Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 85
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study is to present cycling as an active form of tourism in the context of the motivation of people cultivating it – in particular residents of the Municipality of Radom. The work indicates the essence and importance of cycling tourism, taking into account its types and infrastructure. Factors and trends influencing the development of cycling tourism – promoting a healthy lifestyle were discussed. Also presented are the results of research on the motivation of moving residents of the Municipality of Radom using the bike in individual age groups.

Go to article

Authors and Affiliations

Marzenna Dębowska-Mróz
Ewa Ferensztajn-Galardos
Renata Krajewska
Andrzej Rogowski
Download PDF Download RIS Download Bibtex

Abstract

The work presents cycle models of cylinder pressure and models of forces in crank-piston system based on a sample of experimental results. The models make it possible to determine the cycles in an arbitrary state of engine operation. Model limitations and the conditions for model applicability are also discussed. An example simulation of the processes is presented for well identified and verified models pertaining to the engine of Polonez 1,5 GU automobile. The method can also be applied to other types of engines after identification of the model parameters based on a sample of at least six indicator courses measured in different states of engine operation.
Go to article

Authors and Affiliations

Krzysztof Paweł Wituszyński
Download PDF Download RIS Download Bibtex

Abstract

Degradation of Supercapacitors (SC) is quantified by accelerated ageing tests. Energy cycling tests and calendar life tests are used since they address the real operating modes. The periodic characterization is used to analyse evolution of the SC parameters as a whole, and its Helmholtz and diffusion capacitances. These parameters are determined before the ageing tests and during 3 × 105 cycles of both 75% and 100% energy cycling, respectively. Precise evaluation of the capacitance and Equivalent Series Resistance (ESR) is based on fitting the experimental data by an exponential function of voltage vs. time. The ESR increases linearly with the number (No) of cycles for both 75% and 100% energy cycling, whereas a super-linear increase of ESR vs. time of cycling is observed for the 100% energy cycling. A decrease of capacitance in time had been evaluated for 2000 hours of ageing of SC. A relative change of capacitance is ΔC/C0 = 16% for the 75% energy cycling test and ΔC/C0 = 20% for the 100% energy cycling test at temperature 25°C, while ΔC/C0 = 6% for the calendar test at temperature 22°C for a voltage bias V = 1.0 Vop. The energy cycling causes a greater decrease of capacitance in comparison with the calendar test; such results may be a consequence of increasing the temperature due to the Joule heat created in the SC structure. The charge/discharge current value is the same for both 75% and 100% energy cycling tests, so it is the Joule heat created on both the equivalent series resistance and time-dependent diffuse resistance that should be the source of degradation of the SC structure. The diffuse resistance reaches a value of up to 30Ω within each 75% energy cycle and up to about 43Ω within each 100% energy cycle.

Go to article

Authors and Affiliations

Vlasta Sedlakova
Jiri Majzner
Josef Sikula
Petr Sedlak
Tomas Kuparowitz
Brandon Buergler
Petr Vasina
Download PDF Download RIS Download Bibtex

Abstract

Growth and photosynthetic characteristics, inducibility of the CAM pathway and the functioning of the antioxidant defense system were investigated in Rosularia elymaitica (Crassulaceae) under drought and UV stresses. Drought did not substantially affect the growth of the plants, but it significantly reduced leaf thickness as well as osmotic potential, water potential and relative water content. In contrast, UV radiation treatment affected neither growth nor the water relations of leaves. Water limitation for 12 days caused a significant increase in nighttime PEPC and NAD-MDH activity and an increase in Δtitratable acidity relative to well-watered plants. The nighttime CO2 net assimilation rate increased significantly in drought-stressed plants but was still negative, resembling a C3-like pattern of gas exchange. Twenty days of UV treatment, increased Δtitratable acidity slightly and increased only daytime PEPC activity, and did not affect other parameters of carbon metabolism. As judged by maintenance of membrane integrity and stable amounts of H2O2 under UV stress, the antioxidant defense system effectively protected the plants against UV radiation. In contrast, oxidative stress occurred under severe drought stress (20 days of withholding water). Except for higher daytime APX activity in the UV-treated plants, enzyme activity in the control and in the drought- and UV-stressed plants did not show any diurnal fluctuation during 24 h. Temporal changes in Δtitratable acidity and ΔPEPC activity coincided closely with those of antioxidant enzymes; both started to increase after 12 days of drought stress. These results indicate that drought stress but not UV radiation induced the CAM-cycling pathway in R. elymaitica.

Go to article

Authors and Affiliations

Ghader Habibi
Roghieh Hajiboland
Download PDF Download RIS Download Bibtex

Abstract

The most power consuming part in the vapor compression cycle (VCC) is the gas compressor. Heating the refrigerant under constant volume after the compressor increases the condenser pressure, which consequently increases the cooling rate of the VCC. This study examined the influence of heating different refrigerants, i.e. R143a, R22, and R600a on the cooling rate of the VCC. Four experiments have been performed: the first experiment is a normal VCC, i.e. without heating, while in the second, third, and fourth experiments were carried out to raise the temperature of the refrigerant to 50°C, 100°C, and 150°C. It has been found that heating raises the refrigerant pressure in VCC and thereby improves the refrigerant’s mass flow rate resulting in an improvement in the cooling power for the same compressor power. Heating the refrigerant after the mechanical compressor increases the temperature of the condenser as well as the temperature of the evaporator when using refrigerant R134a, which prevents the refrigeration cycle to be used in freezing applications, however using refrigerant R22 or refrigerant R600a promotes the heated VCC to be used in freezing applications. Refrigerant R600a has the lowest operating pressure compared to R134a and R22, which promotes R600a to be used rather than R134a and R22 from a leakage point of view.
Go to article

Authors and Affiliations

Mohamed Salama Abd-Elhady
1
Emmanoueil Bishara Melad
2
Mohamed Abd-Elhalim
3
Seif Alnasr Ahmed
1

  1. Mechanical Engineering Department, Faculty of Engineering, Beni-Suef University, Sharq El-Nile, New Beni-Suef, 62521 Beni-Suef, Egypt
  2. Faculty of Technology and Education, Beni-Suef University, Sharq El-Nile, New Beni-Suef, 62521 Beni-Suef, Egypt
  3. Faculty of Technology and Education, Suez University, 43527 Suez, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The geometry and operating parameters have an important influence on the performance of ejectors. The improvement of the refrigeration cycle performance and the design of the ejectors for the compression energy recovery requires a detailed analysis of the internal ejector working characteristics and geometry. To this aim, an experimental investigation of an ejector refrigeration system is conducted to determine the effect of the most important ejector dimensions on ejector working characteristics and system performance. Different dimensions of ejector components are tested. The influence of the ejector’s geometrical parameters on the system performance was analysed. The experiments with respect to the variation of ejector geometry such as the motive nozzle throat diameter, the mixing chamber diameter and the distance between the motive nozzle and diffuser were carried out. There exist optimum design parameters in each test. The experimental results show that the performance (entrainment ratio and a compression ratio of the ejector) increases significantly with the position between the primary nozzle and the mixing chamber. A maximum entrainment ratio of 57.3% and a compression ratio of 1.26 were recorded for the different parameters studied. The results obtained are consistent with experimental results found in the literature.
Go to article

