Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Toxic influence of two new imidazolium chlorides was examined on plants: dicotyledonous Sinapis alba Linnaeus and monocotyledonous Horde11111 vulgare Linnaeus. These compounds are meant to be new wood preservatives because of their excellent fungicidal properties. They were proved Io be less toxic 10 barley than 10 charlock. The compound 3,3'-[(2,7-dioxyoktymethylene) bis (1-oktyl)imidazolium] chloride was less fitotoxic 10 both plants than l-decyl-3-hexylotiomethylimidazolium chloride.
Go to article

Authors and Affiliations

Elżbieta Grabińska-Sota
Danuta Witecy
Download PDF Download RIS Download Bibtex

Abstract

Fluorine and sodium chloride are common elements present in the water environment. According to WHO guidelines fluoride content in water cannot be not higher than 1.5 mgF-/dm3. Elevated fluoride content was observed all over the world and it leads to many health issues. It can be removed with the usage of various methods (ion exchange, membrane processes, adsorption, precipitation). In this paper fluoride removal with nanofiltration usage was described. Tests were performed with the application of Amicon 86400 filtration cells. Two types of commercial nanofiltration membranes NP010P and NP030P (Microdyn Nadir) were used. Transmembrane pressure was established as 0.3 MPa. For lower fluoride concentrations (5 mgF-/dm3) NF process allowed to decrease fluoride content under level 1.5 mgF-/dm3. Removal efficiency decreased with increasing fluoride content. Membrane NP030P showed better separation properties. Sodium chloride influenced removal efficiency as well as fluoride adsorption on/in membranes during the process. According to obtained data, better hydraulic properties exhibited membrane NP010P. For both membranes decrease in permeate flux in comparison to pure water was noticed what was observed. Relative permeability was lowered even to 0.32.
Go to article

