Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 54
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Bearings of three-bearing shafts are usually treated as ideally-rigid articulated supports. In literature, the reactions of supports and bending moments of multibearing shafts are calculated taking into consideration only shaft elasticity. In fact, also deformation is present in these bearings, and it changes the shaft bending line. The deformation thus influences distribution of bending moment and reaction of supports. It is the most important difference when comparing two-bearing with three-bearing shafts.

Moreover, in most types of bearings, a reactive bending moment is the response of bearing to unparallel position of inner bearing rings in relation to outer rings, that is to the tilt angle. As a result, real loads of rolling elements differ from theoretical ones.

The aim of the paper is to develop a method of calculating generalized loads in rolling bearings of a three-bearing shaft taking into consideration shaft deformation, deformations in bearings and reactive moments of bearings caused by tilt angle.

Go to article

Authors and Affiliations

Andrzej Raczyński
Jarosław Kaczor
Download PDF Download RIS Download Bibtex

Abstract

Commonly used computations of basic rating life of a bearing system are based on the ISO 281:1990 standard. These computations include dynamic load capacity of a given bearing, its effective load and average rotational speed, whereas they omit distribution of external load acting upon particular rolling parts depending, among other things, on: - displacement in bearing (displacements in three directions and declination in two planes), - slackness in bearings. The aim of the presented theoretical research is to solve a problem of fatigue life of a ball bearing taking into consideration displacement in bearing resulting from elasticity of a three-bearing shaft, elasticity of bearings and their internal slackness.

Go to article

Authors and Affiliations

Jarosław Kaczor
Download PDF Download RIS Download Bibtex

Abstract

The occurrence of gas confined in shales allows us to consider it as a component of the host rock. During drilling wells, the gas is released into the drilling fluid from finely ground gas-bearing rock particles. The amount of gas released can be determined on the basis of mud-gas logging; in addition, it is possible to determine the gas-content in shales expressed by the volume of gas released per mass unit of rock [m3/ton]. The gas content in the Ordovician and Silurian shales (Sasin formation and Jantar member respectively) in two selected wells in northern Poland was determined using this method. It has been found that clearly distinguishable, highly gas-bearing sections, which are separated by very poorly gas-bearing ones, can be determined in the well log. The increased gas content in shales can be observed in zones generally enriched in TOC. No direct correlation between TOC and gas-bearing capacity was found however, but the structure of TOC variability and the gas-bearing capacity described using variograms is identical. Correlations of the distinguished gas-bearing layers in the wells under consideration suggest a multi-lens or multi-layered reservoir model. The lack of natural boundaries in the shale gas reservoir means that they must be determined arbitrarily based on the assumed marginal gas-bearing capacity. In the case of several gas-bearing zones, numerous variants of interpretation are possible. In any case the low, best and high estimated resources may be evaluated, assigned to each borehole in the area with radii equal to the range of variogram of gas content in horizontal part of the well.

Go to article

Authors and Affiliations

Marek Nieć
ORCID: ORCID
Angelika Musiał
Justyna Auguścik
Download PDF Download RIS Download Bibtex

Abstract

The present work studies the tribological properties of new hybrid material composed from high porosity open cell aluminum alloy (AlSi10Mg) skeleton and B83 babbitt infiltrated into it. The porous skeleton is obtained by replication method applying salt (NaCl) as space holder. The reinforcing phase of the skeleton consists of Al2O3 particles. The skeleton contains Al2O3 particles as reinforcement. The microstructure of the obtained materials is observed and the tribological properties are determined. A comparison between tribological properties of nominally nonporous aluminum alloy, high porosity open cell skeleton, babbitt alloy and the hybrid material is presented. It is concluded that new hybrid material has high wear resistivity and is a promising material for sliding bearings and other machine elements with high wear resistivity.

Go to article

Authors and Affiliations

M. Kolev
L. Drenchev
L. Stanev
Download PDF Download RIS Download Bibtex

Abstract

A common problem in transient rotordynamic simulations is the numerical effort necessary for the computation of hydrodynamic bearing forces. Due to the nonlinear interaction between the rotordynamic and hydrodynamic systems, an adequate prediction of shaft oscillations requires a solution of the Reynolds equation at every time step. Since closed-form analytical solutions are only known for highly simplified models, numerical methods or look-up table techniques are usually employed. Numerical solutions provide excellent accuracy and allow a consideration of various physical influences that may affect the pressure generation in the bearing (e.g., cavitation or shaft tilting), but they are computationally expensive. Look-up tables are less universal because the interpolation effort and the database size increase significantly with every considered physical effect that introduces additional independent variables. In recent studies, the Reynolds equation was solved semianalytically by means of the scaled boundary finite element method (SBFEM). Compared to the finite element method (FEM), this solution is relatively fast if a small discretization error is desired or if the slenderness ratio of the bearing is large. The accuracy and efficiency of this approach, which have already been investigated for single calls of the Reynolds equation, are now examined in the context of rotordynamic simulations. For comparison of the simulation results and the computational effort, two numerical reference solutions based on the FEM and the finite volume method (FVM) are also analyzed.
Go to article

Authors and Affiliations

Simon Pfeil
1
ORCID: ORCID
Fabian Duvigneau
1
ORCID: ORCID
Elmar Woschke
1
ORCID: ORCID

  1. Otto von Guericke University, Institute of Mechanics, Universitätspl. 2, 39106 Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

Designing touch-down bearings (TDB) for outer rotor flywheels operated under high vacuum conditions constitutes a challenging task. Due to their large diameters, conventional TDB cannot suited well, and a planetary design is applied, consisting of a number of small rolling elements distributed around the stator. Since the amplitude of the peak loads during a drop-down lies close to the static load rating of the bearings, it is expected that their service life can be increased by reducing the maximum forces. Therefore, this paper investigates the influence of elastomer rings around the outer rings in the TDB using simulations. For this purpose, the structure and the models used for contact force calculation in the ANEAS simulation software are presented, especially the modelling of the elastomers. Based on the requirements for a TDB in a flywheel application, three different elastomers (FKM, VMQ, EPDM) are selected for the investigation. The results of the simulations show that stiffness and the type of material strongly influence the maximum force. The best results are obtained using FKM, leading to a reduction of the force amplitude in a wide stiffness range.
Go to article