Bibliography

[1] Elbel S., Hrnjak P.: Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int. J. Refrig. 31(2008), 3, 411–422.
[2] Liu J.P., Chen J.P., Chen Z.J.: Thermodynamic analysis on transcritical R744 vapor compression/ejection hybrid refrigeration cycle. In: Prelim. Proc. 5th IIR Gustav Lorentzen Conf. on Natural Working Fluids, Guangzhou 2002, 184–188.
[3] Jeong J., Saito K., Kawai S., Yoshikawa C., Hattori K.: Efficiency enhancement of vapor compression refrigerator using natural working fluids with two-phase flow ejector. In: Proc. 6th IIR-Gustav Lorentzen Conf. on Natural Working Fluids at Glasgow 2004, CD-ROM.
[4] Jian-qiang Deng, Pei-xue Jiang, Tao Lu, Wei Lu: Particular characteristics of transcritical CO2 refrigeration cycle with an ejector. Appl. Therm. Eng. 27(2007), 381–388.
[5] Da Qing Li, Groll E.A.: Transcritical CO2 refrigeration cycle with ejectorexpansion device. Int. J. Refrig. 28(2005), 5, 766–773.
[6] Ksayer E.B., Clodic D.: Enhancement of CO2 refrigeration cycle using an ejector: 1D analysis. In: Proc. Int. Refrigeration and Air Conditioning Conf., Purdue 2026, Purdue Univ. R058.2006.
[7] Bartosiewicz Y., Aidoun Z., Mercadier Y.: Numerical assessment of ejector operation for refrigeration applications based on CFD. Appl. Therm. Eng. 26(2006), 5-6, 604–612.
[8] Petrenko V.O., Huang B.J., Ierin V.O.: Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle. Int. J. Refrig. 34(2011), 7, 1649–1656.
[9] Martel S.: Étude numérique d’un écoulement diphasique critique dans un convergent- divergent. PhD thesis, Université de Sherbrooke, Sherbrooke 2013 (in French).
[10] Marynowski T.: Étude expérimentale et numérique d’écoulements supersoniques en éjecteur avec et sans condensation. PhD thesis, Université de Sherbrooke, Sherbrooke 2007 (in French).
[11] Scott D., Aidoun Z., Ouzzane M.: An experimental investigation of an ejector for validating numerical simulations. Int. J. Refrig. 34(2011), 7, 1717–1723.
[12] Chen H., Zhu J., Ge J., Lu W., Zheng L.: A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position. Energy 208(2020), 118302.
[13] Mondal S., De D.: Performance assessment of a low-grade heat driven dual ejector vapor compression refrigeration cycle. Appl. Therm. Eng. 179(2020), 115782.
[14] Ringstad K.E., Allouche Y., Gullo P., Banasiak K., Hafner A.: A detailed review on CO2 two-phase ejector flow modeling. Thermal Sci. Eng. Progress 20(2020), 100647.
[15] Yu B., Yang J., Wang D., Shi J., Chen J.: An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle. Energy 189(2019), 116147.
[16] Chen W., Liu M., Chong D., Yan J., Little A.B., Bartosiewicz Y.A.: 1D model to predict ejector performance at critical and sub-critical operational regimes. Int. J. Refrig. 36(2013), 6, 1750–1761.
[17] Banasiak K., Hafner A., Andresen T.: Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. Int. J. Refrig. 35(2012), 6, 1617–1625.
[18] Domanski P.A.: Theoretical Evaluation of the Vapor Compression Cycle With a Liquid-Line/Suction-Line Heat Exchanger, Economizer, and Ejector. National Institute of Standards and Technology, NISTIR-5606, 1995.
[19] Elbel S.W., Hrnjak P.S.: Effect of internal heat exchanger on performance of transcritical CO2 systems with ejector. In: Proc. 10th Int. Refrigeration and Air Conditioning Conf. Purdue 2004, R166, West Lafayette 2004.
[20] Kornhauser A.A.: The use of an ejector as a refrigerant expander. In: Proc. USNC/IIR-Purdue Refrigeration Conf., Purdue Univ.,West Lafayette 1990, 10–19.
[21] Lawrence N., Elbel S.: Experimental and analytical investigation of automotive ejector air-conditioning cycles using low-pressure refrigerants. In: Proc. Int. Refrigeration and Air Conditioning Conf., Purdue, July 16-19, 2012, 1169, 1–10.
[22] Liu F., Li Y., Groll E.A.: Performance enhancement of CO2 air conditioner with a controllable ejector. Int. J. Refrig. 35(2012), 6, 1604–1616.
[23] Domanski P.A.: Minimizing throttling losses in the refrigeration cycle. In: Proc. 19th Int. Congress of Refrigeration, Hague 1995, 766–773.
[24] Varga S., Oliveira A., Diaconu B.: Influence of geometrical factors on steam ejector performance – A numerical assessment. Int. J. Refrig. 32(2009), 7, 1694– 1701.
[25] Sarkar J.: Optimization of ejector-expansion transcritical CO2 heat pump cycle. Energy 33(2008), 9, 1399–1406.
[26] Elbel S.: Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. Int. J. Refrig. 34(2011), 7, 1545–1561.
[27] Lee J.S., Kim M.S., Kim M.S.: Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 34(2011), 7, 1614–1625.
[28] Lucas C., Koehler J.: Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. Int. J. Refrig. 35(2012), 6, 1595–1603.
[29] Nakagawa M., Marasigan A.R., Matsukawa T., Kurashina A.: Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigerationcycle with and without heat exchanger. Int. J. Refrig. 34(2011), 7, 1604–1613.
[30] Nakagawa M., Marasigan A.R., Matsukawa T.: Experimental analysis on the effect of internal heat exchanger in transcritical CO2 refrigeration cycle with twophase ejector. Int. J. Refrig. 34(2011), 7, 1577–1586.
[31] Nakagawa M., Marasigan A.R., Matsukawa T.: Experimental analysis of two phase ejector system with varying mixing cross-sectional area using natural refrigerant CO2. Int. J. Air-Cond. Refrig. 18(2010), 4, 297–307.
[32] Liu F., Groll E.A., Li D.: Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles. Energy 45(2012), 1, 829–839.
[33] Liu F., Groll E.A.: Analysis of a two-phase flow ejector for transcritical CO2 cycle. Int. Refrig. Air Cond. Conf., Purdue, July 14–17, 2008, 924.
[34] Liu F., Groll E.A.: Study of ejector efficiencies in refrigeration cycles. Appl. Therm. Eng. 52(2013), 2, 360–370.
[35] Lawrence N., Elbel S.: Experimental investigation on the effect of evaporator design and application of work recovery on the performance of two-phase ejector liquid recirculation cycles with R410A. Appl. Therm. Eng. 100(2016), 398–411.
[36] Van Nguyen V., Varga S., Soares J., Dvorak V., Oliveira A.C.: Applying a variable geometry ejector in a solar ejector refrigeration system. Int. J. Refrig. 113(2020), 187–195.
[37] Pereira P.R., Varga S., Soares J., Oliveira A.C., Lopes A.M., de Almeida F.G., Carneiro J.F.: Experimental results with a variable geometry ejector using R600a as working fluid. Int. J. Refrig. 46(2014), 77–85.
[38] Liu F., Groll E.: A preliminary study of the performance enhancement of a dualmode heat pump using an ejector. In: Proc. 25th IIR Int. Cong. of Refrigeration, ICR2015, Yokohama, Aug. 16-22, 2015, 16–22.
[39] Eames I.W., Wu S., Worall M., Aphornratana S.: An experimental investigation of steam ejectors for application in jet-pump refrigerators powered by low-grade heat. P. I. Mech. Eng. A-J Pow. A 213(1999), 5, 351–361. [40] Lee J.S., Kim M. Se, Kim M. Soo: Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 34(2011), 7, 1614–1625.
[41] Bouzrara A.: Etude expérimentale des éjecteurs- application à la récupération de l’énergie de détente des machines frigorifiques au CO2. PhD thesis, INSA Lyon (CETHIL)-ENI Tunis 2018 (in French).
Go to article