Bibliography

  1. Akuno, M. H., Nocella, G., Milia, E. P. & Gutierrez, L. (2019). Factors influencing the relationship between fluoride in drinking water and dental fluorosis: A ten-year systematic review and meta-analysis. Journal of Water and Health, 17(6), pp. 845–862. DOI: 10.2166/wh.2019.300
  2. Ali, I., Alothman, Z. A. & Sanagi, M. M. (2015). Green Synthesis of Iron Nano-Impregnated Adsorbent for Fast Removal of Fluoride from Water. Journal of Molecular Liquids, 211, pp. 457–465. DOI: 10.1016/j.molliq.2015.07.034
  3. Ayala, L. I. M., Paquet, M., Janowska, K., Jamard, P., Quist-Jensen, C. A., Bosio, G. N., Mártire, D. O., Fabbri, D. & Boffa, V. (2018). Water Defluoridation: Nanofiltration vs Membrane Distillation. Industrial and Engineering Chemistry Research, 57(43), pp. 14740–14748. DOI: 10.1021/acs.iecr.8b03620
  4. Banasiak, L. J. & Schäfer, A. I. (2009). Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science, 334(1–2), pp. 101–109. DOI: 10.1016/j.memsci.2009.02.020
  5. Bannoud, A. H. & Darwich, Y. (2007). Elimination des ions fluorures et manganèses contenus dans les eaux par nanofiltration. Desalination, 206(1–3), pp. 449–456. DOI:10.1016/j.desal.2006.02.071
  6. Bhatnagar, A., Kumar, E. & Sillanpää, M. (2011). Fluoride removal from water by adsorption - A review. Chemical Engineering Journal, 171(3), pp. 811–840. DOI:10.1016/j.cej.2011.05.028
  7. Bowen, W. R., Mohammad, A. W. & Hilal, N. (1997). Characterisation of nanofiltration membranes for predictive purposes - Use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 126(1), pp. 91–105. DOI:10.1016/S0376-7388(96)00276-1
  8. Carvalho, A. L., Maugeri, F., Silva, V., Hernández, A., Palacio, L. & Pradanos, P. (2011). AFM analysis of the surface of nanoporous membranes: Application to the nanofiltration of potassium clavulanate. Journal of Materials Science, 46(10), pp. 3356–3369. DOI:10.1007/s10853-010-5224-7
  9. Cassano, A., Bentivenga, A., Conidi, C., Galiano, F., Saoncella, O. & Figoli, A. (2019). Membrane-based clarification and fractionation of red wine lees aqueous extracts. Polymers, 11(7), pp. 1–16. DOI:10.3390/polym11071089
  10. Chatterjee, S. & De, S. (2014). Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane, Sepparation and Purification Technology, 125, pp. 223–238. DOI:10.1016/j.seppur.2014.01.055
  11. Chen, C., Han, B., Li, J., Shang, T., Zou, J. & Jiang, W. (2001). A new model on the diffusion of small molecule penetrants in dense polymer membranes. Journal of Membrane Science, 187(1–2), pp. 109–118. DOI:10.1016/S0376-7388(00)00689-X
  12. Chibani, A., Barhoumi, A., Ncib, S., Bouguerra, W. & Elaloui, E. (2019). Fluoride removal from synthetic groundwater by electrocoagulation process: parameters ad energy evaluation. Desalination and Water Treatment, 157, pp. 100–109. DOI:10.5004/dwt.2019.24087
  13. Damtie, M. M., Woo, Y. C., Kim, B., Hailemariam, R. H., Park, K. D., Shon, H. K., Park, C. & Choi, J. S. (2019). Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. Journal of Environmental Management, 251, pp. 1–24. DOI:10.1016/j.jenvman.2019.109524
  14. Diawara, C. K., Paugam, L., Pontié, M., Schlumpf, J. P., Jaouen, P. & Quéméneur, F. (2005). Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes. Separation Science and Technology, 40, pp. 3339–3347. DOI:10.1080/01496390500423706
  15. Elimelech, M., Zhu, X., Childress, A. E. & Hong, S. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127(1), pp. 101–109. DOI:10.1016/S0376-7388(96)00351-1
  16. Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D.M. & Elimelech, M. (2018). Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environmental Science and Technology, 52, pp. 4108–4116. DOI:10.1021/acs.est.7b06400
  17. Fierro, D., Boschetti-de-Fierro, A. & Abetz, V. (2012). The solution-diffusion with imperfections model as a method to understand organic solvent nanofiltration of multicomponent systems. Journal of Membrane Science, 413–414, pp. 91–101. DOI:10.1016/j.memsci.2012.04.027
  18. Gomes, A.C., Cabral Goncalves, I. & de Pinho, M.N, The role of adsorption on nanofiltration of azo dyes (2005). Journal of Membrane Science, 255, pp. 157–165. DOI:10.1016/j.memsci.2005.01.031
  19. He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L. & Liu, J. (2020). Review of fluoride removal from water environment by adsorption. Journal of Environmental Chemical Engineering, 8(6), pp. 1–101. DOI:10.1016/j.jece.2020.104516
  20. Hirose, M., Ito, H. & Kamiyama, Y. (1996). Effect of skin layer surface structures on the flux behaviour of RO membranes. Journal of Membrane Science, 121(2), pp. 209–215. DOI:10.1016/S0376-7388(96)00181-0
  21. Hoinkis, J., Valero-Freitag, S., Caporgno, M. P. & Pätzold, C. (2011). Removal of nitrate and fluoride by nanofiltration - A comparative study. Desalination and Water Treatment, 30(1–3), pp. 278–288. DOI:10.5004/dwt.2011.2103
  22. Hong, S.U., Malaisamy, R. & Bruening, M.L. (2007). Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23, 1716 –1722. DOI:10.1021/la061701y
  23. Hu, K. & Dickson, J. M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279(1–2), pp. 529–538. DOI:10.1016/j.memsci.2005.12.047
  24. Kambarani, M., Bahmanyar, H., Mousavian, M. A. & Mousavi, S. M. (2016). Crossflow filtration of sodium chloride solution by a polymeric nanofilter: Minimization of concentration polarization by a novel backpulsing method. Iranian Journal of Chemistry and Chemical Engineering, 80, pp. 135–141. DOI:10.30492/IJCCE.2016.23595
  25. Klimonda, A. & Kowalska, I. (2019). Application of polymeric membranes for the purification of solutions containing cationic surfactants. Water Science and Technology, 79(7), pp. 1241–1252. DOI:10.2166/wst.2019.115
  26. Kowalik-Klimczak, A., Zalewski, M. & Gierycz, P. (2016). Removal of Cr(III) ions from salt solution by nanofiltration: Experimental and modelling analysis. Polish Journal of Chemical Technology, 18(3), pp. 10–16. DOI:10.1515/pjct-2016-0042
  27. Krieg, H. M., Modise, S. J., Keizer, K. & Neomagus, H. W. J. P. (2004). Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination, 171, pp. 205–215. DOI:10.1016/j.desal.2004.05.005
  28. Labarca, F. & Bórquez, R. (2020). Comparative study of nanofiltration and ion exchange for nitrate reduction in the presence of chloride and iron in groundwater. Science of the Total Environment, 723, pp. 1–12. DOI:10.1016/j.scitotenv.2020.137809
  29. Lee, S., Lee, E., Elimelech, M. & Hong, S. (2011). Membrane characterization by dynamic hysteresis: Measurements, mechanisms, and implications for membrane fouling. Journal of Membrane Science, 366, pp. 17–24. DOI:10.1016/j.memsci.2010.09.024
  30. Ma, W. F., Liu, W. J. & Chen, G. W. (2009). Factors influencing the removal of fluoride from groundwater by Nanofiltration. 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009, pp. 1–5. DOI:10.1109/ICBBE.2009.5162848
  31. Madaeni, S. S. & Salehi, E. (2009). Adsorption of cations on nanofiltration membrane: Separation mechanism, isotherm confirmation and thermodynamic analysis. Chemical Engineering Journal, 150(1), pp. 114–121. DOI:10.1016/j.cej.2008.12.005
  32. Mnif, A., Ali, M. B. S. & Hamrouni, B. (2010). Effect of some physical and chemical parameters on fluoride removal by nanofiltration. Ionics, 16, pp. 245–253. DOI:10.1007/s11581-009-0368-7
  33. Nasr, A. B., Charcosset, C., Amar, R. B. & Walha, K. (2013). Defluoridation of water by nanofiltration. Journal of Fluorine Chemistry, 150, pp. 92–97. DOI:10.1016/j.jfluchem.2013.01.021
  34. Nechifor, G., Pascu, D.E. & Pascu, M. (2013). Study of adsorption kinetics and zeta potential of phosphate and nitrate ions on a cellulosic membrane. Revue Roumaine de Chimie, 58 (7–8), pp. 591–597
  35. Park, N., Cho, J., Hong, S. & Lee, S. (2010). Ion transport characteristics in nanofiltration membranes: Measurements and mechanisms. Journal of Water Supply: Research and Technology - AQUA, 59(2–3), pp. 179–190. DOI:10.2166/aqua.2010.034
  36. Richards, L. A., Vuachère, M. & Schäfer, A. I. (2010). Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination, 261(3), pp. 331–337. DOI:10.1016/j.desal.2010.06.025
  37. Salgado, C., Carmona, F.J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Fouling study of nanofiltration membranes for sugar control in grape must: Analysis of resistances and the role of osmotic pressure. Separation Science and Technology, 51(3), pp. 525–541. DOI:10.1080/01496395.2015.1094490
  38. Shen, J. & Schäfer, A. (2014a). Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 117(1), pp. 679–691. DOI:10.1016/j.chemosphere.2014.09.090
  39. Shen, J. & Schäfer, A. (2015). Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of the Total Environment, 527–528, pp. 520–529. DOI:10.1016/j.scitotenv.2015.04.037
  40. Shu, L., Waite, T. D., Bliss, P. J., Fane, A. & Jegatheesan, V. (2005). Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent. Desalination, 172, pp. 235–243. DOI:10.1016/j.desal.2004.07.037
  41. Shurvell, T., Keir, G., Jegatheesan, V., Shu, L. & Farago, L. (2014). Removal of ametryn through nanofiltration and reverse osmosis. Desalination and Water Treatment, 52, pp. 643–649. DOI:10.1080/19443994.2013.829594
  42. Silva, F. C. (2018). Fouling of Nanofiltration Membranes, IntechOpen, London 2018, DOI:10.5772/intechopen.75353
  43. Steele, D. (1966). Group la: the Alkali Metals Li, Na, K, Rb, Cs, Fr, Pergamon, Tallahassee 1966. DOI:10.1016/b978-0-08-011853-6.50010-2
  44. Szmagara, A. & Krzyszczak, A. (2019). Monitoring of fluoride content in bottled mineral and spring waters by ion chromatography. Journal of Geochemical Exploration, 202, pp. 27–34. DOI:10.1016/j.gexplo.2019.03.008
  45. Tahaikt, M., El Habbani, R., Ait Haddou, A., Achary, I., Amor, Z., Taky, M., Alami, A., Boughriba, A., Hafsi, M. & Elmidaoui, A. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212(1–3), pp. 46–53. DOI:10.1016/j.desal.2006.10.003
  46. Teixeira, M. R., Rosa, M. J. & Nyström, M. (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265(1–2), pp. 160–166. DOI:10.1016/j.memsci.2005.04.046
  47. Tsuru, T., Nakao, S.I. & Kimura, S. (1991). Calculation of ion rejection by extended nernst-planck Equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. Journal of Chemical Engineering of Japan, 24(4), pp. 511–517. DOI:10.1252/jcej.24.511
  48. Van der Bruggen, B. & Vandecasteele, C. (2001). Flux decline during nanofiltration of organic components in aqueous solution. Environmental Science Technology, 35, pp. 3535–3540. DOI: 10.1021/es0100064
  49. Van Der Bruggen, B., Braeken, L. & Vandecasteele, C. (2002). Flux decline in nanofiltration due to adsorption of organic compounds. Separation and Purification Technology, 29(1), pp. 23–31. DOI:10.1016/S1383-5866(01)00199-X
  50. Vieira, G.S, Moreira, F.K.V., Matsumoto, R.L.S., Michelon, M., Filho, F.M. & Hubinger, M.D. (2018). Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. Journal of Food Engineering, 226, pp. 31–41. DOI:10.1016/j.jfoodeng.2018.01.013
  51. Vinati, A., Mahanty, B. & Behera, S. K. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Applied Clay Science, 114, pp. 340–348. DOI:10.1016/j.clay.2015.06.013
  52. Vigneswaran, S. & Kwon, D.-Y. (2015). Effect of ionic strength and permeate flux on membrane fouling: analysis of forces acting on particle deposit and cake formation. Environmental Engineering, 19, pp. 1604–1611. DOI:10.1007/s12205-014-0079-0
  53. Wang, Y., Shu, L., Jegatheesan, V. & Gao, B. (2010). Removal and adsorption of diuron through nanofiltration membrane: The effects of ionic environment and operating pressures. Separation and Purification Technology, 74(2), pp. 236–241. DOI:10.1016/j.seppur.2010.06.011
  54. WHO, Guidelines for Drinking-Water Quality, 2017 (4th ed.), World Health Organization, 763 Geneva
  55. Xi, B., Wang, X., Liu, W., Xia, X., Li, D., He, L., Wang, H., Sun, W., Yang, T. & Tao, W. (2014). Fluoride and Arsenic Removal by Nanofiltration Technology from Groundwater in Rural Areas of China: Performances with Membrane Optimization. Separation Science and Technology (Philadelphia), 49, pp. 2642–2649. DOI:10.1080/01496395.2014.939761
  56. Xu, H., Xiao, K., Yu, J., Huang, B., Wang, X., Liang, S., Wei, C., Wen, X. & Huang, X. (2020). A simple method to identify the dominant fouling mechanisms during membrane filtration based on piecewise multiple linear regression. Membranes, 10(8), 1–14. DOI:10.3390/membranes10080171
Go to article