Bibliography

  1.  L. Quurck, H. Schaede, M. Richter, and S. Rinderknecht, “High Speed Backup Bearings for Outer-Rotor-Type Flywheels – Proposed Test Rig Design,” in Proceedings of ISMB 14, Linz, Austria, 2014, pp. 109–114.
  2.  L. Quurck, D. Franz, B. Schüßler, and S. Rinderknecht, “Planetary backup bearings for high speed applications and service life estimation methodology,” Mech. Eng. J., vol. 4, no. 5, 2017, doi: 10.1299/mej.17-00010.
  3.  L. Quurck, R. Viitala, D. Franz, and S. Rinderknecht, “Planetary Backup Bearings for Flywheel Applications,” in Proceedings of ISMB 16, Beijing, China, 2018.
  4.  J. Cao, P. Paul Allaire, T. Dimond, C. Klatt, and J.J.J. van Rensburg, “Rotor Drop Analyses and Auxiliary Bearing System Optimization for AMB Supported Rotor/Experimental Validation – Part II: Experiment and Optimization,” in Proceedings of ISMB 15, Kitakyushu, Japan, 2016, 819–825.
  5.  J. Schmied and J.C. Pradetto, “Behaviour of a One Ton Rotor being Dropped into Auxiliary Bearings,” in Proceedings of ISMB 3, Zürich, Schweiz, 1992, pp. 145–156.
  6.  Z. Yili and Z. Yongchun, “Dynamic Responses of Rotor Drops onto Auxiliary Bearing with the Support of Metal Rubber Ring,” Open Mech, Eng. J., vol. 9, no. 1, pp. 1057–1061, 2015, doi: 10.2174/1874155X01509011057.
  7.  A. Bormann, Elastomerringe zur Schwingungsberuhigung in der Rotordynamik: Theorie, Messungen und optimierte Auslegung. Disser- tation. Düsseldorf: VDI-Verl., 2005.
  8.  M. Orth and R. Nordmann, “ANEAS: A Modeling Tool for Nonlinear Analysis of Active Magnetic Bearing Systems,” IFAC Proceedings Volumes, vol. 35, no. 2, pp. 811–816, 2002, doi: 10.1016/S1474-6670(17)34039-9.
  9.  V.L. Popov, Contact Mechanics and Friction: Physical Principles and Applications. Berlin, Heidelberg: Springer, 2017.
  10.  E.P. Gargiulo Jr., “A simple way to estimate bearing stiffness,” Machine Design, vol. 52, no. 17, pp. 107–110, 1980.
  11.  K.H. Hunt and F.R.E. Crossley, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” J. Appl. Mech., vol. 42, no. 2, p. 440, 1975, doi: 10.1115/1.3423596.
  12.  M.C. Marinack, R.E. Musgrave, and C.F. Higgs, “Experimental Investigations on the Coefficient of Restitution of Single Particles,” Tribol. Trans., vol. 56, no. 4, pp. 572–580, 2013, doi: 10.1080/10402004.2012.748233.
  13.  R.J. Mainstone, “Properties of materials at high rates of straining or loading,” Mat. Constr., vol. 8, no. 2, pp. 102–116, 1975, doi: 10.1007/ BF02476328.
  14.  H. Wittel, D. Muhs, D. Jannasch, and J. Voßiek, “Wälzlager und Wälzlagerungen,” in Roloff/Matek Maschinenelemente, H. Wittel, D. Muhs, D. Jannasch, and J. Voßiek, Eds., Wiesbaden: Vieweg+Teubner Verlag, 2009, pp. 475–525.
  15.  J. M. Gouws, “Investigation into backup bearing life using delevitation severity indicators,” North-West University, Potchefstroom, South Africa, 2016.
  16.  G. Sun, “Auxiliary Bearing Life Prediction Using Hertzian Contact Bearing Model,” J. Appl. Mech., vol. 128, no. 2, p.  203, 2006, doi: 10.1115/1.2159036.
  17.  T. Ishii and R. G. Kirk, “Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop,” J. Vib. Acoust., vol. 118, no. 2, pp. 154–163, 1996, doi: 10.1115/1.2889643.
Go to article

Authors and Affiliations

Benedikt Schüßler
1
ORCID: ORCID
Timo Hopf
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Technical University of Darmstadt, Institute for Mechatronic Systems, Germany
Download PDF Download RIS Download Bibtex

Abstract

In this study, a multi-pad bump-type foil thrust bearing with a taper-land height profile is investigated. A detailed thermo-elastohydrodynamic (TEHD) finite element (FE) model is used comprising all bearing pads instead of only a single pad. Although the single-pad reduction approach is commonly applied, it can not accurately account for the different temperatures, loads, and power losses for individual pads in the case of misalignment. The model accounts for the deformations of the foils on each pad via a Reissner-Mindlin-type shell model. Deformations of the rotor are calculated via the Navier-Lamé equations with thermoelastic stresses and centrifugal effects. The temperature of the top foil and the rotor are calculated with the use of heat diffusion equations. The temperature of each lubricating air film is obtained through a 3D energy equation. Film pressures are calculated with the 2D compressible Reynolds equation. Moreover, the surrounding of the bearing and runner disk is part of the thermodynamic model. Results indicate that the thermal bending of the runner disk as well as top foil sagging are key factors in performance reduction. Due to the bump-type understructure, the top foil sagging effect is observed in simulation results. The study at hand showcases the influence of misalignment between the rotor and the bearing on the bearing performance.
Go to article

Authors and Affiliations

Markus Eickhoff
1
ORCID: ORCID
Johannis Triebwasser
1
Bernhard Schweizer
1

  1. Institute of Applied Dynamics, Technical University of Darmstadt, Germany
Download PDF Download RIS Download Bibtex

Abstract

A gyroscopic rotor exposed to unbalance is studied and controlled with an active piezoelectrical bearing. A model is required in order to design a suited controller. Due to the lack of related publications utilizing piezoelectrical bearings and obtaining a modal model purely exploiting experimental modal analysis, this paper reveals a method to receive a modal model of a gyroscopic rotor system with an active piezoelectrical bearing. The properties of the retrieved model are then incorporated into the design of an originally model-free control approach for unbalance vibration elimination, which consists of a simple feedback control and an adaptive feedforward control. After the discussion on the limitations of the model-free control, a modified controller using the priorly identified modal model is implemented on an elementary rotor test-rig comparing its performance to the original model-free controller.
Go to article