Authors and Affiliations

Philippe Haberschill
1
Ezzeddine Nehdi
2
Lakdar Kairouani
2
Mouna Abouda Elakhdar
2

  1. University of Lyon, CNRS, INSA-Lyon, CETHIL UMR5008, F-69621, Villeurbanne, France
  2. Research Lab Energetic and Environment, National Engineering School of Tunis, Tunis El Manar University, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

The paper there presents the analysis of low-cycle fatigue test results of 30 HGSA alloy steel obtained with the use of two methods. In the standard method, fatigue tests were performed with the use of many specimens, and in the simplified method, the results were defined in an incremental step test using one specimen. Test results were analysed taking into account the influence of loading form on the course of a stabilization process with defined material data. The analysis of the stabilization process in diversified conditions of loading was performed by comparison of the stress amplitude CTa and strain amplitude Eap for the same levels of total strain amplitude Eac• Basing on the tests, one could state that both methods of defining the cyclic properties lead to qualitatively and quantitatively convergent results. The results exhibit qualitative similarity as far as the character of courses of changes determined in different periods of life of n' and K' parameters of the cyclic strain chart is concerned, and quantitative similarity of the values of determined parameters.
Go to article

Authors and Affiliations

Stanisław Mroziński
Download PDF Download RIS Download Bibtex

Abstract

Sitona hunieralis Steph. has one generation per year. Adults survive through the winter. Full life cycle from egg to adult lasts 54 days on average, including about I O days for embryo, 30 days for larval and 14 days for pupa stage.
Go to article

Authors and Affiliations

Marta Pisarek
Download PDF Download RIS Download Bibtex

Abstract

The article offers a new perspective on contemporary and past migration processes in the post-Soviet area by testing the usefulness of the concept of a migration cycle for the Russian case. By adopting the longue durée approach, we attempt to assess the advancement of Russia’s migration cycle, arguing at the same time that it constitutes an interesting, yet not an obvious case with which to test the utility of the concept. We postulate that, in tracking Russia’s migration trajectories in pre-1991 times, it is im-portant to account for both the flows between Russia as the-then state entity (i.e. the Tsarist Empire, later the Soviet Union) and foreign countries and the flows between Russia as the core of the empire and its eastern and southern peripheries. Our analyses show that while – taking into account statistical consid-erations – Russia has undoubtedly already undergone the migration transition, it has not yet reached the stage of a mature immigration country. We also contend that migration transition for Russia occurred internally – within the-then state borders – and revealed itself with its transformation from a Soviet re-public into a federative state.
Go to article

Authors and Affiliations

Zuzanna Brunarska
1
ORCID: ORCID
Mikhail Denisenko
2
ORCID: ORCID

  1. Centre of Migration Research, University of Warsaw, Poland
  2. Vishnevsky Institute of Demography, National Research University Higher School of Economics, Russia
Download PDF Download RIS Download Bibtex

Abstract

The use of environmentally friendly bio-pesticides is crucial for higher root and sugar yield in sugar beets. The economic importance of beet moth [ Scrobipalpa ocellatella Boyd. (Lep.: Gelechidae)] losses in the field and storage highlight the need for evaluation of appropriate, environmentally friendly methods for pest control. The aims of the present study were to i) assess azadirachin (AZN) effects on the life cycle and activity of the pest, and ii) manage the beet moth on roots under laboratory conditions. For the experiments, the main concentrations were prepared on the basis of the field-recommended dose of this pesticide (1–1.5 l/1000 l water). The LC50 was estimated for 3rd instar larvae. Later, at sublethal concentrations, the relative time for the emergence of each developmental stage was determined. The mean female fecundity was 37% (±4) for treated tests at the lowest AZN concentration (0.5 ml · l–1). AZN at 0.5 ml · l–1 concentration resulted in 62 (±4) deposited eggs per plant for the treated roots and 326 (±1) for roots in the control test. Mortality increased in response to increased AZN concentrations. The results revealed that after 72 h, the highest AZN concentration (2.5 ml · l–1) caused 100% repellency and 82% (±1.38) mortality on 3rd instar larvae. According to our findings, a concentration of 2 ml · l–1 AZN (20 gr active ingredient per 1 hectare) after 4 days affected 1st instar larvae and the larvae with no further development had 92.2% (±1.2) mortality. In conclusion, the results revealed that AZN as a biorational pesticide can significantly minimize the losses of S. ocellatella on sugar beet crops.
Go to article