Authors and Affiliations

Martyna Grzegorzek
1
ORCID: ORCID

  1. Wrocław University of Science and Technology,Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to investigate the influence of aluminium coagulants basicity on the minimalisation of undesirable effects of coagulation such as decreasing pH and alkalinity, thereby water corrosivity. The experiments involved three types of surface water samples: from the Odra and Oława Rivers and a mountain stream, which differed in physico-chemical composition (especially in pH values and alkalinity). Alum (ALS) and polyaluminium chlorides (PACI) characterized by various basicity (r, %) were used as coagulants. The experimental results showed that decrease in water corrosivity depended on the basicity and dose of coagulant, pH and temperature of water prior to coagulation. With the increment of coagulation basic i ty the chemical stability of treated water improved and coagulants PAX-XL 3 and PAX-XL6 l were the best. Using of polyaluminium chlorides instead of alum decreased not only undesirable effects of coagulation but improved also the efficiency of water treatment.
Go to article

Authors and Affiliations

Marta Rak
Maria Świderska-Bróż
Download PDF Download RIS Download Bibtex

Abstract

Twenty silver minerals of the sulphide, arsenide, selenide, telluride, sulphosalt and chloride groups were found in 13 locations in the Variscan Karkonosze granitoid pluton. Previously only one of these minerals was known from this area. The findings include species characterized in publications as rare or exceptionally rare, e.g., muthmannite and tsnigriite. They occur in pegmatites and quartz veins; their parageneses are described. The studies include determination of chemical compositions, formulae calculations and recording of XRD patterns. Inclusion studies in paragenetic quartz indicate that they crystallized from epithermal fluids with a common but low component of CO 2. The results suggest that the minerals formed from trace elements (Ag included) in the Karkonosze granitoid due to very local degrees of recrystallization of the host granitoid.
Go to article

Authors and Affiliations

Andrzej Kozłowski
1
Witold Matyszczak
1

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Foamed concrete incorporating processed spent bleaching earth (PSBE) produces environmentally friendly foamed concrete. Compressive strength, porosity, and rapid chloride penetration tests were performed to investigate the potential application for building material due to its low density and porous concrete. Laboratory results show that 30% PSBE as cement replacement in foamed concrete produced higher compressive strength. Meanwhile, the porosity of the specimen produced by 30% PSBE was 45% lower than control foamed concrete. The porosity of foamed concrete incorporating PSBE decreases due to the fineness of PSBE that reduces the volume of void space between cement and fine aggregate. It was effectively blocking the pore and enhances the durability. Consistently, the positive effect of incorporating of PSBE has decreased the rapid chloride ion permeability compared to that control foamed concrete. According to ASTM C1202-19 the foamed concrete containing 30% PSBE was considered low moderate permeability based on its charge coulombs value of less than 4000. Besides, the high chloride ion permeability in foamed concrete is because the current quickly passes through the specimen due to its larger air volume. In conclusion, incorporating PSBE in foamed concrete generates an excellent pozzolanic effect, producing more calcium silicate hydrate and denser foamed concrete, making it greater, fewer voids, and higher resistance to chloride penetration.
Go to article

