Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 262
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present study has been taken up to emphasize the role of the hybridization process for optimizing a given reinforced concrete (RC) frame. Although various primary techniques have been hybrid in the past with varying degree of success, the effect of hybridization of enhanced versions of standard optimization techniques has found little attention. The focus of the current study is to see if it is possible to maintain and carry the positive effects of enhanced versions of two different techniques while using their hybrid algorithms. For this purpose, enhanced versions of standard particle swarm optimization (PSO) and a standard gravitational search algorithm (GSA), were considered for optimizing an RC frame. The enhanced version of PSO involves its democratization by considering all good and bad experiences of the particles, whereas the enhanced version of the GSA is made self-adaptive by considering a specific range for certain parameters, like the gravitational constant and a set of agents with the best fitness values. The optimization process, being iterative in nature, has been coded in C++. The analysis and design procedure is based on the specifications of Indian codes. Two distinct advantages of enhanced versions of standard PSO and GSA, namely, better capability to escape from local optima and a faster convergence rate, have been tested for the hybrid algorithm. The entire formulation for optimal cost design of a frame includes the cost of beams and columns. The variables of each element of structural frame have been considered as continuous and rounded off appropriately to consider practical limitations. An example has also been considered to emphasize the validity of this optimum design procedure.

Go to article

Authors and Affiliations

Sonia Chutani
Jagbir Singh
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to find the cost design of RC tension with varying conditions using the Artificial Neural Network. Design constraints were used to cover all reliable design parameters, such as limiting cross sectional dimensions and; their reinforcement ratio and even the beahviour of optimally designed sections. The design of the RC tension members were made using Indian and European standard specifications which were discussed. The designed tension members according to both codes satisfy the strength and serviceability criteria. While no literature is available on the optimal design of RC tension members, the cross-sectional dimensions of the tension membersfor different grades of concrete and steel, and area of formwork are considered as the variables in the present optimum design model. A design example is explained and the results are presented. It is concluded that the proposed optimum design model yields rational, reliable, and practical designs.

Go to article

Authors and Affiliations

N. Karthiga Shenbagam
N. Arunachalam
Download PDF Download RIS Download Bibtex

Abstract

U-turn lanes eliminate left turns at intersections and allow the manoeuvre to be made via median crossovers beyond the intersection. However, there are many situations where road infrastructures are characterized by the reduced width of the median. It is clear that, in such situations, we must adopt design criteria that take into account limitations imposed by the width of the cross-section of the road. This is the reason why it is necessary to adopt design solutions which expect a complete reorganization of the road section affected by the insertion of U-turns. In this paper, we intend to propose original guidelines for U-turn lane design, suitable to guarantee both the necessity to offer a high level of functionality of the road sections to be implemented by U-turns, and the principles of safety in order to reduce unsafe conditions during inversion manoeuvres as much as possible.

Go to article

Authors and Affiliations

N. Distefano
S. Leonardi
Download PDF Download RIS Download Bibtex

Abstract

The article presents the ideas of flexible design in the construction sector. Flexibility in the construction sector was discussed and defined between typical and flexible approaches to design. The idea applied during the economic effectiveness analysis of construction projects was introduced. The issue of flexibility was discussed based on the example of construction of a sports facility - The National Stadium in Warsaw. An effectiveness analysis was applied for variant solutions.

Go to article

Authors and Affiliations

M. Kośmieja
J. Pasławski
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the tensile and flexural strength of HPC (high performance concrete). The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

Go to article

Authors and Affiliations

M. Kępniak
P. Woyciechowski
Download PDF Download RIS Download Bibtex

Abstract

The cyclic modular approach is proposed for mechatronic object design. The approach is based on a new conceptual model of the object and a new algorithm of its design. The model consists of invariant and changeable parts. The parts have a hierarchical structure. The proposed algorithm allows for creating the object from the basis principle to the construction step by step. It makes it possible to design an adequate object in all forms of its representations: structure, schematic diagram, mathematical model and construction. Each of these forms has an invariant part, i.e. the structure of the functioning process of the object. Application of the proposed approach reduces the time needed for the object design.