Bibliography


Abdollahian-Noghabi M., Sharifi H., Babaei B., Bahmani G.A. 2014. Introduction of a new formula for determination of autumn sugar beet purchase price. Journal of Sugar Beet 29: 115–121. DOI: https://doi.org/10.1515/cerce-2015-0013.
Abedi Z., Saber M., Vojoudi S., Mahdavi V., Parsaeyan E. 2014. Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science 14 (1): 30. DOI: https://doi.org/10.1093/jis/14.1.30
Adel M.M., Sehnal F., Ibrahim S.S., Yosef Salem N. 2019. Suneem oil inhibits physiological activity of Spodoptera Littoralis (Boisd.) (Lepidoptera: Noctuidae). EurAsian Journal of BioSciences 13 (2): 1311–1316.
Al-Keridis L.A. 2016. Biology, ecology and control studies on sugar-beet mining moth, Scrobipalpa ocellatella. Der Pharma Chemica 8 (20): 166–171.
Al-Rahimy S.K., Al-Sultany A.K., Murshidy Z.R., Al-Essa R.A., Kadhim Abdul A.R. 2019. Effect of crude extracts of the peels of Musa acuminate L. banana plant in some biological aspects of Culex molestus Forskal (Diptera: Culicidae) with an estimation of the enzymatic effectiveness of Tyrosinase. EurAsian Journal of BioSciences 13 (1): 1–13.
Alouani A., Rehimi N., Soltani N. 2009. Larvicidal activity of a neem tree extract (azadirachtin) against mosquito larvae in the Republic of Algeria. Jordan Journal of Biological Sciences 2 (1): 15–22.
Amin A.H., Helmi A., El-Serwy S.A. 2008. Ecological studies on sugar beet insects at Kafr El-Sheikh Governorate, Egypt. Egyptian Journal of Agricultural Research 86 (6): 2129–2139.
Amoabeng B.W., Johnson A.C., Gurr G.M. 2019. Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Applied Entomology and Zoology 54: 1–19. DOI: https://doi.org/10.1007/s13355-018-00602-0
Anonymous. 2020. Final Research Performance Report of Sugar Beet Seed Institute (SBSI) for 2018 Cropping Season. Agricultural Research, Education and Extension Organization (AREEO). Ministry of Jihad-e-Agriculture, Karaj, Iran, 121 pp. (in Persian)
Ascher K.R.S. 1993. Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Archives of Insect Biochemistry and Physiology 22: 433–449. DOI: https://doi.org/10.1002/arch.940220311
Bazazo K.G.I., Mashaal R.E.F. 2014. Pests attacking post-harvest sugar beet roots, and their adverse effects on sugar content. Journal of Plant Protection and Pathology 5: 673–678. DOI: https://doi.org/10.21608/jppp.2014.87978
Bazok R., Drmic Z., Cacija M., Mrganic M., Viric Gasparic H., Lemic D.A. 2018. Moths of Economic Importance in the Maize and Sugar Beet Production. Intech Publications. Chapter 4, 21 pp. DOI: http://dx.doi.org/10.5772/intechopen.78658
Bazok R. 2010. Suzbijanje štetnika u proizvodnji šećerne repe. Glasilo Biljne Zaštite 10 (3): 153–165.
Betz A., Andrew N.R. 2020. Influence of non-lethal doses of natural insecticides spinetoram and azadirachtin on Helicoverpa punctigera (native budworm, Lepidoptera: Noctuidae) under laboratory conditions. Frontiers in Physiology 11: 1089. DOI: https://doi.org/10.3389/fphys.2020.01089
Bezzar-Bendjazia R., Kilani-Morakchi S., Maroua F., Aribi N. 2017. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). Pesticide Biochemistry and Physiology 143: 135–140. DOI: https://doi.org/10.1016/j.pestbp.2017.08.006
Bezzar-Bendjazia R., Kilani-Morakchi S., Aribi N. 2016. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. Pesticide Biochemistry and Physiology 133: 85–90. DOI: https://doi.org/10.1016/j.pestbp.2016.02.009
Bruce Y.A., Gounou S., Chabi-Olaye A., Smith H., Schulthess F. 2004. The effect of neem (Azadirachtaindica indica A. Juss) oil on oviposition, development and reproductive potentials of Sesamia calamistis (Lepidoptera: Noctuidae) and Eldana saccharina Walker (Lepidoptera: Pyralidae). Agricultural and Forest Entomology 6: 223–232. DOI: https://doi.org/10.1111/j.1461-9555.2004.00218.x
Brunherotto R., Vendramim J.D., M.A.G. de. Oriani. 2010. Effects of tomato genotypes and aqueous extracts of Melia azedarach leaves and Azadirachta indica seeds on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 39: 784–791. DOI: https://doi.org/10.1590/S1519-566X2010000500018
Boadu K.O., Kofi Tulashie S., Akrofi Anang M., Desire Kpan J. 2011. Production of natural insecticide from neem leaves (Azadirachta indica). Asian Journal of Plant Science and Research 1 (4): 33–38.
Butterworth J.H., Morgan E.D. 1968. Isolation of a substance that suppresses feeding in locusts. Chemical Communications 1: 23–24. DOI: https://doi.org/10.1039/C19680000023
Darabian K., Yarahmadi F. 2017. Field efficacy of azadirachtin, chlorfenapyr, and Bacillus thuringiensis against Spodoptera exigua (Lepidoptera: Noctuidae) on sugar beet crop. Journal of the Entomological Research Society 19 (3): 45–52.
Dhar R., Dawar H., Garg S., Basir S.E., Talwar G.P..1996. Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and An. culicifacies (Diptera: Culicidae). Journal of Medical Entomology 33 (2): 195–201. DOI: https://doi.org/10.1093/jmedent/33.2.195
Dorn A., Rademacher J.M., Sehn E. 1987. Effects of azadirachtin on reproductive organs and fertility in the large milkweed bug, Oncopeltus fasciatus. Proc. 3rd Int. Neem Conf. Nairobi, 1986, Eschborn: GTZ. 13 (3): 273–288. DOI: https://doi.org/10.1016/0022-1910(86)90063-6
Dreistadt S.H. 2004. Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide. UCANR Publications, CA, USA.
Er A., Taşkıran D., Sak O. 2017. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae). Archives of Biological Sciences 69 (2): 335–344. DOI: https://doi.org/10.2298/ABS160421108E
Fajt E. 1951. Repin moljac (Phthorimaea ocelatela). Biljna Proizvodnja 4 (1): 136–141.
Feder D., Valle D., Rembold H., Garcia E.S..1988. Azadirachtin induced sterilization in mature females of Rhodniuspro lixus. Zeitschriftfür Naturforschung C 43: 908–913. DOI: https://doi.org/10.1515/znc-1988-11-1218
Finney D.J. 1971. Probit Analysis. 3rd Edition, Cambridge University Press, Cambridge, UK, 333 pp.
Fong D.K.H., Kim S., Chen Z., DeSarbo W.S..2016. A Bayesian multinomial probit model for the analysis of panel choice data. Psychometrika 81 (1): 161–83. DOI: https://doi.org/10.1007/s11336-014-9437-6
Fugate K.K., Campbell L.G. 2009. Postharvest deterioration of sugar beet. p. 92–94. In: “Compendium of Beet Diseases and Pests” (R.M. Harveson, L.E. Hanson, G.L. Hein, eds.). Part III. 2nd edition. St. Paul, MN: The American Phytopathological Society Publication, USA.