Authors and Affiliations

Rokiach Othman
1
Khairunisa Muthusamy
1
ORCID: ORCID
Mohd Arif Sulaiman
1
ORCID: ORCID
Youventharan Duraisamy
2
ORCID: ORCID
Ramadhansyah Putra Jaya
2
ORCID: ORCID
Chong Beng Wei
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Sajjad Ali Mangi
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Agata Śliwa
6
ORCID: ORCID

  1. Faculty of Civil Engineering Technology, University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
  2. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang,Pahang, Malaysia
  3. Center of Excellence Geopolymer and Green Technology, University Malayia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  4. Department of Civil Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs, Sindh 66020, Pakistan
  5. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa
  6. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

A hydroponic trial was conducted to study the effect of chloride salinity in simulated effluent on Cd accumulation by tobacco. Leaf surface area (LSA) and root surface area (RSA) measurements were incorporated as possible determinants of Cd uptake rate by plants. Results showed that individual plant differences in Cd content were normalized when including RSA to express Cd uptake rates by plants but not including LSA. A biotic ligand model (BLM) fitted to predict Cd uptake, estimated active and almost linear uptake of the free Cd2+ ion by tobacco plants, while virtually no changes in the chloride complex (CdCl+) uptake were predicted, presumably due to a rapid saturation of the hypothetical root sorption sites at the concentrations used in this trial. Nicotiana tabacum var. K326 is evidenced to be a species potentially suitable for biological wastewater treatment using rhizofiltration at concentrations commonly found in salt-affected wastewater, with high Cd accumulation (185 to 280 mg/kgd.m.) regardless of water salinity and tolerance up to 80 mmol/L NaCl.
Go to article

Bibliography

1. Berkelaar, E., & Hale, B. (2000). The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars, Canadian Journal of Botany, 78, 3, pp. 381-387. DOI: 10.1139/b00-015
2. Berkelaar, E., & Hale, B. (2003). Cadmium accumulation by durum wheat roots in ligand buffered hydroponic culture: uptake of Cd ligand complexes or enhanced diffusion? Canadian Journal of Botany, 81, 7, pp. 755-763. DOI: 10.1139/b03-061
3. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sedime nt Contamination: An International Journal, 23, (6), 628-640.
4. Candelario-Torres, M.F. (2014). Rhizofiltration of metal polluted effluents by Nicotiana tabacum, M.Sc. diss., Universidad Autonoma de Nuevo Leon (in Spanish), pp. 1-63.
5. Durand, T.C., Hausman, J.F., Carpin S., Alberic, P., Baillif, P., Label, P. & Morabito, D. (2010). Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba, Biologia Plantarum, 54, 1, pp. 191-194. https://doi.org/10.1007/s10535-010-0033-z
6. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sediment Contamination: An International Journal , 23, 6, pp. 628-640. https://doi.org/10.1080/15320383.2014.857640
7. Erdem, H., Kinay, A., Öztürk, M. & Tutuş, Y. (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars, Journal of Food, Agriculture and Environment, 10, 1, pp. 965-969.
8. Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses, Journal of Plant Growth Regulation, 31, 3, pp. 292-308. DOI: 10.1007/s00344-011-9239-3
9. Green-Ruiz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects, Bioresoure Technology, 99, 9, pp. 3864-3870. DOI: 10.1016/j.biortech.2007.06.047
10. He, J.G., Liu, F., Han, B.P., Zhao, B.W. & Liu, J. (2011a). Treatment of tannery wastewater with salt tolerant bacteria basing on different culture mediums, Advanced Materials Research , 403-408, 1, pp. 625-633. DOI: 10.4028/www.scientific.net/AMR.403-408.625
11. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., & Luo, Z.B. (2011b). Net cadmium flux and accumulation reveal tissue‐specific oxidative stress and detoxification in Populus × canescens, Physiologia Plantarum, 143, 1, pp. 50-63. DOI: 10.1111/j.1399-3054.2011.01487.x
12. He, J., Li, H., Luo, J., Ma, C., Li, S., Qu, L., & Luo, Z.B. (2013). A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens, Plant Physiology, 162, 1, pp. 424-439. DOI: 10.1104/pp.113.215681
13. He, J., Li, H., Ma, C., Zhang, Y., Polle, A., Rennenberg, H. & Luo, Z.B. 2015. Overexpression of bacterial γ‐glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar, New Phytologist, 205, 1, pp. 240-254. DOI: 10.1111/nph.13013
14. Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 6951, pp. 901-908. https://doi.org/10.1038/nature01843
15. Li, X., Ding, F., Lo, P. & Sin, S. (2002). Electrochemical disinfection of saline wastewater effluent, Journal of Environmental Engineering, 128, 8, pp. 697-704. DOI: 10.1061/(ASCE)0733-9372(2002)128:8(697)
16. Lin, B., Gao, H., & Lai, H. (2016). Spatial Characterization of Arsenic, Cadmium, and Lead Concentrations in Tobacco Leaves and Soil, Analytical Letters, 49, 10, pp. 1622-1630. DOI: 10.1080/00032719.2015.1113419
17. López-Chuken, U.J. & Young, S.D. (2005). Plant Screening of Halophyte Species for Cadmium Phytoremediation, Zeitschrift für Naturforschung C, 60, 3-4, pp. 236-243. PMID:15948589
18. López-Chuken, U.J. & Young, S.D. (2010). Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity, Journal of Environmental Sciences, 22, 7, pp. 1080-1085. DOI: 10.1016/S1001-0742(09)60220-5
19. López-Chuken, U.J., Young, S.D. & Guzman-Mar, J.L. (2010). Evaluating a ´biotic ligand model´ applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity, Environmental Technology, 31, 3, pp. 307-318. DOI: 10.1080/09593330903470685
20. López-Chuken, U.J., López-Domínguez, U., Parra-Saldivar, R., Moreno, E., Hinojosa, L., Guzmán-Mar, J.L. & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced Cd uptake in (saline) agriculture: modeling Cd uptake by maize and tobacco, International Journal of Environmental Science and Technology, 9, 1, pp. 69-77. DOI: 10.1007/s13762-011-0018-2
21. Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M. & Wagner, G.J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Advances in Agronomy, 83, 1, pp. 111-118. DOI: 10.1016/S0065-2113(04)83003-7
22. Pandey, S.K. & Singh, H. (2011). A Simple, Cost-Effective Method for Leaf Area Estimation, Journal of Botany, 2011, pp. 1-6. DOI: 10.1155/2011/658240
23. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, The Plant Journal, 32, 4, pp. 539-548. DOI: 10.1046/j.1365-313X.2002.01442.x
24. Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J. & Kryński, K. (2004). Phytoextraction crop disposal--an unsolved problem, Environmental Pollution, 128, 3, pp. 373-379. DOI: 10.1016/j.envpol.2003.09.012
25. Tipping, E., Rey-Castro, C., Bryan, S.E. & Hamilton-Taylor, J. (2002). “Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimoca et Cosmochimica Acta, 66, 18, pp. 3211-3224. DOI: 10.1016/S0016-7037(02)00930-4
26. United Nations. (2013). “The Eight Millenium Development Goals.” Accesed 29 February 2016. https://www.un.org/millenniumgoals/bkgd.shtml
27. Wang, X., Cheng, S., Zhang, X., Li, X. &. Logan, B.E. (2005). Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 36, 21, pp. 13900-13906. DOI: 10.1016/j.ijhydene.2011.03.052
28. Wani, P.A., Khan, M.S. & Zaidi, A. (2005). Toxic effects of heavy metals on germination and physiological processes of plants.” [In:] Toxicity of heavy metals to legumes and bioremediation, edited by Zaidi, A., Wani, P.A. & Khan M.S. Springer, Netherlands, pp. 45-66. DOI: 10.1007/978-3-7091-0730-0
29. Weggler-Beaton, K., McLaughlin, M.J. & Graham, R.D. (2000). Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids, Australian Journal of Soil Research, 38, 1, pp. 37-45. DOI: 10.1071/SR99028
30. Xu, Z. & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, Journal of Experimental Botany, 59, 12, pp. 3317-3325.DOI: 10.1093/jxb/ern185
31. Yadav, A. K., Pathak, B. & Fulekar, M.H. (2015). Rhizofiltration of Heavy Metals (Cadmium, Lead and Zinc) From Fly Ash Leachates Using Water Hyacinth (Eichhornia crassipes), International Journal of Environment, 4, 1, pp. 179-196. DOI: 10.3126/ije.v4i1.12187
Go to article