Bibliography

  1.  A.B. Palazzolo, R.R. Lin, R.M. Alexander, A.F. Kascak, and J. Montague, “Test and theory for piezoelectric actuator-active vibration control of rotating machinery,” J. Vib. Acoust., vol.  113, no. 2, 1991. doi: 10.1115/1.2930165.
  2.  R. Köhler, C. Kaletsch, M. Marszolek, and S. Rinderknecht, “Active vibration damping of engine rotor considering piezo electric self heating effects,” in International Symposium on Air Breathing Engines 2011 (ISABE 2011), Gothenburg, Sep. 2011.
  3.  M. Borsdorf, R.S. Schittenhelm, and S. Rinderknecht, “Vibration reduction of a turbofan engine high pressure rotor with piezoelectric stack actuators,” in Proceedings of the International Symposium on Air Breathing Engines 2013 (ISABE 2013), Busan, 2013.
  4.  R.C. Simões, V. Steffen, J. Der Hagopian, and J. Mahfoud, “Modal active vibration control of a rotor using piezoelectric stack actuators,” Vib. Control, vol. 13, no. 1, pp. 45–64, Jan. 2007. doi: 10.1177/1077546306070227.
  5.  B. Riemann, M.A. Sehr, R.S. Schittenhelm, and S. Rinderknecht, “Robust control of flexible high-speed rotors via mixed uncertainties,” in 2013 European Control Conference (ECC). Zürich: IEEE, Jul. 2013, pp. 2343–2350. doi: 10.23919/ ECC.2013.6669786.
  6.  F.B. Becker, M.A. Sehr, and S. Rinderknecht, “Vibration isolation for parameter-varying rotor systems using piezoelectric actuators and gain-scheduled control,” J. Intell. Mater. Syst. Struct., vol. 28, no. 16, pp. 2286–2297, Sep. 2017. doi: 10.1177/1045389X17689933.
  7.  M. Li, T.C. Lim, and W.S. Shepard, “Modeling active vibration control of a geared rotor system,” Smart Mater. Struct., vol.  13, no. 3, pp. 449–458, Jun. 2004. doi: 10.1088/0964- 1726/13/3/001.
  8.  Y. Suzuki and Y. Kagawa, “Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators,” Smart Mater. Struct., vol. 21, no. 12, Dec. 2012. doi: 10.1088/0964-1726/21/12/125006.
  9.  O. Lindenborn, B. Hasch, D. Peters, and R. Nordmann, “Vibration reduction and isolation of a rotor in an actively supported bearing using piezoelectric actuators and the FXLMS algorithm,” in 9th International Conference on Vibrations in Rotating Machinery, Exeter, Sep. 2008.
  10.  R.S. Schittenhelm, S. Bevern, and B. Riemann, “Aktive Schwingungsminderung an einem gyroskopiebehafteten Rotorsystem mittels des FxLMS-Algorithmus,” in SIRM 2013 – 10. Internationale Tagung Schwingungen in rotierenden Maschinen, Berlin, Deutschland, Feb. 2013.
  11.  S. Heindel, P.C. Müller, and S. Rinderknecht, “Unbalance and resonance elimination with active bearings on general rotors,” J. Sound Vib., vol. 431, pp. 422–440, Sep. 2018. doi: 10.1016/j.jsv.2017.07.048.
  12.  B. Vervisch, K. Stockman, and M. Loccufier, “A modal model for the experimental prediction of the stability threshold speed,” Appl. Math. Modell., vol. 60, pp. 320–332, Aug. 2018. doi: 10.1016/j.apm.2018.03.020.
  13.  S. Kuo and D. Morgan, “Active noise control: a tutorial review,” Proc. IEEE, vol. 87, no. 6, pp. 943–975, Jun. 1999. doi: 10.1109/5.763310.
  14.  J. Jiang and Y. Li, “Review of active noise control techniques with emphasis on sound quality enhancement,” Appl. Acoust., vol. 136, pp. 139–148, Jul. 2018. doi: 10.1016/j.apacoust. 2018.02.021.
  15.  L.P. de Oliveira, B. Stallaert, K. Janssens, H. Van der Auweraer, P. Sas, and W. Desmet, “NEX-LMS: A novel adaptive control scheme for harmonic sound quality control,” Mech. Syst. Signal Process., vol. 24, no. 6, pp. 1727–1738, Aug. 2010. doi: 10.1016/j.ymssp.2010.01.004.
  16.  S.S. Narayan, A.M. Peterson, and M.J. Narasimha, “Transform domain LMS algorithm,” IEEE Trans. Acoust. Speech Signal Process., vol. 31, no. 3, pp. 609–615, Jun. 1983.
  17.  J. Jungblut, D.F. Plöger, P. Zech, and S. Rinderknecht, “Order tracking based least mean squares algorithm,” in Proceedings of 8th IFAC Symposium on Mechatronic Systems MECHATRONICS 2019, Vienna, Sep. 2019, pp. 465–470.
  18.  J. Jungblut, C. Fischer, and S. Rinderknecht, “Supplementary data: Active vibration control of a gyroscopic rotor using experimental modal analysis,” 2020. [Online]. doi: 10.48328/tudatalib-572.
Go to article

Authors and Affiliations

Jens Jungblut
1
ORCID: ORCID
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Download PDF Download RIS Download Bibtex

Abstract

The problems of mathematical modelling of vibration signal for bearings with specific geometrical structure or defect is important insofar as there are no model bearings (to facilitate carrying out a calibration procedure for industrial measurement systems). It is even more so that there are no precise reference systems to which we would compare the results. This article presents a general outline of the most important studies on modelling of vibrations in rolling bearings. Papers constituting the basis for the most recent studies and a review of articles from the past few years have been considered here. Five different models have been analyzed in detail in order to show the directions of the latest studies. Completed analysis presents different viewpoints on the issue of modelling a rolling bearing operation. This overview article makes it possible to derive the final conclusion that in order to include all factors affecting bearing vibrations, even those ignored in the most recent models, it is necessary to carry out practical statistical research including the principles of multicriteria statistics. This approach will facilitate developing a versatile model, also applicable to predicting vibrations of a new bearing just manufactured in a factory.

Go to article

Authors and Affiliations

M. Wrzochal
S. Adamczak
Download PDF Download RIS Download Bibtex

Abstract

Polar snow and its accumulation preserve valuable information derived from the atmosphere on past climate and environmental changes in high resolution, particularly in coastal sites. A 2.5-m snow-pit was excavated from the coastal ice rise (Moore Dome) near Amundsen Sea region in February 2012. This study evaluated the isotopic and chemical compositions in the snow-pit and compared them with meteorological variables. Based on the seasonal peaks of the MSA and nssSO42– together with 18O, D, and d-excess, the snow-pit record was corresponded to accumulation during austral winter 2011 to summer 2011/2012. The annual mean accumulation rate was assumed thus to be as large as or even higher than 1.03 m w.e. yr–1 at this site. A relatively warm winter temperature in 2011 was traceable in the variations of 18O, D, and d-excess. This study emphasizes the importance of the high snow accumulation observed at this site in providing valuable information on sub-annual variations in climate and environmental changes through the study of longer ice cores.
Go to article

Authors and Affiliations

Sang-Bum Hong
1
ORCID: ORCID
Yalalt Nyamgerel
2
ORCID: ORCID
Won Sang Lee
1
ORCID: ORCID
Jeonghoon Lee
2
ORCID: ORCID

  1. Division of Glacial Environment Research, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea
  2. Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
Download PDF Download RIS Download Bibtex

Abstract

The present elaboration gives the results of investigations carried out by the VLF method in September. 1980. in Fuglebersletta, in the Hornsund Fiord area, Spitsbergen. The aim of the investigations was to localize precisely the ore-bearing veins and to trace their course.