Ganji Z., Moharramipour S. 2017. Cold hardiness strategy in field collected larvae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran 36 (4): 287–296.
Garcia J.F., Grisoto E., Vendramim J.D., Botelho P.S.M. 2006. Bioactivity of neem, Azadirachta indica, against spittlebug Mahanarva fimbriolata (Hemiptera: Cercopidae) on sugarcane. Journal of Economic Entomology 99: 2010–2014. DOI: https://doi.org/10.1093/jee/99.6.2010
Gnanamani R., Dhanasekaran S. 2013. Growth inhibitory effects of azadirachtin against Pericallia ricini (Lepidoptera: Arctiidae). World Journal of Zoology 8 (2): 185–191.
Godinho H.P. 2007. Reproductive strategies of fishes applied to aquaculture: bases for development of production technologies. Revista Brasileira de Reprodução Animal 31 (3): 351–360.
Hasan F., Ansari M.S..2011. Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Protection 30 (4): 502–507. DOI: https://doi.org/10.1016/j.cropro.2010.11.029
Heibatian A., Yarahmadi F., Lotfi Jalal Abadi A. 2018. Field efficacy of biorational insecticides, azadirachtin and Bt, on Agrotis segetum (Lepidoptera: Noctuidae) and its carabid predators in the sugar beet fields. Journal of Crop Protection 7 (4): 365–373.
Ikeura H., Sakura A., Tamaki M. 2013. Repellent effect of neem against the cabbage armyworm on leaf vegetables. Journal of Agriculture and Sustainability 4 (1): 1–15.
Irigaray F.J., Moreno-Grijalba F., Marco V., Perez-Moreno I. 2010. Acute and reproductive effects of Align®, an insecticide containing azadirachtin, on the grape berry moth, Lobesia botrana. Journal of Insect Science 10: 1–33. DOI: https://doi.org/10.1673/031.010.3301
Ismadji S., Kurniawan A., Ju Y.H., Soetaredjo F.E., Ayucitra A., Ong L.K. 2012. Solubility of Azadirachtin and several triterpenoid compounds extracted from neem seed kernel in supercritical CO2. Fluid Phase Equilibria 336: 9–15. DOI: https://doi.org/10.1016/j.fluid.2012.08.026
Jagannadh V., Nair V. 1992. Azadirachtin-induced effects on larval-pupal transformation of Spodoptera mauritia. Physiological Entomology 17: 56–61. DOI: https://doi.org/10.1111/j.1365-3032.1992.tb00989.x
Kheiri M. 1991. Important Pests of Sugar Beet and Their Control. Ministry of Agriculture, Agricultural Research and Education organization. Kalameh Publication Institute, Tehran. Iran, 126 pp. (in Persian)
Kheiri M., Naiim A., Fazeli M., Djavan-Moghaddam H., Eghtedar E. 1980. Some studies on Scrobipalpa ocellatella Boyd in Iran. Applied Entomology and Phytopathology 48: 1–39. (in Persian)
Liang G.M., Chen W., Liu T.X. 2003. Effects of three neem-based insecticides on diamond back moth (Lepidoptera: Plutellidae). Crop Protection 22: 333–340. DOI: https://doi.org/10.1016/S0261-2194(02)00175-8
Liu T.X., Liu S.S. 2006. Experience‐altered oviposition responses to a neem‐based product, Neemix®, by the diamondback moth, Plutella xylostella. Pest Management Science 62: 38–45. DOI: https://doi.org/10.1002/ps.1123
Lopez O., Fernández-Bolaños J.G., Gil M.V. 2005. New trends in pest control: The search for greener insecticides. Green Chemistry 7 (6): 431–442. DOI: https://doi.org/10.1039/b500733j
Lucantoni L., Giusti F., Cristofaro M., Pasqualini L., Esposito F., Lupetti P. 2006. Effects of a neem extract on blood feeding, oviposition and oocyte ultrastructure in Anopheles stephensi Liston (Diptera: Culicidae). Tissue and Cell 38: 361–371. DOI: https://doi.org/10.1016/j.tice.2006.08.005
Ma D.L., Gordh G., Zalucki M.P. 2000. Biological effects of azadirachtin on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) fed on cotton and artificial diet. Australian Journal of Entomology 39 (4): 301–304. DOI: https://doi.org/10.1046/j.1440-6055.2000.00180.x
Manna B., Maiti S., Dasa A. 2020. Bioindicator potential of Spathosternum prasiniferum (Orthoptera; Acridoidea) in pesticide (azadirachtin)-induced radical toxicity in gonadal/nymphal tissues; correlation with eco-sustainability. Journal of Asia-Pacific Entomology 23: 350–357. DOI: https://doi.org/10.1016/j.aspen.2020.02.007
Martinez S.S., van Emden H.F. 2001. Growth disruption, abnormalities and mortality of Spodoptera littoralis caused by azadirachtin. Neotropical Entomology 30: 113–125. DOI: http://dx.doi.org/10.1590/S1519-566X2001000100017
Mochiah M.B., Banful B., Fening K.N., Amoabeng B.W., Ekyem S., Braimah H., Owusu-Akyaw M. 2011. Botanicals for the management of insect pests in organic vegetable production. Journal of Entomology and Nematology 3 (6): 85–97.
Mordue A.J. 2004. Present concepts of the mode of action of azadirachtin from Neem. p. 229–242. In: “Neem: Today and in the New Millennium” (O. Koul, S. Wahab, eds.). Chapter 11. Kluwer Academic Publishers. DOI: https://doi.org/10.1007/1-4020-2596-3_11
Mordue A.J., Blackwell A. 1993. Azadirachtin: an update. Journal of Insect Physiology 39: 903–924. DOI: https://doi.org/10.1016/0022-1910(93)90001-8
Mordue A.J., Morgan E.D., Nisbet A.J. 2005. Azadirachtin, a natural product in insect control. p. 185–201. In: “Comprehensive Molecular Insect Science” (L.I. Gilbert, ed.). Elsevier, Amsterdam.
Morgan E.D. 2009. Azadirachtin, a scientific gold mine. Journal of Bioorganic and Medicinal Chemistry 17 (12): 4096–4105. DOI: https://doi.org/10.1016/j.bmc.2008.11.081
Naumann K., Isman M.B. 1995. Evaluation of neem Azadirachtaindica seed extracts and oils as oviposition deterrents to noctuid moths. Entomologia Experimentalis et Applicata 76: 115–120. DOI: https://doi.org/10.1111/j.1570-7458.1995.tb01953.x
Orak S., Zandi-Sohani N., Yarahmadi F. 2019. Some alternatives to the chemical control of Spodoptera exigua (Hubner, 1808) in black-eyed pea. International Journal of Tropical Insect Science 39: 319–323. DOI: https://doi.org/10.1007/s42690-019-00043-4
Osborne J.W. 2010. Improving your data transformations: applying the Box-Cox transformation. Practical Assessment, Research and Evaluation 15: 1–9. DOI: https://doi.org/10.7275/qbpc-gk17
Pineda S. Martinez A.M., Figueroa J.I., Schneider M.I., Estal P.D., Vinuela E., Gomez B., Smagghe G., Budia F. 2009. Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology 102: 1490–1496. DOI: https://doi.org/10.1603/029.102.0413