Authors and Affiliations

Ulrico Javier Lopez-Chuken
1
Icela Dagmar Barceló-Quintal
2
Evangelina Ramirez-Lara
1
Maria Elena Cantu-Cardenas
1
Juan Francisco Villarreal-Chiu
1
Julio Cesar Beltran-Rocha
1
Claudio Guajardo-Barbosa
1
Carlos Jesus Castillo-Zacarias
1 3
Sergio Gomez-Salazar
4
Eulogio Orozco-Guareno
4

  1. Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico
  2. Basic Science and Engineering Division, Metropolitan Autonomus University – Azcapotzalco Unit, Mexico
  3. Monterrey Technological Institute of Higher Studies (Instituto Tecnológico y de Estudios Superiores de Monterrey) Mexico
  4. Exact Sciences and Engineering University Center (CUCEI).University of Guadalajara, Mexico
Download PDF Download RIS Download Bibtex

Abstract

In the current study the antifungal activity of inorganic reagents was tested against Cryphonectria parasitica in vitro in a mycelial growth inhibition test. Three reagents, each consisting of chloride silver (AgCl) in combination with (1) aluminum oxide − Al2O3, (2) zinc oxide − ZnO, and (3) Al2O3 and titanium dioxide – TiO2, were tested. Significant differences of the tested reagents on the growth of C. parasitica were recorded. The study demonstrated that silver in mixture with ZnO had an antifungal effect and significantly reduced the mycelial growth of C. parasitica in vitro. The mixture of AgCl with the other two combinations of inorganic metal oxides had no inhibition effect on the growth of the pathogen. It was confirmed that ZnO (applied in a single compound test) is responsible for inhibition of C. parasitica mycelium growth. A preliminary in planta assay was performed but statistically significant differences were not recorded in the average increment of canker length.

Go to article

Authors and Affiliations

Katarína Adamčíková
Zuzana Jánošíková
Jozef Pažitný
Download PDF Download RIS Download Bibtex

Abstract

The presence of natural organic matter (NOM) in water has a significant influence on water treatment processes. Water industries around the world consider coagulation/flocculation to be one of the main water treatment methods. The chief objective of conventional coagulation-based processes is to reduce the turbidity of the water and to remove natural organic matter (NOM) present in solutions. The aim of this paper is to present some developments in terms of improved coagulation for the drinking water of Sidi Yacoub treatment plant located in the Northwest of Algeria.
The experiments involved studying the effects of the application of two coagulants (ferric chloride and aluminium sulphate) on the removal of turbidity and natural organic matter from water by measuring the chemical oxygen demand ( COD) and the UV absorbance at 254 nm. The results showed that the rate of turbidity removal increased from 81.3% to 88% when ferric chloride was applied and from 89.91% to 94% when aluminium sulphate was applied. For NOM removal, the maximum removal rates of COD and UV254 were 48% and 52%, respectively, in the case of ferric chloride. These rates increased to 59% and 65% after optimised coagulation. When aluminium sulphate was used, the rate of removal in water increased from 43% to 55% for COD and from 47% to 59% for UV254 after optimised coagulation. The combination of the two coagulants at equal dosage shows a slight improvement in the values obtained after optimisation, both in terms of turbidity and the NOM.
Go to article

