Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For many years, a digital waveguide model is being used for sound propagation in the modeling of the vocal tract with the structured and uniform mesh of scattering junctions connected by same delay lines. There are many varieties in the formation and layouts of the mesh grid called topologies. Current novel work has been dedicated to the mesh of two-dimensional digital waveguide models of sound propagation in the vocal tract with the structured and non-uniform rectilinear grid in orientation. In this work, there are two types of delay lines: one is called a smaller-delay line and other is called a larger-delay line. The larger-delay lines are the double of the smaller delay lines. The scheme of using the combination of both smaller- and larger-delay lines generates the non-uniform rectilinear two-dimensional waveguide mesh. The advantage of this approach is the ability to get a transfer function without fractional delay. This eliminates the need to get interpolation for the approximation of fractional delay and give efficient simulation for sound wave propagation in the two-dimensional waveguide modeling of the vocal tract. The simulation has been performed by considering the vowels /ɔ/, /a/, /i/ and /u/ in this work. By keeping the same sampling frequency, the standard two-dimensional waveguide model with uniform mesh is considered as our benchmark model. The results and efficiency of the proposed model have compared with our benchmark model.

Go to article

Authors and Affiliations

Tahir Mushtaq Qureshi
Khalid Saifullah Syed
Asim Zafar
Download PDF Download RIS Download Bibtex

Abstract

Simulation of wave propagation in the three-dimensional (3D) modeling of the vocal tract has shown significant promise for enhancing the accuracy of speech production. Recent 3D waveguide models of the vocal tract have been designed for better accuracy but require a lot of computational tasks. A high computational cost in these models leads to novel work in reducing the computational cost while retaining accuracy and performance. In the current work, we divide the geometry of the vocal tract into four equal symmetric parts with the introduction of two axial perpendicular planes, and the simulation is performed on only one part. A novel strategy is defined to implement symmetric conditions in the mesh. The complete standard 3D digital waveguide model is assumed as a benchmark model. The proposed model is compared with the benchmark model in terms of formant frequencies and efficiency. For the demonstration, the vowels /O/, /i/, /E/, /A/, and /u/ have been selected for the simulations. According to the results, the benchmark and current models are nearly identical in terms of frequency profiles and formant frequencies. Still the current model is three times more effective than the benchmark model.
Go to article

Authors and Affiliations

Tahir Mushtaq
1
Ahmad Kamran
1
Muhammad Zubair Akbar Qureshi
2
Zafar Iqbal
3

  1. Department of Mathematics, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
  2. Department of Mathematics, Air University, Islamabad, Pakistan
  3. Department of Mathematics, Government Graduate College of Science, Multan, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.

Go to article

Authors and Affiliations

Milan Šimko
Miroslav Gutten
ORCID: ORCID
Milan Chupáč
Matej Kučera
Adam Glowacz
ORCID: ORCID
Eliasz Kantoch
Hui Liu
Frantisek Brumercik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with hardware solution of a fully digital dead-time generator. The circuit is applicable to the H-bridges based on any type of semiconductor switching devices including SiC, IGBT, Si-MOSFET and up-to-date GaN HEMTs. The generation of dead-times is ensured by commercially available silicon delay lines. High temperature stability is obtained by self-compensation of propagation delay of logic elements thanks to the symmetry of design topology. The circuit can be set-up to generate dead-times in the range from 10 ns to 500 ns. Longer dead-times are also available by simple cascading of the silicon delay lines. The key motivation for development of the circuit was unavailability of ready to use integrated solutions on the market. Moreover, contrary to the other solutions the proposed circuit is immune to prospective oscillations of an input PWM signal. The paper brings a detailed analysis of the circuit principle, results of the verification of a sample solution and an example of practical application as well.

Go to article

Authors and Affiliations

Jiri Svarny
Download PDF Download RIS Download Bibtex

Abstract

We present two main ways to precisely create the equivalent transfer function of picosecond time-to-digital converters based on commonly used method with tapped time coding delay lines. The ways consist either in evaluation of the quantization steps boundaries of the delay lines or in summation of numbers of the line quantization steps. The paper contains results of comprehensive analysis of both methods. The advantage and high versatility of the addition method is demonstrated.
Go to article

Bibliography

[1] Szplet, R., Jachna, Z., Kwiatkowski, P.,&Rózyc K. (2013). A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines. Measurement Science and Technology, 20(3), 1–15. https://doi.org/10.1088/0957-0233/26/7/075002
[2] Wu, J., & Shi, Z. (2008). The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay. Proceedings of the IEEE Nuclear Science Symposium Conference Record, Dresden. 3440–3446. https://lss.fnal.gov/archive/2008/conf/fermilab-conf-08-498-e.pdf
[3] Szplet, R. (2014). Time-to-digital converters. In Carbone P., Kiaei, S., & Xu, W. (Eds.). Design, Modeling and Testing of Data Converters (pp. 211–246). Springer-Verlag. https://doi.org/10.1007/ 978-3-642-39655-7_7
[4] Cova, S. & Bertolaccini, M. (1970). Differential linearity testing and precision calibration of multichannel time sorters. Nuclear Instruments and Methods, 77(2), 269–276.
[5] Szplet, R., Szymanowski, R., & Sondej, D. (2019). Measurement Uncertainty of Precise Interpolating Time Counters. IEEE Transactions on Instrumentation and Measurement, 68(11), 4348–4356. https://doi.org/10.1109/TIM.2018.2886940
[6] Frankowski, R., Chaberski, D., & Kowalski, M. (2015). An optical method for the time-to-digital converters characterization. Proceedings of the International Conference on Transparent Optical Networks, Budapest. https://doi.org/10.1109/ICTON.2015.7193659
[7] Rivoir J. (2006). Statistical Linearity Calibration of Time-to-Digital Converters Using a Free- Running Ring Oscillator. Proceedings of the 15th Asian Test Symposium, Fukuoka, Japan. 45–50. https://doi.org/10.1109/ATS.2006.260991
[8] Chaberski, D., Frankowski, R., Gurski, M., & Zielinski, M. (2017). Comparison of interpolators used for time-interval measurement systems based on multiple-tapped delay line. Metrology and Measurement Systems, 24(2), 401–412.
[9] Mota, M. (2000). Design and Characterization of CMOS High-Resolution TDCs. [Doctoral dissertation, Inst. Superior Técnico, Tech. Univ. of Lisbon].
[10] Wu, J. (2014). Uneven BinWidth Digitization and a Timing Calibration Method Using Cascaded PLL. Proceedings of 19th IEEE-NPSS Real-Time Conference 2014, Japan
[11] Xie, W., Chen, H., & Li, D. D. U. (2021). Efficient time-to-digital converters in 20 nm FPGAs with wave union. IEEE Transactions on Industrial Electronics (Early Access). https://doi.org/10.1109/ TIE.2021.3053905
[12] Frankowski, R., Gurski, M., & Płóciennik, P. (2016). Optical methods of the delay cells characteristics measurements and their applications. Optical and Quantum Electronics, 48, 188. https://doi.org/10.1007/s11082-016-0465-6
[13] Kalisz, J., Orzanowski, T., & Szplet, R. (2000). Delay-locked loop technique for temperature stabilisation of internal delays of CMOS FPGA devices. Electronics Letters, 36(14), 1184–1185.
Go to article

Authors and Affiliations

Dominik Sondej
1
Rafał Szymanowski
1
Ryszard Szplet
1

  1. Military University of Technology, Faculty of Electronics, Institute of Communication Systems, gen. S. Kaliskiego 2, 00-908 Warsaw 46, Poland

This page uses 'cookies'. Learn more