Go to article

Authors and Affiliations

Oleksandr Uzunov
Download PDF Download RIS Download Bibtex

Abstract

On the shift toward tender sensitivity – the role of relations, emotions, and empathy in design.

Go to article

Authors and Affiliations

Monika Rosińska
Download PDF Download RIS Download Bibtex

Abstract

The preservation of historical documents is a task that requires a multidisciplinary team. Mechanical engineering can make valuable contributions. Historical documents made of paper have unique characteristics that must be considered for their preservation and exhibition. Specially designed encasements have emerged as a solution to meet these requirements. In the present research, a comparative design study was carried out. The study comprises identifying the main functions of the encasements. Subsequently, it is analyzed how the capsules that appear in the literature have solved these functions. With the information obtained, three new encasements were designed for historical documents in Mexico. From the results and design experiences, some insights and design principles were obtained; these can be universally applied.
Go to article

Bibliography


[1] Instituto Nacional de Antropología e Historia. Web page of INAH. 1 October 2020. [On line]. Available: https://www.inah.gob.mx/.
[2] G. d. México. Archivo General de la Nación. [On line]. Available: https://www.gob.mx/agn. [Last acces: 10 nov 2020].
[3] W.K. Wilson and B.W. Forshee. Preservation of documents by lamination. Washington: National Bureau of Standards, 1959.
[4] A. Bansal, V. Kumari, A. Kumar and M. Singh. Securing the future of information: digitisation and preservation of documents in e-format. DESIDOC Bulletin of Information Technology, 25(1):19–26, 2005.
[5] F. Zhao. On choosing the digital document’s file format for long-term preservation. In IEEE 3rd International Conference on Communication Software and Networks, pages 370–372, Xi’an, China, 27–27 May, 2011. doi: 10.1109/ICCSN.2011.6013850.
[6] E.F. Hansen. Protection of objects from environmental deterioration by reducing their exposure to oxygen. In: S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 2, pages 7–16. The Getty Conservation Institute, 1998.
[7] N. Valentín. Preservation of historic materials by using inert gases for biodeterioration control. In S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 3, pages 17–30. The Getty Conservation Institute, 1998.
[8] R.H. Allen, R.J. Fijol, S. Szykman and R.D. Sriram. Representing the charters of freedom in a design repository: A case of study. In Proceedings of DETC 2001 ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference, pages 593–599. Pittsburgh, PA, USA, 9-12 September, 2001. doi: 10.1115/DETC2001/CIE-21292.
[9] N. Stolow. Conservation and Exhibitions: Packing, Transport, Storage, and Environmental Considerations. Butterworth-Heinemann, London, 1987.
[10] N.Y. Iskander. Controlled-environment cases for the Royal Mummy Collection. In: S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 5, pages 47–52. The Getty Conservation Institute, 1998.
[11] H. Kishan and S. Maekawa. Preservation of the original documents of the Constitution of India. In: S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 6, pages 53–58. The Getty Conservation Institute, 1998.
[12] F.G. France and M. Toth. The Waldseemüller Map – A gift of Germany to the world. The Cartographic Journal, 50(3):286–292, 2013. doi: 10.1179/1743277413Y.0000000060.
[13] M.J. French and A.C. Ramirez-Reivich. Towards a comparative study of quarter-turn pneumatic valve actuators. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 210(6):543–552, 1996. doi: 10.1243/PIME_PROC_1996_210_153_02.
[14] G. Pahl, W. Beitz, J. Feldhusen and K.-H. Grote. Engineering Design. A Systematic Approach, 3rd edition. Springer, 2007.
[15] R.B. Stone and K.L.Wood. Development of a functional basis for design. Journal of Mechanical Design, 122(4):359–370, 2000. doi: 10.1115/1.1289637.
[16] B. Tyl, J. Legardeur, D. Millet, and F. Vallet. A comparative study of ideation mechanisms used in eco-innovation tools. Journal of Engineering Design, 25(10-12):325–345, 2014. doi: 10.1080/09544828.2014.992772.
[17] C.A. Mattson and A.E. Wood. Nine principles for design for the developing world as derived from the engineering literature. Journal of Mechanical Design, 135(12):121403, 2014. doi: 10.1115/1.4027984.
Go to article