Go to article

Authors and Affiliations

Janusz Antoniuk
Download PDF Download RIS Download Bibtex

Abstract

For the sake of exploring the thermodynamic characteristics of hybrid ceramic bearings with metal inner rings in the application process, we established the mathematical model of bearings with metal inner rings based on the thermodynamics of bearings. The heat of the bearings, inner and outer raceway, and the deformation of bearings were calculated by the thermodynamic model. We used the bearing life testing machine to test the bearing load and speed. The consequences indicate that the temperature stability time of a hybrid ceramic bearing with the metal inner ring is about 6 hours after loading, and its temperature is about 1–2°C higher than that of a metal bearing. Under the condition of a certain speed, the stable temperature of bearing operation improves with the enlargement of the load. Under the condition of a certain load, the bearing temperature also improves with the enlargement of bearing speed. The overall temperature trend of the bearing outer ring is unanimous with the overall temperature value calculated by the model. The maximum error is between 2.2 and 2.4°C. The thermodynamic analysis of hybrid bearings with metal inner rings is conducive to a better study of the effect of bearing material characteristics on bearing performance.
Go to article

Authors and Affiliations

Jian Sun
1
Guangxiang Zhang
1
Junxing Tian
1
Yusheng Zhu
2

  1. School of Mechanical Engineering, Shenyang Jianzhu University, Liaoning, 100084, China
  2. Nanjing Metro Operation Co., Ltd., Nanjing 210000, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a numerical model of the novel design of the axial magnetic bearing with six cylindrical poles. The motivation behind this idea was to eliminate vibrations in rotating machinery due to the axial load. Common conception of such a bearing provides a single component of the electromagnetic force, which is not enough to reduce transverse and lateral vibrations of the armature. The proposed design allows for avoiding wobbling of the disc with the use of a few axial force components that are able to actively compensate the axial load and stabilise the disc in a balanced position. Before a real device is manufactured, a virtual prototype should be prepared. The accurate numerical model will provide essential knowledge about the performance of the axial magnetic bearing.

Go to article

Authors and Affiliations

Bartłomiej Marian Sikora
Adam Krzysztof Pilat
Download PDF Download RIS Download Bibtex

Abstract

Natural airfield pavements divide into soil and turf pavements. Turf pavement is a soil pavement covered with a developed grass layer that reduce soil moisture level, thus increasing its' resistance and extending exploitation period. Natural airfield pavements are formed through appropriate ground preparation. This pavement should be constructed in such a way as to have sufficient load-bearing capacity, which directly affects the safety of flight operations by aircraft. The current research indicates that a significant part of natural airfield pavements in Poland does not meet the requirements for load bearing capacity and require reinforcing. The article provides an example of reinforcing the natural airfield pavement with a system of geogrids. The paper describes what research was performed in order to measure the load-bearing capacity of natural airfield pavements and analyses the obtained results.

Go to article

Authors and Affiliations

Mariusz Wesołowski
Agata Kowalewska
Download PDF Download RIS Download Bibtex

Abstract

The present theoretical study is concerned with the analysis of surface roughness effects on the steady-state performance of stepped circular hydrostatic thrust bearings lubricated with non-Newtonian fluids: Rabinowitsch fluid model. To take the effects of surface roughness into account, Christensen’s theory for rough surfaces has been adopted. The expression for pressure gradient has been derived in stochastic form employing the energy integral approach. Results for stochastic film pressure and load-carrying capacity have been plotted and analyzed based on numerical results. Due to surface roughness, significant variations in the theoretical results of these properties have been observed.
Go to article