Authors and Affiliations

Taieb Hadbi
1
ORCID: ORCID
Saaed Hamoudi Abdelamir
2

  1. University of Science and Technology Mohamed Boudiaf of Oran, Faculty of Architecture and Civil Engineering, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
  2. Hassiba Benbouali University of Chlef, Faculty of Civil Engineering and Architecture, Chlef, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The article comprises synthesis of magnetically susceptible carbon sorbents based on bio raw materials – beet pulp. The synthesis was performed by one- and two-step methodology using FeCl3 as an activating agent. X-ray diffraction methods showed an increase in the distance between graphene layers to 3.7 Å in biocarbon synthesized by a two-step tech-nique and a slight decrease in inter-graphene distance to 3.55 Å for biocarbon synthesized by an one-step technique. In both magnetically susceptible samples, the Fe3O4 magnetite phase was identified. Biocarbon synthesized by a two-step technique is characterized by a microporous structure in which a significant volume fraction (about 35%) is made by pores of 2.2 and 5 nm radius. In the sample after a one-step synthesis, a significant increase in the fraction of pores with radii from 5 to 30 nm and a decrease in the proportion of pores with radii greater than 30 nm can be detected. Based on the analysis of low-angle X-ray scattering data, it is established that carbon without magnetic activation has the smallest specific area of 212 m2∙сm–3, carbon after one-stage synthesis has a slightly larger area of 280 m2∙сm–3, and after two-stage synthesis has the largest specific surface area in 480 m2∙сm–3. The adsorption isotherms of blue methylene have been studied. Biocarbon ob-tained by two-step synthesis has been shown to have significantly better adsorption properties than other synthesized bio-carbons. Isotherms have been analysed based on the Langmuir model.

Go to article

Authors and Affiliations

Christina Soloviy
ORCID: ORCID
Myroslav Malovanyy
ORCID: ORCID
Ihor Bordun
ORCID: ORCID
Fedir Ivashchyshyn
ORCID: ORCID
Anatoliy Borysiuk
Yuriy Kulyk
Download PDF Download RIS Download Bibtex

Abstract

The level of degradation of reinforced concrete bridges was evaluated based on the in-situ measurements performed on five reinforced concrete bridges under service located in the Czech Republic. The combined effect of carbonation and chlorides with respect to the corrosion of steel reinforcement, namely the pH and the amount of water-soluble chlorides, were evaluated on drilled core samples of concrete. Based on these parameters, the ratio between the concentrations of Cl– and OH, which indicates the ability of concrete to protect reinforcement, was calculated. All the data were statistically summarized and the relationships among them were provided. The main goal of this study is to evaluate the non-proportional effect of the amount of chlorides per mass of concrete on the risk of corrosion initiation and to localize the “critical” locations in the bridges that are the most affected by the degradation effects.

Go to article

Authors and Affiliations

P. Konečný
P. Lehner
D. Vořechovská
M. Šomodíková
M. Horňáková
P. Rovnaníková
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work is to investigate the resistance of cast duplex (austenitic-ferritic) steels to pitting corrosion with respect to the value of PREN (Pitting Resistance Equivalent Number). Pitting corrosion is one of the most common types of corrosion of stainless steels. In most cases, it is caused by the penetration of aggressive anions through the protective passive layer of the steel, and after its disruption, it leads to subsurface propagation of corrosion. The motivation for the research was a severe pitting corrosion attack on the blades of the gypsum-calcium water mixer in a thermal power plant operation.
In order to examine the corrosion resistance, 4 samples of 1.4517 steel with different concentrations of alloying elements (within the interval indicated by the steel grade) and thus with a different PREN value were cast. The corrosion resistance of the samples was evaluated by the ASTM G48 – 11 corrosion test in a 6% aqueous FeCl3 solution at room and elevated solution temperatures. To verify the possible effect of different alloying element concentrations on the mechanical properties, the research was supplemented by tensile and Charpy impact tests. Based on the results, it was found that a significant factor in the resistance of duplex steels to pitting corrosion is the temperature of the solution. For the components in operation, it is therefore necessary to take this effect into account and thoroughly control and manage the temperature of the environment in which the components operate.
Go to article

Bibliography

[1] Reardon, A. (2011). 12.5 Duplex Stainless Steels. In metallurgy for the non-metallurgist (2nd Edition). Ohio: ASM International, ISBN 978-1-61503-821-3, Retrieved from https://app.knovel.com/hotlink/pdf/id:kt009JBTT4/metallurgy-non-metallurgist/duplex-stainless-steels
[2] McGuire, M.F. (2008). Duplex stainless steels. in stainless steels for design engineers (91–108) [online]. Materials Park, Ohio 44073-000: ASM International, [cit. 2020-05-19]. ISBN 978-1-61503-059-0., Retrieved from: https://app.knovel.com/hotlink/pdf/id:kt008GRPY2/stainless-steels-design/duplex-stainless-introduction
[3] O'Brien, A. ed. (2011) Stainless and Heat-Resistant Steels. In Welding Handbook, Volume 4 - Materials and Applications, Part 1 [online]. 9th Edition. Miami: American Welding Society (AWS), p. 351 [cit. 2020-05-27]. ISBN 978-1-61344-537-2. Retrieved from https://app.knovel.com/hotlink/pdf/id:kt0095SGE2/welding-handbook-volume/duplex-sta-composition
[4] Revie, R.W. ed. (2011). In Uhlig’s Corrosion Handbook [online]. Third edition. Duplex stainless steels. (695–705). Hoboken, New Jersey: John Wiley & Sons, 2011 [cit. 2020-06-14]. ISBN 978-1-61344-161-9. Retrieved from https://app.knovel.com/hotlink/pdf/id:kt008TZY32/uhlig-s-corrosion-handbook/duplex-sta-history
[5] Prošek, T. & Šefl, V. (2018). Corrosion resistance of stainless steel in drinking water treatment plants and water storage units. Koroze a ochrana materialu. 62(4), 141-147. DOI: 10.2478/kom-2018-0020.
[6] Cicek, V. (2014). Corrosion engineering. Hoboken, New Jersey: Scrivener Publishing/Wiley. ISBN 978-1-118-72089-9. Retrieved from https://app.knovel.com/hotlink/toc/id:kpCE00004B/corrosion-engineering/corrosion-engineering.
[7] Marcus, P. ed. (2012). Corrosion mechanisms in theory and practice. Third edition. Boca Raton: CRC Press, Corrosion technology (Boca Raton, Fla.). ISBN 978-1-4200-9463-3.
[8] G48 - 11(2015). Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution. West Conshohocken: ASTM International, 2015.
[9] Jargelius-Pettersson, R.F.A. (1998). Application of the pitting resistance equivalent concept to some highly alloyed austenitic stainless steels. Corrosion. 54(2), 162-168. DOI: 10.5006/1.3284840.
[10] (2015). Austenitic-ferritic (duplex) casting materials [online]. Otto Junker, 2015 [cit. 2020-06-25]. Retrieved from: https://www.otto-junker.com/cache/dl-Austenitic-Ferritic-DUPLEX-Casting-Materials-aa4d1dd1db00d37343728c6ba0598a75.pdf