Authors and Affiliations

Alejandro C. Ramirez-Reivich
1
Ma. Pilar Corona-Lira
1
Diego A. Zamora-Garcia
1
Anahí Velazquez-Silva
1
Vicente Borja
1

  1. School of Engineering, National Autonomous University of Mexico, Mexico City, Mexico
Download PDF Download RIS Download Bibtex

Abstract

Structural design analyses of industrial dye mixing machines, concerning mixing impeller geometries, mixing performances, and power requirements aren't generally of scientific quality. Our aim is to propose a practical method for minimizing execution time, using parametric design. In this study, Visual Basic API codes are developed in order to model the impellers in SolidWorks software, and then flow analyses are conducted. Thus, velocity values and moment/torque values required for mixing operation are determined. This study is carried out for different shaft rotational speeds and different impeller diameters. Flow trajectories are obtained. After that, frequency analyses are conducted and natural frequency values are obtained. In the scope of this study, two different impeller types are investigated.

Go to article

Bibliography

[1] R.R. Hemrajani and G.B. Tatterson. Mechanically stirred vessels. In: E.L. Paul, V.A. Atemio-Obeng, S.M. Kresta, editors, Handbook of Industrial Mixing Science and Practice, chapter 6, pages 345–390. John Wiley & Sons, 2004.
[2] S.M. Kresta and D.S. Dickey. Flow patterns and mixing. In: E.L. Paul, A.W. Etchells III, S.M. Kresta, V.A. Atemio-Obeng, editors, Advances in industrial mixing: A companion to the handbook of industrial mixing, chapter 6b, pages 153–187. John Wiley & Sons, 2016.
[3] Mixing Equipment (Impeller Type). Equipment Testing Procedures Committee of the Americal Institute of Chemical Engineers. 3rd edition, New York: MixTech, 2001.
[4] T.M.M. Shahin. Feature-based design – an overview. Computer-Aided Design and Applications, 5(5):639–653, 2008. doi: 10.3722/cadaps.2008.639-653.
[5] Y. Shan and W. Zhang. Parametric design of straight bevel gears based on SolidWorks. In Proceedings of the 2nd International Conference on Computer Application and System Modeling, pages 591–594, Taiyuan, Shanxi, China, 27–29 July, 2012. doi: 10.2991/iccasm.2012.150.
[6] Y. Bodein, B. Rose, and E. Caillaud. Explicit reference modeling methodology in parametric CAD system. Computers in Industry, 65(1):136–147, 2014. doi: 10.1016/j.compind.2013.08.004.
[7] A.C. Lad and A.S. Rao. Design and drawing automation using SolidWorks application programming interface. International Journal of Emerging Engineering Research and Technology, 2(7):157–167, 2014.
[8] J.D. Camba, M. Contero, and P. Company. Parametric CAD modeling: An analysis of strategies for design reusability. Computer-Aided Design, 74:18–31, 2016. doi: 10.1016/j.cad.2016.01.003.
[9] M.H. Vakili and M.N. Esfahany. CFD analysis of turbulence in a baffled stirred tank, a three-compartment model. Chemical Engineering Science, 64(2):351–362, 2009. doi: 10.1016/j.ces.2008.10.037.
[10] H.C. Ayaz and Z. Kıral. On the parametric design and analysis of industrial dye mixing machines. In Proceedings of the 3rd International Conference on Engineering and Natural Science, pages 686–693, Budapest, Hungary, 3–7 May, 2017.
[11] J.Y. Lee and K. Kim. Geometric reasoning for knowledge-based parametric design using graph representation. Computer-Aided Design, 28(10):831–841, 1996. doi: 10.1016/0010-4485(96)00016-4.
[12] O.O. Akçalı. Parametric design of automotive ball joint using computer assisted 3D modelling. Master's Thesis, Çukurova University, Adana, Turkey, 2015.
[13] C.R.B. Hernandez. Thinking parametric design: introducing parametric Gaudi. Design Studies, 27(3):309–324, 2006. doi: 10.1016/j.destud.2005.11.006.
[14] S. Myung and S. Han. Knowledge-based parametric design of mechanical products based on configuration design method. Expert Systems with Applications, 21(2):99–107, 2001. doi: 10.1016/S0957-4174(01)00030-6.
[15] B. Bettig and J. Shah. Derivation of a standard set of geometric constraints for parametric modeling and data exchange. Computer-Aided Design, 33(1):17–33, 2001. doi: 10.1016/S0010-4485(00)00058-0.
[16] J. Monedero. Parametric design: a review and some experiences. Automation in Construction, 9(4):369–377, 2000. doi: 10.1016/S0926-5805(99)00020-5.
[17] A. Titus and L.X. Bin. Secondary development of SolidWorks for standard components based on database. International Journal of Science and Research, 2(10):162–164, 2013.
[18] U. Farhan, S. O'Brien, and M.T. Rad. SolidWorks secondary development with Visual Basic 6 for an automated modular fixture assembly approach. International Journal of Engineering, 6(6):290–304, 2012.
[19] S.P. Prince, R.G. Ryan, and T. Mincer. Common API: using Visual Basic to communicate between engineering design and analytical software tools. In Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition, 2005.
Go to article