Bibliography

[1] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribology Transactions, 54(5):723-729, 2011. doi: 10.1080/10402004.2011.597541.
[2] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing. Tribology International, 58:65-70, 2013. doi: 10.1016/j.triboint.2012.09.014.
[3] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model. Journal of Tribology, 134(4):044502, 2012. doi: 10.1115/1.4007350.
[4] B.J. Hamrock, S.R. Schmid, and B.O. Jacobson. Fundamentals of Fluid Film Lubrication. CRC Press, 2004. doi: 10.1201/9780203021187.
[5] R. Bassani and P. Piccigallo. Hydrostatic Lubrication, Elsevier, 1992.
[6] J.A. Coombs and D. Dowson. An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 179(10):96-114, 1964. doi: 10.1243/PIME_CONF_1964_179_270_02.
[7] J. Peterson, W.E. Finn, and D.W. Dareing. Non-Newtonian temperature and pressure effects of a lubricant slurry in rotating hydrostatic step bearing. Tribology Transactions, 37(4):857-863, 1994. doi: 10.1080/10402009408983369.
[8] V.K. Kapur and K. Verma. The simultaneous effects of inertia and temperature on the performance of a hydrostatic thrust bearing. Wear, 54(1):113-122, 1979. doi: 10.1016/0043-1648(79)90050-4.
[9] P. Singh, B.D. Gupta, and V.K. Kapur. Design criteria for stepped thrust bearings. Wear, 89(1):41-55, 1983. doi: 10.1016/0043-1648(83)90213-2.
[10] S.C. Sharma, S.C. Jain, and D.K. Bharuka. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Tribology International, 35(6):347-356, 2002. doi: 10.1016/S0301-679X(02)00013-0.
[11] Z. Tian, H. Cao, and Y. Huang. Static characteristics of hydrostatic thrust bearing considering the inertia effect on the region of supply hole. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(1):188-193, 2019. doi: 10.1177/1350650118773944.
[12] Y.K. Younes. A revised design of circular hydrostatic bearings for optimal pumping power. Tribology International, 26(3):195-200, 1993. doi: 10.1016/0301-679X(93)90093-G.
[13] O.J. Bakker and R.A.J. van Ostayen. Recess depth optimization for rotating, annular, and circular recess hydrostatic thrust bearings. Journal of Tribology, 132(1):011103, 2010. doi: 10.1115/1.4000545.
[14] H. Sawano, Y. Nakamura, H. Yoshioka, and H. Shinno. High performance hydrostatic bearing using a variable inherent restrictor with a thin metal plate. Precision Engineering, 41:78-85, 2015. doi: 10.1016/j.precisioneng.2015.02.001.
[15] J.S. Yadav and V.K. Kapur. On the viscosity variation with temperature and pressure in thrust bearing. International Journal of Engineering Science, 19(2):269-77, 1981. doi: 10.1016/0020-7225(81)90027-6.
[16] P. Zhicheng, S. Jingwu, Z. Wenjie, L. Qingming, and C. Wei. The dynamic characteristics of hydrostatic bearings. Wear, 166(2):215-220, 1993. doi: 10.1016/0043-1648(93)90264-M.
[17] J.R. Lin. Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids. Tribology International, 32(4):207-216, 1999. doi: 10.1016/S0301-679X(99)00034-1.
[18] H. Christensen. Stochastic models for hydrodynamic lubrication of rough surfaces. Proceedings of the Institution of Mechanical Engineers, 184(1):1013-1026, 1969. doi: 10.1243/PIME_ PROC_1969_184_074_02.
[19] J. Prakash and K. Tiwari. Effect of surface roughness on the squeeze film between rotating porous annular discs with arbitrary porous wall thickness. International Journal of Mechanical Sciences, 27(3):135-144, 1985. doi: 10.1016/0020-7403(85)90054-2.
[20] P. Singh, B.D. Gupta, and V.K. Kapur. Optimization of corrugated thrust bearing characteristics. Wear, 167(2):109-120, 1993. doi: 10.1016/0043-1648(93)90315-D.
[21] J.R. Lin. Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. International Journal of Machine Tools and Manufacture, 40(11):1671-1689, 2000. doi: 10.1016/S0890-6955(00)00012-2.
[22] A.W. Yacout. The surfacse roughness effect on the hydrostatic thrust spherical bearings performance: Part 3 of 5 - Recessed clearance type of bearings. In Proceedings of the ASME International Mechanical Enginering Congress and Exposition, Volume 9: Mechanical Systems and Control, Parts A, B, and C, pages 431-447, Seattle, Washington, USA, November 11-15, 2007. doi: 10.1115/IMECE2007-41013.
[23] Y. Xuebing, X. Wanli, L. Lang, and H. Zhiquan. Analysis of the combined effect of the surface roughness and inertia on the performance of high-speed hydrostatic thrust bearing. In: Luo J., Meng Y., Shao T., Zhao Q. (eds): Advanced Tribology, 197-201, Springer, 2009. doi: 10.1007/978-3-642-03653-8_66.
[24] A. Walicka, E. Walicki, P. Jurczak, and J. Falicki. Thrust bearing with rough surfaces lubricated by an Ellis fluid. International Journal of Applied Mechanics and Engineering, 19(4):809-822, 2014. doi: 10.2478/ijame-2014-0056.
[25] V.K. Stokes. Couple stress in fluids. The Physics of Fluids, 9(9):1709-1715, 1966. doi: 10.1063/1.1761925.
[26] S. Wada and H. Hayashi. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 2, Experimental studies. Bulletin of JSME, 14(69):279-286, 1971. doi: 10.1299/jsme1958.14.279.
[27] H.A. Spikes. The behaviour of lubricants in contacts: current understanding and future possibilities. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 208(1):3-15, 1994. doi: 10.1243/PIME_PROC_1994_208_345_02.
[28] P. Bourging and B. Gay. Determination of the load capacity of finite width journal bearing by finite element method in the case of a non-Newtonian lubricant. Journal of Tribology, 106(2):285-290, 1984. doi: 10.1115/1.3260906.
[29] H. Hayashi and S. Wada. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 3, Theoretical analysis considering effects of correlation. Bulletin of JSME, 17(109):967-974, 1974. doi: 10.1299/jsme1958.17.967.
[30] H. Hashimoto and S. Wada. The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudo-plastic fluids. Journal of Tribology, 108(2):282-287, 1986. doi: 10.1115/1.3261177.
[31] J.-R. Lin. Non-Newtonian effects on the dynamic characteristics of one dimensional slider bearings: Rabinowitsch fluid model. Tribology Letters, 10:237-243, 2001. doi: 10.1023/A:1016678208150.
[32] U.P. Singh, R.S. Gupta, and V.K. Kapur. Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model. Chemical and Process Engineering, 32(4):333-349, 2011. doi: 10.2478/v10176-011-0027-1.
[33] J.R. Lin. Non-Newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model. Tribology International, 52:190-194, 2012. doi: 10.1016/j.triboint. 2012.02.017.
[34] U.P. Singh. Application of Rabinowitsch fluid model to pivoted curved slider bearings. Archive of Mechanical Engineering, 60(2):247-266, 2013. doi: 10.2478/meceng-2013-0016.
[35] U.P. Singh and R.S. Gupta. Dynamic performance characteristics of a curved slider bearing operating with ferrofluids. Advances in Tribology, 2012:1-6, 2012. doi: 10.1155/2012/278723.
[36] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the squeeze film characteristics between a long cylinder and a flat plate: Rabinowitsch model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(1):34-42, 2013. doi: 10.1177/1350650112458742.
[37] S.C. Sharma and S.K. Yadav. Performance of hydrostatic circular thrust pad bearing operating with Rabinowitsch fluid model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(11):1272-1284, 2013. doi: 10.1177/1350650113490147.
[38] Y. Huang and Z. Tian. A new derivation to study the steady performance of hydrostatic thrust bearing: Rabinowitch fluid model. Journal of Non-Newtonian Fluid Mechanics, 246:31-35, 2017. doi: 10.1016/j.jnnfm.2017.04.012.
[39] U.P. Singh, P. Sinha, and M. Kumar. Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tibology, 235(2):386-395, 2021. doi: 10.1177/1350650120945887.
[40] A. Cameron. Basic Lubrication Theory, 3rd edition. E. Horwood, 1981.
Go to article

Authors and Affiliations

Udaya P. Singh
1
ORCID: ORCID

  1. Rajkiya Engineering College, Sonbhadra, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

DIFAR type underwater passive systems are one of the more commonly used tools for detecting submarines. At the design stage, which usually uses computer simulations, it is necessary to generate acoustic noise of the sea. It has been shown that correlating noise significantly reduces these errors compared to the assumption that noise is uncorrelated. In addition, bearing errors have been shown to be the same in systems with a commonly used antenna containing five hydrophones, as in a system without a central hydrophone, which may be useful in some DIFAR system design solutions.

Go to article

Authors and Affiliations

Mariusz Rudnicki
Jacek Marszal
Roman Salamon
Download PDF Download RIS Download Bibtex

Abstract

Various types of passive sonar systems are used to detect submarines. These activities are complex and demanding. Therefore, computer simulations are most often used at the design stage of these systems. For this reason, it is also necessary to simulate the acoustic ambient noise of the sea. The article proposes a new numerical model of surface and quasi-spherical sea noise and presents its statistical parameters. The results of the application of the developed noise model to analyse the received signals of the DIFAR sonobuoy are also presented.
Go to article