Qiao J., Zou X., Lai D., Yan Y., Wang Q., Li W., Gu H. 2014. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. Pest Management Science 70: 1041–1047. DOI: https://doi.org/10.1002/ps.3644
Qin D., Zhang P., Zhou Y., Liu B., X Jao C., Chen W., Zhang Zh. 2019. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Archives of Insect Biochemistry and Physiology 103 (4): 1–12. DOI: https://doi.org/10.1002/arch.21646
Radhika S., Sahayaraj K., Senthil‐Nathan S., Hunter W.B. 2018. Individual and synergist activities of monocrotophos with neem based pesticide, Vijayneem against Spodoptera litura Fab. Physiological and Molecular Plant Pathology 101: 54–68. DOI: https://doi.org/10.1016/j.pmpp.2017.05.004
Raman G.V., Rao M.S., Srimannaryana G. 2000. Efficacy of botanical formulations from Annona squamosa Linn. and Azadirachta indica A. Juss against semilooper Achaea janata Linn. infesting castor in the field. Journal of Entomological Research. 24(3): 235–238.
Rashidov M.A., Khasanov A. 2003. Pests of sugar beet in Uzbekistan. Zashchita Rastenii 3: 29.
Razini A., Pakyari H., Arbab A. 2017. Estimation of sugar beet lines and cultivars infection to Scrobipalpa ocellatellaboyd. (Lepidoptera: Gelechiidae) larvae under field condition with natural infection. Journal of Sugar Beet 32 (2): 147–155.
Razini A., Pakyari H., Arbab A., Ardeh M.J., Ardestani H. 2016. Study of infestation amount to beet moth “Scrobipalpa ocellatella”, among different sugar beet genotypes in the field. Proceedings of 22nd Iranian Plant Protection Congress, 23-27 August, Karaj, Iran.
Sami A.J., Bilal S., Khalid M.,. Shakoori F.R, Rehman F., Shakoori A.R. 2016. Effect of crude neem (Azadirachta indica) powder and azadirachtin on the growth and Acetylcholinesterase activity of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Pakistan Journal of Zoology 48 (3): 881–886.
Schluter U., Bidmon H.J., Grewe S. 1985. Azadirachtin affects growth and endocrine events in larvae of the tobacco hornworm Manduca sexta. Journal of Insect Physiology 31: 773–777. DOI: https://doi.org/10.1016/0022-1910(85)90070-8
Schmutterer H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271–297. DOI: https://doi.org/10.1146/annurev.en.35.010190.001415
Schreck C.E. 1977. Techniques for evaluation of insect repellents: a critical review. Annual Review of Entomology 22: 101–119. DOI: https://doi.org/10.1146/annurev.en.22.010177.000533
Seljasen R., Meadow R. 2006. Effects of neem on oviposition and egg and larval development of Mamestra brassicae L: dose response, residual activity, repellent effect and systemic activity in cabbage plants. Crop Protection 25: 338–345. DOI: https://doi.org/10.1016/j.cropro.2005.05.007
Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiology 4: 359. DOI: https://doi.org/10.3389/fphys.2013.00359
Shannag H., Capinera J., Freihat N.M. 2015. Effects of neem-based insecticides on consumption and utilization of food in larvae of Spodoptera eridania (Lepidoptera: Noctuidae). Journal of Insect Science 15 (1): 152. DOI: https://doi.org/10.1093/jisesa/iev134
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9 (7): 1–36. DOI: https://doi.org/10.3390/biom9070285
Shimizu T. 1988. Suppressive effects of azadirachtin on spermiogenesis of the diapausing cabbage armyworm, Mamestra brassicae, in vitro. Entomologia Experimentalis et Applicata 46: 197–199.
Sieber K.P., Rembold H. 1983. The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. Journal of Insect Physiology 29: 523–527. DOI: https://doi.org/10.1016/0022-1910(83)90083-5
Smith S.L., Mitchell M.J..1988. Effects of azadirachtin on insect cytochrome P-450 dependant ecdysone 20-mono oxygenase activity. Biochemical and Biophysical Research Communications 154: 559–563. DOI: https://doi.org/10.1016/0006-291x(88)90176-3
Shu B., Zhang J., Cui G., Sun R., Yi X., Zhong G. 2018. Azadirachtin affects the growth of Spodoptera litura Fabricius by inducing apoptosis in larval midgut. Frontiers in Physiology 9: 1–12. DOI: https://doi.org/10.3389/fphys.2018.00137
Tanzubil P.B. 1995. Effects of neem Azadirachta indica (A. Juss) extracts on food intake and utilization in the African armyworm, Spodoptera exempta (Walker). Insect Science and its Application 16: 167–170. DOI: https://doi.org/10.1017/S1742758400017069
Tanzubil P.B., McCaffery A.R..1990. Effects of azadirachtin and aqueous neem seed extracts on survival, growth and development of the African armyworm, Spodoptera exempta. Crop Protection 9: 383–386. DOI: https://doi.org/10.1016/0261-2194(90)90012-V
Tome H.V.V., Martins J.C., Corrêa A.S., Galdino T.V.S., Picanço M.C., Guedes R.N.C. 2013. Azadirachtin avoidance by larvae and adult females of the tomato leaf miner Tuta absoluta. Crop Protection 46: 63–69. DOI: https://doi.org/10.1016/j.cropro.2012.12.021
Ünsal S., Güner E. 2016. The effects of biopesticide Azadirachtin on the Fifth Instar Galleria mellonella L. (Lepidoptera: Pyralidae) Larval Integument. International Journal of Crop Science and Technology. 2(2): 60-68.
Vilca Malqui K.S., Vieira J.L., Guedes R.N.C., Gontijo L.M. 2014. Azadirachtin-induced hormesis mediating shift in fecundity longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). Journal of Economic Entomology 107: 860–866. DOI: https://doi.org/10.1603/ec13526
Wallace E.L. 2017. Investigating Life History Stages and Methods to Interrupt the Life Cycle, and Suppress Offspring Production, in the Queensland Fruit Fly (Bactroceratryoni). Thesis (PhD Doctorate). Griffith School of Environment. Gold Coast, Queensland, Australia, 118 pp. DOI: https://doi.org/10.25904/1912/1946
Wilps H. 1989. The influence of neem seed kernel extracts (NSKE) from the neem tree Azadirachta indicaon flight activity, food ingestion, reproductive rate and carbohydrate metabolism in the Diptera Phormia terraenovae (Diptera, Muscidae). Zoologische Jahrbucher Physiology 93: 271–282.
Zada H., Naheed H., Ahmad B., Saljoqi A.Ur R., Salim M., Hassan E. 2018. Toxicity potential of different azadirachtin against Plutella Xylostella (Lepidoptera; Plutellidae) and its natural enemy, Diadegma species. Journal of Agronomy and Agricultural Science 1: 003. DOI: https://doi.org/10.24966/AAS-8292/100003
Zhong B., Chaojun L., Weiquan Q. 2017. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomological Society 100 (2): 215–218. DOI: https://doi.org/10.1653/024.100.0215
Go to article