Authors and Affiliations

Hatice Cansu Ayaz Ümütlü
1
Zeki Kıral
2

  1. Dokuz Eylül University, The Graduate School of Natural and Applied Sciences, Department of Mechatronics Engineering, Tınaztepe-Buca/İzmir, Turkey
  2. Dokuz Eylül University, Faculty of Engineering, Department of Mechanical Engineering, Tınaztepe-Buca/İzmir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD) software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primary humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.

Go to article

Authors and Affiliations

X.R. Ding
Y.Y. Cino
Y.Y. Chen
Download PDF Download RIS Download Bibtex

Abstract

The paper analyses the influence of seasonal temperature variations on fatigue strength of flexible and semi-rigid pavement structures chosen for KR4 traffic flow category. The durability of pavement determined assuming a yearly equivalent temperature of 10˚C and assuming season-dependent equivalent temperatures was compared. Durability of pavement was determined with the use of Asphalt Institute Method and French Method. Finite Element Method was applied in order to obtain the strain and stress states by the means of ANSYS Mechanical software. Obtained results indicate a considerable drop in pavement durability if seasonal temperature variations are considered (up to 64% for flexible pavements and up to 80% for semi-rigid pavements). Durability obtained by the French Method presents lower dependence on the analysed aspect.

Go to article

Authors and Affiliations

B. Haponiuk
A. Zbiciak
Download PDF Download RIS Download Bibtex

Abstract

Designer drugs cause irreversible changes in the brain and put those who take them at an increased risk of developing Alzheimer’s and Parkinson’s disease. They can also affect one’s genetic material, says Prof. Krystyna Gołembiowska from the PAS Institute of Pharmacology.

Go to article

Authors and Affiliations

Katarzyna Gołembiowska
Download PDF Download RIS Download Bibtex

Abstract

This paper studies the influence of different cooling technologies on the power density of a traction machine for heavy-duty distribution transport. A prototype induction machine is built with a housing cooling jacket, potted end-windings, entire winding cooling, and shaft cooling. Electromagnetic finite element and thermal lumped-parameter models are parameterized and verified using test bench measurements. The influence of each thermal resistance along the heat paths is studied and discussed. The results are used for studying different cooling technologies. The results indicate an improvement of the continuous power density up to 108% using shaft cooling and up to 15.6% using entire winding cooling.
Go to article

Authors and Affiliations

Benedikt Groschup
1
ORCID: ORCID
Daniel Butterweck
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Schinkelstraße 4, 52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

This article will focus on an analytical framework as a research tool in design disciplines. Key problem for an analytical framework in landscape architecture is how to deal with the dynamics of landscape form, design and use in the design process.

We start with a short overview will be given of analytical frameworks. In the second part some generic principles of analytical frameworks will be applied in three case studies of 19th century public parks. The third part will focus on how results of such an analysis can be used for the future and how results of peopleenvironment studies can be part of that.

One of the conclusions is, that people-environment studies can play a role before, during and after the design process. In most cases results of people-environment studies cannot be applied directly but rather as part of an iterative process of research and design.

