficiency of the synthesized structures of excitation systems in comparison with classical analogs is shown on the graphs of the eddy current density distribution on the object surface in the testing zone.
Go to article

Bibliography

[1] Repelianto A.S., Development of uniform eddy current probes using multi excitation coils, Doctoral Dissertation, Graduate School of Environment and Information Sciences, Yokohama National University (2020).
[2] Halchenko V.Y., Trembovetskaya R.V., Tychkov V.V., Surface eddy current probes: excitation systems of the optimal electromagnetic field (review), Devices and Methods of Measurements, vol. 11, no. 2, pp. 91–104 (2020), DOI: 10.21122/2220-9506-2020-11-2-91-104.
[3] Huang L., Zou J., Zhang J., ZhouY., Deng F., A novel rectangular vertical probe with a conductive shell for eddy current testing, International Journal of Applied Electromagnetics and Mechanics, vol. 62, no. 1, pp. 191–205 (2019), DOI: 10.3233/JAE-190058.
[4] Halchenko V.Y., Trembovetskaya R.V., Tychkov V.V., Linear synthesis of non-axial surface eddy current probes, International Journal “NDT Days”, vol. 2, no. 3, pp. 259–268 (2019).
[5] Trembovetska R.V., Halchenko V.Y., Tychkov V.V., Storchak A.V., Linear synthesis of uniform anaxial eddy current probes with a volumetric structure of the excitation system, International Journal “NDT Days”, vol. 3, no. 4. pp. 184–190 (2020).
[6] Trembovetska R.V., Halchenko V.Y., Tychkov V.V., Bazilo C.V., Linear synthesis of frame eddy current probes with a planar excitation system, International Scientific Journal “Mathematical Modeling”, vol. 4, no. 3. pp. 86–90 (2020).
[7] Itaya T., Ishida K., Kubota Y., Tanaka A., Takehira N., Visualization of eddy current distributions for arbitrarily shaped coils parallel to a moving conductor slab, Progress in Electromagnetics Research M, vol. 47, pp. 1–12 (2016), DOI: 10.2528/pierm16011204.
[8] Itaya T., Ishida K., Tanaka A., Takehira N., Miki T., A new analytical method for calculation of eddy current distribution and its application to a system of conductor-slab and rectangular coil, Progress in Electromagnetics Research Symposium, pp. 135–139 (2011).
[9] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Storchak A.V., Nonlinear surrogate synthesis of the surface circular eddy current probes, Przegląd Elektrotechniczny, no. 9, pp. 76–82 (2019), DOI: 10.15199/48.2019.09.15.
[10] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Development of excitation structure RBFmetamodels of moving concentric eddy current probe, Electrical Engineering & Electromechanics, no. 2, pp. 28–38 (2019), DOI: 10.20998/2074-272X.2019.2.05.
[11] Trembovetska R.V., Halchenko V.Y., Tychkov V.V., Studying the computational resource demands of mathematical models for moving surface eddy current probes for synthesis problems, Eastern- European Journal of Enterprise Technologies, vol. 95, no. 5/5, pp. 39–46 (2018), DOI: 10.15587/1729-4061.2018.143309.
[12] Forrester A.I.J., Sóbester A., Keane A.J., Engineering design via surrogate modelling: a practical guide, Chichester, Wiley (2008).
[13] Koziel S., Echeverrı’a-Ciaurri D., Leifsson L., Surrogate-based methods, Computational Optimization, Methods and Algorithms, Berlin, Springer-Verlag, pp. 33–59 (2011), https://link.springer.com/chapter/10.1007/978-3-642-20859-1_3
[14] Simon Haykin, Neural networks: a complete course, Moscow, Williams Publ. House (2006).
[15] Géron A., Hands-on machine learning with scikit-learn, keras, and tensorflow, O’Reilly Media (2019).
[16] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Storchak A.V., Methods for creating metamodels: state of the question, Visnyk of Vinnytsia Politechnical Institute, vol. 151, no. 4, pp. 74–88 (2020), DOI: 10.31649/1997-9266-2020-151-4-74-88.
[17] Elsawah M., Constructing uniform experimental designs: in view of centered and wrap-around discrepancy, LAP LAMBERT Academic Publishing: (Theory of probability, stochastics, mathematical statistics) (2014).
[18] HalchenkoV.Y., Trembovetska R.V., TychkovV.V., Storchak A.V., The construction of effective multidimensional computer designs of experiments based on a quasi-random additive recursive Rd-sequence, Applied Computer Systems, vol. 25, no. 1, pp. 70–76 (2020), DOI: 10.2478/acss-2020-0009.
[19] Brink H., Richards J., Feverolph M., Machine learning, SPb, Peter (2017).
[20] Benchabira A., Khiat M., A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network, Archives of Electrical Engineering, vol. 68, no. 3, pp. 535–551 (2019), DOI: 10.24425/aee.2019.129340.
[21] Kuznetsov B.I., Nikitina T.B., Bovdui I.V., Active shielding of magnetic field of overhead power line with phase conductors of triangle arrangement, Technical Electrodynamisc, no. 4, pp. 25–28 (2020), DOI: 10.15407/techned2020.04.025.
[22] Halchenko V.Y., Yakimov A.N., Ostapuschenko D.L., Global optimum search of functions with using of multiagent swarm optimization hybrid with evolutional composition formation of population, Information Technology, no. 10, pp. 9–16 (2010).
[23] Halchenko V.Y., Yakimov A.N., Ostapuschenko D.L., Method of Pareto-optimal parametric synthesis of axially symmetric magnetic systems taking into account the nonlinear magnetic properties of a ferromagnetic, Journal of Technical Physics, no. 7, pp. 1–7 (2012).
[24] Suresho V., Janiko P., Jasinskio M., Metaheuristic approach to optimal power flow using mixed integer distributed ant colony optimization, Archives of Electrical Engineering, vol. 69, no. 2, pp. 335–348 (2020), DOI: 10.24425/aee.2020.133029.
Go to article