Authors and Affiliations

Somaye Allahvaisi
1
Mahdi Hassani
2
Bahram Heidari
3

  1. Plant Protection Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  2. Sugar Beet Research Department, Hamedan Agriculture and Natural Resources Research and Education Center, AREEO, Hamedan, Iran
  3. Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
Download PDF Download RIS Download Bibtex

Abstract

The paper presents low-cycle fatigue (LCF) characteristics of selected magnesium alloys used, among others, in the automotive and aviation industries. The material for the research were bars of magnesium alloys AZ31 and WE43 after hot plastic working. Due to their application(s), these alloys should have good/suitable fatigue properties, first of all fatigue durability in a small number of cycles.

Low-cycle fatigue tests were carried out on the MTS-810 machine at room temperature. Low-cycle fatigue trials were conducted for three total strain ranges Δεt of 0.8%, 1.0% and 1.2% with the cycle asymmetry factor R = –1. Based on the results obtained, fatigue life characteristics of materials, cyclic deformation characteristics σa = f(N) and cyclic deformation characteristics of the tested alloys were developed. The tests have shown different behaviors of the tested alloys in the range of low number of cycles. The AZ31 magnesium alloy was characterized by greater fatigue life Nf compared to the WE43 alloy.

Go to article

Authors and Affiliations

G. Junak
Download PDF Download RIS Download Bibtex

Abstract

Results and low-cycle fatigue tests analysis of 45 steel in conditions of block programmed loading with a different sequence of levels were presented in the paper. During tests four types of programs were applied: gradually increasing, gradually decreasing, gradually increasing and decreasing, and irregular. The sequence of levels in the block loading program was the parameter, which diversified the applied programs. The results of tests were analysed in the aspect of influence of loading program character on the course of the stabilization process. The analysis of the stabilization process was performed by comparing the stress loading amplitude for the chosen levels of the program in the following blocks. The hardening index was proposed as a description of the stabilization process. The comparative analysis showed similarity of the stabilization processes both under the programmed and the constant - amplitude loading.
Go to article

Authors and Affiliations

Stanisław Mroziński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of choosing parameters of a mathematical model for simulation of a working cycle of compression-ignition engine on the basis of experimental measurements. In order to choose the parameters of the model, the Nelder-Mead method has been used. As a result of such an approach, a simplified mathematical model with very good numerical effectiveness can be used for simulation of the working cycle of the engine, while very good compatibility of numerical results and experimental measurements is ensured. Suitable algorithms and results of calculations are presented.
Go to article

Authors and Affiliations

Krzysztof Brzozowski
Jacek Nowakowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Planning maintenance costs is not an easy task. The amount of costs depends on many factors, such as value, age, condition of the property, availability of necessary resources and adopted maintenance strategy. The paper presents a selection of models which allow to estimate the costs of building maintenance, which are then applied to an exemplary office building. The two of the models allow a quick estimation of the budget for the maintenance of the building, following only indicative values. Two other methods take into account the change in the value of money over time and allow to estimate, assuming the adopted strategy and assumed costs, the value of the current amount allocated to the maintenance of the building. The final model is based on the assumptions provided for in Polish legislation. Due to significant simplifications in the models, the obtained results are characterized by a considerable discrepancy. However, they may form the basis for the initial budget planning related to the maintenance of the building. The choice of the method is left to the decision makers, but it is important what input data the decision maker has and the purpose for which he performs the cost calculation.
Go to article

Authors and Affiliations

Edyta Plebankiewicz
1
ORCID: ORCID
Agnieszka Leśniak
1
ORCID: ORCID
Eva Vitkova
2
ORCID: ORCID
Vit Hromadka
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Kraków, Poland
  2. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republik
Download PDF Download RIS Download Bibtex

Abstract

Life cycles,number of eggs per female,minimal adult female length and reproductive costs are presented for 18 species of Amphipoda from the West Spitsbergen area, 77 –79 °N. Fifteen species incubated eggs during the polar night and released their offspring in early April. Three species incubated eggs from late spring till late summer. The appearance of the youngest juveniles, indicating the hatching period, is presented for 63 species. Most of the species studied were K strategists, with large eggs of over 1 mm diameter; only one species (Hyperoche medusarum ) was r – strategist.

Go to article

Authors and Affiliations

Jan Marcin Węsławski
ORCID: ORCID
Joanna Legeżyńska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

A year-round (3 March 1994 - 28 February 1995) phytoplankton study in Admiralty Bay revealed nanoplankton flagellates (< 20 μm) to be the major algae of the plankton, both in terms of cell numbers and carbon biomass. Their quantities fluctuated widely thoroughly the year showing several peaks, in May, April, December and January. Summer maximum of the group in December was mainly due to Cryptophyceae (4.9 x 106 cells l-1; 98.0 μg C 1-1) and Prasinophyceae (7.3 x 105 cells -1; 33.5 μg C -1). Diatoms were usually scarce (max. 6.8 x 105 cells -1; 7.82 p:g C 1-1) and were dominated by small species of Thalassiosira and by Nitzschia spp. (Pseudonitzschia); the domination structure somewhat differed from that observed in Admiralty Bay in the summer of 1977/78. Algal peaks were related to the surface water (4 m depth) temperature rise from +0.16 to +1.71˚C. Summer phytoplankton maxima were about 5-fold greater than those recorded in the summer of 1977/78.