Go to article

Authors and Affiliations

P. Müller
1
ORCID: ORCID
V. Pernica
1
ORCID: ORCID
V. Kaňa
1
ORCID: ORCID

  1. Brno University of Technology, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the effects of Nano SiO 2 (NS) and Silica fume (SF) on the mechanical properties and durability of Portland cement concrete. On specimens with varying NS and SF concentrations, compressive strength, flexural strength, abrasion resistance, elastic modulus, and chloride ion penetration were all tested. All specimens were subjected to the proposed method/technique cured at the ages of 3, 7, 28, and 60 days. NS particles were added to cement concrete at various replacements of 0, 0.5, 1.0, 1.5, and 2.0% by the mass of the binder. The water/binder ratio has remained at 0.37 for all mixes. Then, for cement-concrete were prepared 45 MPa (C45) with NS and SF. The specimens confirm the new method effectiveness evaluation were prepared under two different categories: (1) Portland cement replacement with NS of 0%, 0.5%, 1.0%, 1.5%, and 2.0%, by weight for adhesives; (2) Portland cement replacement with NS of 0.5%, 1.0% and each NS content in combination with SF of 5%, 10%, and 15%, respectively, by weight for adhesives. The results indicated that the abrasion resistance and Chloride ion penetration of concrete containing NS and SF are improved. Finally, an analytical model for forecasting the Elastic modulus, flexural strength, and compressive strength of cement concrete was established from obtained data.
Go to article

Authors and Affiliations

Huu-Bang Tran
1
Vu To-Anh Phan
2

  1. Faculty of Architecture, Thu Dau Mot University, Binh Duong Province, Vietnam
  2. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The properties of expansive concretes made of two types of cement: Portland cement CEM I and blast furnace slag cement CEM III were tested. The expansion of the concrete was caused by using an expansive admixture containing aluminium powder added in an amount of 0.5; 1 and 1.5% of cement mass. It was found that the compressive strength of concrete with CEM I decreased after using an expansive admixture in the amount of more than 0.5% of the cement mass. The compressive strength of concrete with CEM III decrease after addition of admixture in the entire range of dosages used. On the basis of electrochemical measurements, it was found no influence of an expansive admixture on corrosion of reinforcing steel. The use of an expansive admixture causes a slight increase in the effective diffusion coefficient of chloride ions in concrete.

Go to article

Authors and Affiliations

W. Jackiewicz-Rek
J. Kuziak
B. Jaworska
Download PDF Download RIS Download Bibtex

Abstract

Chloride ion erosion in offshore environment may damage the mechanical properties of beam bridges. In this study, the reinforced concrete specimen was designed, accelerated erosion experiments were carried out to simulate the coastal corrosion environment, and the corrosion rate, nominal strength and equivalent strength of steel bars, concrete cracks and reliability of beam bridges were calculated to understand the time-varying mechanical properties of beam bridges. The results showed that the nominal and equivalent strength of reinforcing bars decreased with the increase of corrosion rate of reinforcing bars. The change of yield strength was greater than that of equivalent strength. The change of crack width of concrete showed a slow-fast-slow trend, and the reliability of beam bridges decreased significantly in about 50 years. The experimental results show that chloride ion corrosion can significantly damage the mechanical properties of the beam bridge and affect the time-varying reliability of the beam bridge. Therefore, it is necessary to carry out timely maintenance and inspection and take effective methods to control steel corrosion to ensure the safety of the use of the beam bridge.

Go to article

Authors and Affiliations

Y.H. Gao
Download PDF Download RIS Download Bibtex

Abstract

Porcine contagious pleuropneumonia (PCP) is a very serious respiratory disease which is difficult to prevent and treat. In this study, the therapeutic effects of lithium chloride (LiCl) on PCP were examined using a mouse model. A mouse model of PCP was established by intranasal infections with Actinobacillus pleuropneumoniae (App). Histopathological analysis was performed by routine paraffin sections and an H-E staining method. The inflammatory factors, TLR4 and CCL2 were analyzed by qPCR. The expression levels of p-p65 and pGSK-3ß were detected using the Western Blot Method. The death rates, clinical symptoms, lung injuries, and levels of TLR-4, IL-1ß, IL-6, TNF-α, and CCL2 were observed to decrease in the App-infected mice treated with LiCl. It was determined that the LiCl treatments had significantly reduced the mortality of the App-infected cells, as well as the expressions of p-p65 and pGSK-3ß. The results of this study indicated that LiCl could improve the pulmonary injuries of mice caused by App via the inhibition of the GSK-3β-NF-κB-dependent pathways, and may potentially become an effective drug for improving pulmonary injuries caused by PCP.
Go to article