Go to article

Authors and Affiliations

Martin Van Den Toorn
Marina Bihunova
Iva Rechner Dika
Atilla Tóth
Nevena Vasiljevic
Download PDF Download RIS Download Bibtex

Abstract

The text attempts to show the forgotten beauty in architecture. It seems, that the “drawn” architecture can reveal more than the real — built one. The avant-garde of the early 20th century killed in art the need to strive for beauty. Novelty and contemporarily advertising form of architecture are becoming the most important. However, the problem of beauty seems to be still interesting in art. Architecture is slowly departing from the functionalist way of creating, yet it cannot return to the beauty, that once was so important. It is the drawn one, carrying the message of unreality, that makes it possible to return to the forgotten approach to creation. Architects’ drawings can bring back a visionary and idealistic message.

Go to article

Authors and Affiliations

Tomasz Kozłowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper is dedicated to Voivodship Park of Culture and Recreation in Chorzów (Silesia Park) – one of the biggest of its kind in Poland and in Europe (ca. 600 ha of total area). Construction of the Park had begun in 1954 according to the design under the direction of prof. Władysław Niemirski. After many years it became an example of successful land remediation and re-naturalization of anthropogenic landscape. The whole facility though formally created in socrealism style, actually represents classical modernism’s features inspired probably by American parks with a rich recreation program.

Go to article

Authors and Affiliations

Beata Fortuna-Antoszkiewicz
Jan Łukaszkiewicz
Piotr Wiśniewski
Download PDF Download RIS Download Bibtex

Abstract

In the paper a research on cost-effective optimum design boiling temperature for Organic Rankine Cycle utilizing low-temperature heat sources is presented. The ratio of the heat exchanger area of the boiler to the power output is used as the objective function. Analytical relations for heat transfer area as well power of the cycle are formulated. Evaporation temperature and inlet temperature of the heat source medium as well its mass flow rate are varied in the optimization method. The optimization is carried out for three working fluids, i.e. R 134a, water and ethanol. The objective function (economics profitability, thermodynamic efficiency) leads to different optimal working conditions in terms of evaporating temperature. Maximum power generation in the near-critical conditions of subcritical ORC is the highest. The choice of the working fluid can greatly affect the objective function which is a measure of power plant cost. Ethanol exhibits a minimum objective function but not necessarily the maximum cycle efficiency.
Go to article

Authors and Affiliations

Dariusz Mikielewicz
Jarosław Mikielewicz
Download PDF Download RIS Download Bibtex

Abstract

Zinc plant residue is a hazardous waste which contains high quantity of nickel and other valuable metals. Process parameters such as reaction time, acid concentration, solid-liquid ratio, particle size, stirring speed and temperature for nickel extraction from this waste were optimized using factorial design. Main effects and their interactions were obtained by the analysis of variance ANOVA. Empirical regression model was obtained and used to predict nickel extraction with satisfactory results and to describe the relationship between the predicted results and the experiment results. The important parameters for maximizing nickel extraction were identifi ed to be a leaching time solid-liquid ratio and acid concentration. It was found that above 90% of nickel could be extracted in optimum conditions.
Go to article

Authors and Affiliations

Mahdi Gharabaghi
Mehdi Irannajad
Amir Reza Azadmehr
Majdi Ejtemaei
Download PDF Download RIS Download Bibtex

Abstract

The paper proposes a procedure which enables to determine selected geometric and operating parameters for twin-fluid liquid-to-air atomisers with internal mixing. The presented approach assumes that in order to ensure proper operation of an atomiser it is necessary to design its structure and flow parameters in such a way so that the flow inside the mixing chamber has a dispersive character. In order to calculate a required exhaust cross-section for the analysed atomiser, conditions within the exhaust plane: pressure, density and outflow velocity were estimated. In order to determine diameter and number of orifices supplying the liquid to the mixing chamber of the investigated atomiser type, a multi-parameter analysis based on numerical fluid mechanics was performed. The final part of the paper presents selected results obtained from experimental stand measurements made on an atomiser designed according to the presented procedure.

Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Download PDF Download RIS Download Bibtex

Abstract

Water is a strategic material. Recycling is an important component of balancing its use. Deep-bed filtration is an inexpensive purification method and seems to be very effective in spreading water recovery. Good filter designs, such as the fibrous filter, have high separation efficiency, low resistance for the up-flowing fluid and high retention capacity. However, one of the substantial problems of this process is the biofouling of the filter. Biofouling causes clogging and greatly reduces the life of the filter. Therefore, the melt-blown technique was used for the formation of novel antibacterial fibrous filters. Such filters are made of polypropylene composites with zinc oxide and silver nanoparticles on the fiber surface. These components act as inhibitors of bacterial growth in the filter and were tested in laboratory and full scale experiments. Antibacterial/bacteriostatic tests were performed on Petri dishes with E. coli and B. subtilis. Full scale experiments were performed on natural river water, which contained abiotic particles and mutualistic bacteria. The filter performance at industrial scale conditions was measured using a particle counter, a flow cytometer and a confocal microscope. The results of the experiments indicate a significant improvement of the composite filter performance compared to the regular fibrous filter. The differences were mostly due to a reduction in the biofouling effect.

Go to article

Authors and Affiliations

Ewa Sztuk-Sikorska
Gradoń Leon
Download PDF Download RIS Download Bibtex

Abstract

A suitable use of software packages for optimization problems can give the possibility to formulate design problems of robotic mechanical systems by taking into account the several aspects and behaviours for optimum solutions both in design and operation. However, an important issue that can be even critical to obtain practical solutions can be recognized in a proper identification and formulation of criteria for optimability purposes and numerical convergence feasibility. In this paper, we have reported experiences that have been developed at LARM in Cassino by referring to the abovementioned issues of determining a design procedure for manipulators both of serial and parallel architectures. The optimality criteria are focused on the well-recognized main aspects of workspace, singularity, and stiffness. Computational aspects are discussed to ensure numerical convergence to solutions that can be also of practical applications. In particular, optimality criteria and computational aspects have been elaborated by taking into account the peculiarity and constraint of each other. The general concepts and formulations are illustrated by referring to specific numerical examples with satisfactory results.

Go to article

Authors and Affiliations

M. Ceccarelli
G. Carbone
E. Ottaviano
Download PDF Download RIS Download Bibtex

Abstract

In a reality of global competition, companies have to minimize production costs and increase productivity in order to boost com-petitiveness. Facility layout design is one of the most important and frequently used efficiency improvement methods for reducing operational costs in a significant manner. Facility layout design deals with optimum location of facilities (workstation, machine, etc.) on the shop floor and optimum material flow between these objects. In this article, the objectives and procedure of layout design along with the calculation method for layout optimization are all introduced. The study is practice-oriented because the described case study shows how the layout of an assembly plant can be modified to form an ideal re-layout. The research is novel and innovative because the facility layout design and 4 lean methods (takt-time design, line balance, cellular design and one-piece flow) are all combined in order to improve efficiency more significantly, reduce costs and improve more key performance indicators. From the case study it can be concluded that the layout redesign and lean methods resulted in significant reduction of the following seven indicators: amount of total workflow, material handling cost, total travel distance of goods, space used for assembly, number of workers, labor cost of workers and the number of Kanban stops.

Go to article

Authors and Affiliations

G. Kovács
Download PDF Download RIS Download Bibtex

Abstract

The box wing system is an unconventional way to connect the lifting surfaces that the designers willingly to use in prototypes of new aircrafts. The article present a way to quickly optimize the wing structure of box wing airplane that can be useful during conceptual design. At the beginning, there is presented theory and methods used to code optimization program. Structure analysis is based on FEM beam model, which is sufficient in conceptual design. Optimization is performed using hybrid method, connection of simple iteration and gradient descent methods. Finally, the program is validated by case study.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Miłosz J. Kalinowski

Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an in-pipe modular robotic system that can navigate inaccessible industrial pipes in order to check their condition, locate leakages, and clean the ventilation systems. The aspects concerning the development of a lightweight and energy efficient modular robotic system are presented. The paper starts with a short introduction about modular inspection systems in the first chapter, followed by design aspects and finalizing with the test of the developed robotic system.

Go to article

Authors and Affiliations

A. Adrianluţei
Mihai Tâtar
Vistrian Mâtieş

This page uses 'cookies'. Learn more