Bibliography

1. Barclay D.R., Buckingham M.J. (2014), On the spatial properties of ambient noise in the Tonga Trench, including effects of bathymetric shadowing, The Journal of the Acoustical Society of America, 136(5): 2497–2511, doi: 10.1121/1.4896742.
2. Buckingham M.J. (2012), Cross-correlation in bandlimited ocean ambient noise fields, The Journal of the Acoustical Society of America, 131(4): 2643–2657, doi: 10.1121/1.3688506.
3. Burdick W.S. (1984), Underwater Acoustic System Analysis, Prentice-Hall, Englewood Cliffs, NJ.
4. Cohen J. (1988), Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Lawrence Erlbaum Associates, Publishers.
5. Crocker M.J. (1998), Handbook of Acoustics, John Wiley & Sons.
6. Cron B.F., Sherman C.H. (1962), Spatial-correlation functions for various noise models, The Journal of the Acoustical Society of America, 34(11): 1732–1736, doi: 10.1121/1.1909110.
7. Cron B.F., Sherman C.H. (1965), Addendum: Spatial correlation functions for various noise models [J. Acoust. Soc. Am., 34: 1732–1736 (1962)], The Journal of the Acoustical Society of America, 38(4): 885, doi: 10.1121/1.1909826.
8. Franks L.E. (1981), Signal Theory. Revised Edition, Dowden & Culver, Inc.: Stroudsburg, PA.
9. Grelowska G., Kozaczka E., Kozaczka S., Szymczak W. (2013), Underwater noise generated by small ships in the shallow sea, Archives of Acoustics, 38(3): 351–356, doi: 10.2478/aoa-2013-0041.
10. Jagodzinski Z. (1961), Radionavigation Systems [in Polish], Wydawnictwo MON, Warszawa.
11. Klusek Z., Lisimenka A. (2004), Characteristics of underwater noise generated by single breaking wave, Hydroacoustics, 7: 107–114.
12. Klusek Z., Lisimenka A. (2016), Seasonal and diel variability of the underwater noise in the Baltic Sea, The Journal of the Acoustical Society of America, 139(4): 1537–1547, doi: 10.1121/1.4944875.
13. Kochanska I., Nissen I., Marszal J. (2018), A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel, The Journal of the Acoustical Society of America, 143(2): EL116–EL120, doi: 10.1121/1.5023834.
14. Kozaczka E., Grelowska G. (2011), Shipping low frequency noise and its propagation in shallow water, Acta Physica Polonica A, 119(6A): 1009–1012, doi: 10.12693/APhysPolA.119.1009.
15. Lyons R.G. (2004), Understanding Digital Signal Processing, 2nd ed., Prentice Hall, Inc. 16. Mallet A.L. (1975), Underwater Direction Signal Processing System, US Patent No 3,870,989.
17. Ren C., Huang Y. (2020), A spatial correlation model for broadband surface noise, The Journal of the Acoustical Society of America, 147(2): EL99–EL105, doi: 10.1121/10.0000710.
18. Rudnicki M., Marszal J., Salamon R. (2020), Impact of spatial noise correlation on bearing accuracy in DIFAR systems, Archives of Acoustics, 45(4): 709–720, doi: 10.24425/aoa.2020.135277.
19. Salamon R. (2006), Sonar systems [in Polish], Gdanskie Towarzystwo Naukowe, Gdansk, Poland.
20. Schmidt J.H., Schmidt A., Kochanska I. (2018), Multiple-Input Multiple-Output Technique for Underwater Acoustic Communication System, [In:] Proceedings of 2018 Joint Conference – Acoustics, Ustka, Poland, 2018, IEEE Xplore Digital Library, pp. 280– 283, doi: 10.1109/acoustics.2018.8502439.
21. Urick R.J. (1983), Principles of Underwater Sound, 3rd ed., Peninsula Pub.
22. Urick R.J. (1986), Ambient Noise in the Sea, 2nd ed., Peninsula Pub.
Go to article

Authors and Affiliations

Mariusz Rudnicki
1
Roman Salamon
1
Jacek Marszal
1

  1. Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Sonar Systems, Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Vibration analysis for conditional preventive maintenance is an essential tool for the industry. The vibration signals sensored, collected and analyzed can provide information about the state of an induction motor. Appropriate processing of these vibratory signals leads to define a normal or abnormal state of the whole rotating machinery, or in particular, one of its components. The main objective of this paper is to propose a method for automatic monitoring of bearing components condition of an induction motor. The proposed method is based on two approaches with one based on signal processing using the Hilbert spectral envelope and the other approach uses machine learning based on random forests. The Hilbert spectral envelope allows the extraction of frequency characteristics that are considered as new features entering the classifier. The frequencies chosen as features are determined from a proportional variation of their amplitudes with the variation of the load torque and the fault diameter. Furthermore, a random forest-based classifier can validate the effectiveness of extracted frequency characteristics as novel features to deal with bearing fault detection while automatically locating the faulty component with a classification rate of 99.94%. The results obtained with the proposed method have been validated experimentally using a test rig.
Go to article

Authors and Affiliations

Bilal Djamal Eddine Cherif
1
Sara Seninete
2
Mabrouk Defdaf
1

  1. Department of Electrical Engineering, Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. Department of Electrical Engineering, Faculty of Technology, University of Mostaganem, Mostaganem 27000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

A gyroscopic rotor exposed to unbalance and internal damping is controlled with an active piezoelectrical bearing in this paper. The used rotor test-rig is modelled using an FEM approach. The present gyroscopic effects are then used to derive a control strategy which only requires a single piezo actuator, while regular active piezoelectric bearings require two. Using only one actuator generates an excitation which contains an equal amount of forward and backward whirl vibrations. Both parts are differently amplified by the rotor system due to gyroscopic effects, which cause speed-dependent different eigenfrequencies for forward and backward whirl resonances. This facilitates eliminating resonances and stabilize the rotor system with only one actuator but requires two sensors. The control approach is validated with experiments on a rotor test-rig and compared to a control which uses both actuators.
Go to article

Authors and Affiliations

Jens Jungblut
1
ORCID: ORCID
Daniel Franz
1
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Download PDF Download RIS Download Bibtex

Abstract

Based on the rolling bearing vibration measurement principle in ISO standard, a nonlinear dynamic model of ball bearing is built and motion equations of the inner ring, outer ring, and rolling elements are derived by using Lagrange’s equation. The ball bearing model includes the influence of waviness, rotational speed, external load, arbor supporting stiffness and arbor eccentricity. Ball bearing high-speed vibration tests are performed and used to verify the theoretical results. Simulated results showed that specific waviness orders produced the principal frequencies that were proportional to rotational speed. Rotational speed mainly affected the value of the natural frequency of the bearing system, and RMS (Root Mean Square) of the full band had a great fluctuation with the increase of rotational speed. In the experiment, spectrum and RMS of 2fs-30 kHz (fs: the rotational frequency of inner ring/arbor) under high speed could include not only the influence of rotational speed but also principal frequencies produced by waviness, which could cover the part of requirements of the standard bearing vibration measurement.