Go to article

Authors and Affiliations

Elżbieta E. Kopczyńska
Download PDF Download RIS Download Bibtex

Abstract

Comparison of T and S values in areas 1, 2, and 3 in the Bransfield Strait and Admiralty Bay (Fig. 1) shows that the warmest waters are found in area 1, while the coldest in area 3. Surface salinity is the lowest in area 2 as a result of water outflow from land. In area 3 vertical salinity variations are the lowest, with the maximum occurring at the surface. At 500 m depth the highest salinity is recorded in area 1. The most homogeneous distribution of temperature and salinity is observed in area 3. In Admiralty Bay, in the annual cycle of 1995 water temperatures at 4 m, 10 m and 100 m are similar to those in 1979 except in the winter, when they are lower.

Go to article

Authors and Affiliations

Stanisław Rakusa-Suszczewski
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the studies was to collect information on the impact of the identified risk factors on the amount of costs incurred in the life cycle of buildings. The own studies were focused especially on residential and non-residential buildings. The studies consisted in obtaining expert opinions on the subject of the research involves in the non-random (arbitrary) selection of a sample of respondents from among specialists corresponding to the industry purpose of the studies and the research material. The research used the expert questionnaire method. The studies were divided into three stages. In the first stage, the identification and division of risk factors in the life cycle of buildings was performed. Then, experts assessed 45 selected risk factors that may affect the amount of costs incurred in the life cycle of buildings. In the last step, the research results were developed in the form of a checklist knowledge base, containing information about the potential impact of the identified risk factors in the life cycle of buildings on the amount of the corresponding components of life cycle costs.
Go to article

Authors and Affiliations

Damian Wieczorek
1
ORCID: ORCID
Krzysztof Zima
1
ORCID: ORCID
Edyta Plebankiewicz
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska St. 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Authors present the problems of theoretical analysis and experimental research related to the possibilities of energy recovery in selected phases of operating and running cycles of self-driven crane. Heavy machinery powered by diesel engines is a source of solid toxic emissions. In order to limit these emissions, one install filters and filter regeneration systems. According to the concept presented here, the recovered energy might be utilised for regeneration of these filters by burning off accumulated solid particles (soot). Mechanical energy would be the power source to drive DC generators - the mechanical-into-electric energy converters. Filter's heating resistors, acting as the generators' load, would radiate a power of 3-;-5 MJ to initiate burning of soot in the filter. The calculations of energy consumed during sheave block lowering phase were made for three different lifting capacities taking into account the boom length and crane reach. Three running cycles of the crane: highroad, urban and off-road ones were also analysed. The time functions of variations of crane running speed and power of motion resistance at driving wheels were found. The results provided the background for determination of theoretical values of energy to be regained during braking phase of the analysed cycles. The structure and operation of experimental stands was discussed. The stands contain units that, at proper size factor, represent the processes that occur in real cranes and that are related only to energy recovery. Computer software for system simulation, control and measurement was described. Measurement results and result analysis are presented. The value of energy found theoretically was compared with the energy recovered during experimental tests. The paper also contains simplified kinematic schemes of selected units of crane lifting and driving systems, including an additional DC generator. This concept, however, needs verification in future design solutions.
Go to article

Authors and Affiliations

Jerzy Ocioszyński
Przemysław Majewski
Download PDF Download RIS Download Bibtex

Abstract

The model for estimating the whole life costs of the building life cycle that allows the quantification of the risk addition lets the investor to compare buildings at the initial stage of planning a construction project in terms of the following economic criteria: life cycle costs (LCC), whole life costs (WLC), life cycle equivalent annual costs (LCEAC) and cost addition for risk (ΔRLCC). The subsequent stages of the model development have been described in numerous publications of the authors, while the aim of this paper is to check the accuracy of the model in the case of changing the parameters that may affect the results of calculations. The scope of the study includes: comparison of the results generated by the model with the solutions obtained in the life cycle net present value method (LCNPV) for time and financial input data, not burdened with the risk effect; the analysis of the variability of results due to changes in input data; analysis of the variability of results as a consequence of changing the sets of membership functions for input data and methods for defuzzification the result.

Go to article

Authors and Affiliations

E. Plebankiewicz
K. Zima
D. Wieczorek
Download PDF Download RIS Download Bibtex

Abstract

To meet the continuous demand for energy of industrial as well as commercial sectors, researchers focus on increasing the power generating capacity of gas turbine power plants. In this regard, the combined cycle is a better solution in terms of environmental aspects and power generation as compared to a simple gas turbine power plant. The present study is the thermodynamic investigation of five possible air bottoming combined cycles in which the topping cycle is a simple gas turbine cycle, regenerative gas turbine cycle, inter-cool gas turbine cycle, reheat gas turbine cycle, and intercool-reheat gas turbine cycle. The effect of pressure ratio of the topping cycle, the turbine inlet temperature of topping cycle, and ambient temperature on net power output, thermal efficiency, total exergy destruction, and exergetic efficiency of the combined cycle have been analyzed. The ratio of the net power output of the combined cycle to that of the topping cycle is maximal in the case when the topping cycle is a simple gas turbine cycle. The ratio of net power output and the total exergy destruction of the combined cycle to those of the topping cycle decrease with pressure ratio for all the combinations under study except for the case when the topping cycle is the regenerative gas turbine cycle.
Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904(03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Mohammad N. Khan
1
ORCID: ORCID
Dhare Alzafiri
1
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia
Download PDF Download RIS Download Bibtex

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Mohammad N. Khan
1
ORCID: ORCID
Dhare Alzafiri
1
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a microfounded model featuring frictional labor markets that generates procyclical R&D expenditures as a result of optimizing behavior by heterogeneous monopolistically competitive firms. This allows to show that business cycle fluctuations affect the aggregate endogenous growth rate of the economy. Consequently, transitory shocks leave lasting level effects. This mechanism is responsible for economically significant hysteresis effects that significantly increase the welfare cost of business cycles relative to the exogenous growth model. I show that this has serious policy implications and creates ample space for policy intervention. I find that several static and countercyclical subsidy schemes are welfare improving. Importantly, I find that due to labor market frictions subsidizing incumbent firms generates large and positive welfare effects.
Go to article

Authors and Affiliations

Marcin Bielecki
1

  1. University of Warsaw, Poland, Narodowy Bank Polski

This page uses 'cookies'. Learn more