Authors and Affiliations

Volodymyr Yakovych Halchenko
1
ORCID: ORCID
Ruslana Volodymyrivna Trembovetska
1
ORCID: ORCID
Volodymyr Volodymyrovych Tychkov
1
ORCID: ORCID

  1. Cherkasy State Technological University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

New methods for identifying the material properties of planar objects as a result of measurements by the eddy current method are proposed. The methods are based on the latest surrogate strategies and advanced optimization techniques that improve efficiency and reduce resource consumption of problem solutions, and balance computational complexity with the accuracy of the results. High-performance metamodels for global surrogate optimization are based on deep truly meaningful fully connected neural networks, serving as an additional function of accumulating apriori information about objects. High accuracy of the approximation of the multidimensional response surface, which is determined by the “exact” electrodynamic model of the testing process, is ensured by performing calculations according to the computer design of a homogeneous experiment with a low weighted symmetric centered discrepancy. The results of numerical experiments performed for full and reduced dimensional search spaces, which can be obtained by linear transformations using the principal component method, are presented. The verification of the methods proved their sufficiently high accuracy and computational performance.
Go to article

Authors and Affiliations

Volodymyr Y. Halchenko
1
ORCID: ORCID
Ruslana Trembovetska
1
ORCID: ORCID
Volodymyr Tychkov
1
ORCID: ORCID
Nataliia Tychkova
1
ORCID: ORCID

  1. Instrumentation, Mechatronics and Computer Technologies Department Cherkasy State Technological University Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Fractional-slot concentrated-winding permanent magnet synchronous machines (FSCW-PMSMs) have a good prospect of application in the drive system of electric and hybrid electric vehicles. However, the armature magnetomotive force (MMF) of FSCWPMSM contains a large number of space harmonics, which induce large magnet eddycurrent loss (ECL). To solve this problem, a dual three-phase 10-pole and 24-slot winding layout is proposed.MMFharmonic analysis shows that the 1st, 7th and 17th space-harmonic winding factors of the proposed winding can be reduced by 100%, 87% and 87% respectively, compared with a dual three-phase 10-pole and 12-slot winding. Electromagnetic performances of the proposed machine under rated sinusoidal current supply and space vector pulse-width-modulated (SVPWM) voltage supply are investigated based on 2D finite-element analysis. It is shown that the proposed machine can meet the requirement of torque and efficiency in the full speed range. Especially, magnet ECL can be reduced greatly due to the reduction of the 7th and 17th space harmonics.
Go to article

Authors and Affiliations

Zhenfei Chen
1
Ning Xing
2
Hongzhong Ma
1
Zhixin Li
3
Jiayu Li
1
Chenyang Fan
1

  1. College of Energy and Electrical Engineering, Hohai University Jiangsu, China
  2. School of Electrical and Information Engineering, Tianjin University Tianjin, China
  3. Electric Power Science Research Institute, Jiangsu Electric Power Company, Jiangsu, China

This page uses 'cookies'. Learn more