Go to article

Authors and Affiliations

P.P Hou
L.Q. Wang
Q.Y. Peng
Download PDF Download RIS Download Bibtex

Abstract

Squeeze film dampers (SFDs) are commonly used in turbomachinery in order to introduce external damping, thereby reducing rotor vibrations and acoustic emissions. Since SFDs are of similar geometry as hydrodynamic bearings, the REYNOLDS equation of lubrication can be utilised to predict their dynamic behaviour. However, under certain operating conditions, SFDs can experience significant fluid inertia effects, which are neglected in the usual REYNOLDS analysis. An algorithm for the prediction of these effects on the pressure build up inside a finite-length SFD is therefore presented. For this purpose, the REYNOLDS equation is extended with a first-order perturbation in the fluid velocities to account for the local and convective inertia terms of the NAVIER-STOKES equations. Cavitation is taken into account by means of a mass conserving two-phase model. The resulting equation is then discretized using the finite volume method and solved with an LU factorization. The developed algorithm is capable of calculating the pressure field, and thereby the damping force, inside an SFD for arbitrary operating points in a time-efficient manner. It is therefore suited for integration into transient simulations of turbo machinery without the need for bearing force coefficient maps, which are usually restricted to circular centralized orbits. The capabilities of the method are demonstrated on a transient run-up simulation of a turbocharger rotor with two semi-floating bearings. It can be shown that the consideration of fluid inertia effects introduces a significant shift of the pressure field inside the SFDs, and therefore the resulting damper force vector, at high oil temperatures and high rotational speeds. The effect of fluid inertia on the kinematic behaviour of the whole system on the other hand is rather limited for the examined rotor.
Go to article

Bibliography

  1.  M.B. Banerjee, R. Shandil, S. Katyal, G. Dube, T. Pal, and K. Banerjee, “A nonlinear theory of hydrodynamic lubrication,” J. Math. Anal. Appl., vol. 117, no. 1, pp. 48–56, 1986.
  2.  S. Hamzehlouia and K. Behdinan, “Squeeze film dampers supporting high-speed rotors: Fluid inertia effects,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 1, pp. 18–32, 2020.
  3.  M. Ramli, J. Ellis, and J. Roberts, “On the computation of inertial coefficients in squeeze-film bearings,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 201, no. 2, pp. 125–131, 1987, doi: 10.1243/PIME_PROC_1987_201_095_02.
  4.  E. Reinhardt and J. Lund, “Influence of fluid inertia on the dynamic properties of journal bearings.” J. Lubr. Technol., vol. 97 Ser F, no. 2, pp. 159–167, 1975.
  5.  A.Z. Szeri, A.A. Raimondi, and A. Giron-Duarte, “Linear Force Coefficients for Squeeze-Film Dampers,” J. Lubr. Technol., vol. 105, no. 3, pp. 326–334, 07 1983.
  6.  A.Z. Szeri, Fluid Film Lubrication: Theory and Design. Cambridge University Press, 1998.
  7.  Z. Guo, T. Hirano, and R.G. Kirk, “Application of CFD analysis for rotating machinery: Part 1 — hydrodynamic, hydrostatic bearings and squeeze film damper,” in Volume 4: Turbo Expo 2003. ASME, 2003, doi: 10.1115/gt2003-38931.
  8.  C. Xing, M.J. Braun, and H. Li, “A three-dimensional navierstokes- based numerical model for squeeze film dampers. part 2—ef- fects of gaseous cavitation on the behavior of the squeeze film damper,” Tribol. Trans., vol. 52, no. 5, pp. 695–705, Sep 2009, doi: 10.1080/10402000902913311.
  9.  V. Constantinescu, Laminar Viscous Flow. Berlin Heidelberg: Springer Science & Business Media, 2012.
  10.  J. Gehannin, M. Arghir, and O. Bonneau, “Complete squeezefilm damper analysis based on the “bulk flow” equations,” Tribol. Trans., vol. 53, no. 1, pp. 84–96, 2009, doi: 10.1080/10402000903226382.
  11.  S. Lang and S. Verlag, Effiziente Berechnung von Gleitlagern und Dichtspalten in Turbomaschinen, ser. Forschungsberichte zur Fluidsys- temtechnik. Shaker Verlag, 2018.
  12.  H. Peeken and J. Benner, “Beeinträchtigung des Druckaufbaus in Gleitlagern durch Schmierstoffverschäumung,” in Gleit- und Wäl- zlagerungen: Gestaltung, Berechnung, Einsatz; Tagung Neu-Ulm, 14. und 15. März 1985 / VDI-Ges. Entwicklung, Konstruktion, Vertrieb. – (VDI-Berichte; 549), 2013, pp. 373–397.
  13.  Ü. Mermertas, “Nichtlinearer Einfluss von Radialgleitlagern auf die Dynamik schnelllaufender Rotoren, Dissertation,” Düren, Aachen, 2003.
  14.  E. Woschke, C. Daniel, and S. Nitzschke, “Excitation mechanisms of non-linear rotor systems with floating ring bearings – simulation and validation,” Int. J. Mech. Sci., vol. 134, pp. 15‒27, 2017, doi: 10.1016/j.ijmecsci.2017.09.038.
  15.  R. Eymard, G. Thierry, and R. Herbin, “Handbook of numerical analysis,” vol. 7, pp. 731–1018, 01 2000.
  16.  V.V. Moca, A. Nagy-Dăbâcan, H. Bârzan, and R. C. Mure¸san, “Superlets: time-frequency super-resolution using wavelet sets,” bioRxiv, 2019.
  17.  S. Hamzehlouia and K. Behdinan, “A study of lubricant inertia effects for squeeze film dampers incorporated into highspeed turboma- chinery,” Lubricants, vol. 5, p. 43, 10 2017, doi: 10.3390/lubricants5040043.
  18.  L. San Andrés and J. Vance, “Effects of fluid inertia and turbulence on the force coefficients for squeeze film dampers,” J. Eng. Gas Turbines Power, vol. 108, 04 1986, doi: 10.1115/1.3239908.
Go to article

Authors and Affiliations

Thomas Drapatow
1
Oliver Alber
2
Elmar Woschke
1
ORCID: ORCID

  1. Institute of Mechanics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
  2. MAN Energy Solutions SE, 86153 Augsburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with research on the magnetic bearing control systems for a high-speed rotating machine. Theoretical and experimental characteristics of the control systems with the model algorithmic control (MAC) algorithm and the proportional-derivative (PD) algorithm are presented. The MAC algorithm is the non-parametric predictive control method that uses an impulse response model. A laboratory model of the rotor-bearing unit under study consists of two active radial magnetic bearings and one active axial (thrust) magnetic bearing. The control system of the rotor position in air gaps consists of the fast prototyping control unit with a signal processor, the input and output modules, power amplifiers, contactless eddy current sensors and the host PC with dedicated software. Rotor displacement and control current signals were registered during investigations using a data acquisition (DAQ) system. In addition, measurements were performed for various rotor speeds, control algorithms and disturbance signals generated by the control system. Finally, the obtained time histories were presented, analyzed and discussed in this paper.
Go to article