Bibliography


Benga L, Hoeltig D, Rehm T, Rothkoetter HJ, Pabst R, Valentin- -Weigand P; FUGATO-consortium IRAS (2009) Expression levels of immune markers in Actinobacillus pleuropneumoniae infected pigs and their relation to breed and clinical symptoms. BMC Vet Res 5: 13.
Boren J, Shryock G, Fergis A, Jeffers A, Owens S, Qin W, Koenig KB, Tsukasaki Y, Komatsu S, Ikebe M, Idell S, Tucker TA (2017) Inhibition of glycogen synthase kinase 3β blocks mesomesenchymal transition and attenuates streptococcus pneumonia-mediated pleural injury in mice. Am J Pathol 187: 2461-2472.
Brogaard L, Klitgaard K, Heegaard PM, Hansen MS, Jensen TK, Skovgaard K (2015) Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genomics 16: 417.
Chang Y, Chen C, Lin C, Lu S, Cheng M, Kuo C, Lin Y (2013) Regulatory role of GSK-3β on NF-κB, nitric oxide, and TNF-α in Group A Streptococcal infection. Mediators Inflamm 2013: 720689.
Chen K, Wu Y, Zhu M, Deng Q, Nie X, Li M, Wu M, Huang X (2013) Lithium chloride promotes host resistance against Pseudomonas aeruginosa keratitis. Mol Vis 19: 1502-1514.
Dugo L, Collin M, Allen DA, Patel NS, Bauer I, Mervaala EM, Louhelainen M, Foster SJ, Yaqoob MM, Thiemermann C (2005) GSK-3beta inhibitors attenuate the organ injury/ /dysfunction caused by endotoxemia in the rat. Crit Care Med 33: 1903-1912.
Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86-90.
Hoffmeister L, Diekmann M, Brand K, Huber R (2020) GSK3: a kinase balancing promotion and resolution Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E (2017) Stressed and inflamed, can GSK3 be blamed? Trends Biochem Sci 42: 180-192.
Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32: 577-595.
Hu P, Huang F, Niu J, Tang Z (2015) TLR-4 involvement in pyroptosis of mice with pulmonary inflammation infected by Actinobacillus pleuropneumoniae. Wei Sheng Wu Xue Bao 55: 650-656.
Kumar V (2018) Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 59: 391-412.
Kumar V (2020) Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89: 107087.
Li B, Fang J, Zuo Z, Yin S, He T, Yang M, Deng J, Shen L, Ma X, Yu S, Wang Y, Ren Z (2018) Activation of porcine alveolar macrophages by Actinobacillus pleuropneumoniae lipopolysaccharide via the toll-like receptor 4/NF-kappaB-mediated pathway. Infect Immun 86: e00642-17.
Li H, Gao D, Li Y, Wang Y, Liu H, Zhao J (2018) Antiviral effect of lithium chloride on porcine epidemic diarrhea virus in Vitro. Res Vet Sci 118: 288-294.
Li N, Zhang X, Dong H, Zhang S, Sun J, Qian Y (2016) Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of toll-Like receptor 4 expression. Cell Physiol Biochem 38: 714-725.
Liu X, Klein PS (2018) Glycogen synthase kinase-3 and alternative splicing. Wiley Interdiscip Rev RNA 9: e1501.
Makola RT, Mbazima VG, Mokgotho MP, Gallicchio VS, Matsebatlela TM (2020) The effect of lithium on inflammation-associated genes in lipopolysaccharide-activated Raw 264.7 macrophages. Int J Inflam 2020: 8340195.
Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 6: 777-784.
Medunjanin S, Schleithoff L, Fiegehenn C, Weinert S, Zuschratter W, Braun-Dullaeus RC (2016) GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci Rep 6: 38553.
Oviedo-Boyso J, Cortés-Vieyra R, Huante-Mendoza A, Yu HB, Valdez-Alarcón JJ, Bravo-Patiño A, Cajero- -Juárez M, Finlay BB, Baizabal-Aguirre VM (2011) The phosphoinositide-3-kinase-Akt signalling pathway is important for Staphylococcus aureus internalization by endothelial cells. Infect Immun 79: 4569-4577.
Paramel GV, Sirsjö A, Fransén K (2015) Role of genetic alterations in the NLRP3 and CARD8 genes in health and disease. Mediators Inflamm 2015: 846782.
Pereira MF, Rossi CC, Seide LE, Martins Filho S, Dolinski CM, Bazzolli DM (2018) Antimicrobial resistance, biofilm formation and virulence reveal Actinobacillus pleuropneumoniae strains’ pathogenicity complexity. Res Vet Sci 118: 498-501.
Raghavendra PB, Lee E, Parameswaran N (2014) Regulation of macrophage biology by lithium: a new look at an old drug. J Neuroimmune Pharmacol 9: 277-284.
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49: 1603-1616.
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I (2018) Update on Actinobacillus pleuropneumoniae- knowledge, gaps and challenges. Transbound Emerg Dis 65 (Suppl 1): 72-90.
Snitow ME, Bhansali RS, Klein PS (2021) Lithium and therapeutic targeting of GSK-3. Cells 10: 255.
Song J, Bishop BL, Li G, Duncan MJ, Abraham SN (2007) TLR4 initiated and cAMP-mediated abrogation of bacterial invasion of the bladder. Cell Host Microbe 1: 287-298. Woodgett JR, Ohashi PS (2005) GSK3: an in-Toll-erant protein kinase? Nat Immunol 6: 751-752.
Zhang P, Katz J, Michalek SM (2009) Glycogen synthase kinase-3beta (GSK3beta) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol Immunol 46: 677-687.
Zhao Y, Yan K, Wang Y, Cai J, Wei L, Li S, Xu W, Li M (2020) Lithium chloride confers protection against viral myocarditis via suppression of coxsackievirus B3 virus replication. Microb Pathog 144: 104169. of inflammation. Cells 9: 820.

Go to article

Authors and Affiliations

Y. Zhang
1
W. Xu
1
Y. Tang
1
F. Huang
1 2

  1. College of Veterinary Medicine, Hunan Agricultural University, Furong District, Nongda Road, No.1, Changsha 410128, China
  2. Hunan Engineering Technology Research Center for Veterinary Drugs, Hunan Agricultural University, Furong District, Nongda Road, No.1, Changsha 410128, China
Download PDF Download RIS Download Bibtex

Abstract

A mechanistic exposure experiment was performed on the commercially available and welded Ni-Cr-Mo-Fe alloy samples used in the piping materials of the coal gasification pilot plant. Thermodynamic Ellingham-Pourbaix stability diagrams were constructed to provide insight into the mechanism of the observed corrosion behavior. The thermodynamic inference on the corrosion mechanism was supplemented with the morphological, compositional and microstructural analyses of the exposed samples using scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analyses. X-ray diffraction result revealed stable corrosion products of NiO, MoNi4 and Cr4.6MoNi2.1 after accumulated total exposure duration of 139 h to the corrosive atmosphere. Scanning electron microscopy and energy-dispersive X-ray spectroscopy positively identified formation of rather continuous and adherent pre-oxidation corrosion products although extensively peeled-off oxides were finally observed as corrosion scales on the post-exposure alloy samples, which were attributed to the chlorination/oxidation into thin (spalled) oxides.

Go to article

Authors and Affiliations

Sungkyu Lee
Min Jung Kim
Nuri Choi
Sang Yeon Hwang
Seok-Woo Chung
Seung-Jong Lee
Yongseung Yun

This page uses 'cookies'. Learn more