Bibliography

  1.  P.-H. Kuo, R.-M. Lee, and C.-C. Wang, “A High-Precision Random Forest-Based Maximum Lyapunov Exponent Prediction Model for Spherical Porous Gas Bearing Systems,” IEEE Access, vol. 8, pp. 168079‒168086, 2020, doi: 10.1109/ACCESS.2020.3022854.
  2.  E. Brusa, “Semi-active and active magnetic stabilisation of supercritical rotor dynamics by contra-rotating damping,” Mechatronics, vol. 24, pp. 500–510, 2014, doi: 10.1016/j.mechatronics.2014.06.001.
  3.  O. Halminen, A. Kärkkäinen, J. Sopanen, and A. Mikkola, “Active magnetic bearing-supported rotor with misaligned cageless backup bearings: A dropdown event simulation model,” Mech. Syst. Signal Process., vol. 50‒51, pp. 692–705, 2015, doi: 10.1016/j. ymssp.2014.06.001.
  4.  J.Y. Hung, G.A. Nathaniel, and F. Xia, “Non-linear control of a magnetic bearing system,” Mechatronics, vol. 13, pp. 621–637, 2003, doi: 10.1016/S0957-4158(02)00034-X.
  5.  J. Sawicki, E.H. Maslen, and K.R. Bischof, “Modeling and performance evaluation of machining spindle with active magnetic bearings,” J. Mech. Sci. Technol., vol. 21, pp. 847–850, 2007, doi: 10.1007/BF03027055.
  6.  R. Siva Srinivas, R. Tiwari, and Ch. Kannababu, “Application of active magnetic bearings in flexible rotordynamic systems – A state-of- the-art review,” Mech. Syst. Signal Process., vol. 106, pp. 537‒572, 2018.
  7.  K. Falkowski, M. Henzel, and M. Żokowski, “The analysis of the control system for the bearingless induction electric motor,” J. Vibroeng., vol. 14, no. 1, pp.16‒21, 2012.
  8.  R. Stocki, T. Szolc, P. Tauzowski, and J. Knabel, “Robust design optimisation of the vibrating rotor shaft system subjected to selected dynamic constraints,” Mech. Syst. Signal Process., vol. 29, pp. 34‒44, 2012, doi: 10.1016/j.ymssp.2011.07.023.
  9.  T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “Determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91‒105, 2019, doi: 10.24425/ bpas.2018.125719.
  10.  S. Zhe et al., “Identification of active magnetic bearing system with a flexible rotor,” Mech. Syst. Signal Process., vol. 49, pp. 302–316, 2014.
  11.  A. Chiba et al., Magnetic bearings and bearingless drives, Elsevier’s Science Technology Rights Department in Oxford, UK, 2005.
  12.  G. Schweitzer, A. Traxler, and H. Bleuler, Magnetlager: Grundlagen, Eigenshaften und Anwendungen berührungsfreier elektromagnetischer Lager, Springer Verlag, Berlin, 1992.
  13.  A. Piłat, “Modelling, investigation, simulation, and PID current control of active magnetic levitation FEM model,” Methods and Models in Automation and Robotics (MMAR), 18th International Conference on Methods and Models in Automation and Robotics, Poland, 2013, pp. 299–304, doi: 10.1109/MMAR.2013.6669923.
  14.  B. Tomczuk, J. Zimon, and K. Zakrzewski, “Integral parameters determination in the magnetic bearing using finite element method,” Computational Electromagnetics (CEM), 6th International Conference on Computational Electromagnetics, Germany, 2006, pp. 1‒4.
  15.  Z. Gosiewski and A. Mystkowski, “Robust control of active magnetic suspension: analytical and experimental results,” Mech. Syst. Signal Process., vol. 22, no. 6, pp. 1297‒1303, 2008, doi: 10.1016/j.ymssp.2007.08.005.
  16.  M. Henzel and P. Mazurek, “The analysis of the control system of the active magnetic bearing,” Electrodynamic and Mechatronic Systems, 3rd International Students Conference on Electrodynamics and Mechatronics (SCE III), Opole, Poland, 2011, pp. 53‒58, doi: 10.1109/ SCE.2011.6092124.
  17.  A.M. Beizama, J.M. Echeverria, M. Martinez-Iturralde, I. Egana, and L. Fontan, “Comparison between pole-placement control and sliding mode control for 3-pole radial magnetic bearings,” 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008, pp. 1315‒1320, doi: 10.1109/SPEEDHAM.2008.4581115.
  18.  Ch.Wu and Ch. Zhu, “Implicit generalised predictive control of an active magnetic bearing system,” 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014, pp. 2319–2323.
  19.  K.S. Holkar and L.M. Waghmare, “An overview of model predictive controller,” Int. J.Control Autom., vol. 3, no. 4, pp. 47–64, 2010.
  20.  A.D. Lewis, A Mathematical Approach to Classical Control, Queen’s University, Canada, 2003.
  21.  G. Genta, Dynamics of Rotating Systems, Springer Science + Business Media, Inc., Mechanical Engineering Series, 2005.
  22.  A. Ammar et al., “An experimental assessment of direct torque control and model predictive control methods for induction machine drive,” International Conference on Electrical Sciences and Technologies in Maghreb, Algiers, 2018, pp. 1‒6, doi: 10.1109/CISTEM.2018.8613419.
  23.  K.T. Wrobel, K. Szabat, and P. Serkies, “Long-horizon model predictive control of induction motor drive,” Arch. Electr. Eng., vol. 68, no. 3, pp. 579–593, 2019.
  24.  P. Kurnyta-Mazurek, A. Kurnyta, and M. Henzel, “Analysis of the method of predictive control applicable to active magnetic suspension systems of aircraft engines,” Research Works of Air Force Institute of Technology, vol. 37, pp. 195‒206, 2015, doi: 10.1515/afit-2015- 0034.
  25.  A. Niederliński, J. Mościński, and Z. Ogonowski, Adaptive control, Scientific Publisher PWN, Warsaw, 1995 [in Polish].
  26.  P. Kurnyta-Mazurek, T. Szolc, M. Henzel, and K. Falkowski: ”Analysis of control methods for the jet engine rotor with magnetic bearings,” Proceedings of 14th International Conference on SIRM 2021 – Dynamics of Rotating Machines, Gdansk, Poland, 2021.
Go to article

Authors and Affiliations

Paulina Kurnyta-Mazurek
1
Tomasz Szolc
2
ORCID: ORCID
Maciej Henzel
1
Krzysztof Falkowski
1

  1. Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Science, ul. Adolfa Pawińskiego 5B, 02-106, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Full-floating ring bearings are state of the art at high speed turbomachinery shafts like in turbochargers. Their main feature is an additional ring between shaft and housing leading to two fluid films in serial arrangement. Analogously, a thrust bearing with an additional separating disk between journal collar and housing can be designed. The disk is allowed to rotate freely only driven by drag torques, while it is radially supported by a short bearing against the journal. This paper addresses this kind of thrust bearing and its implementation into a transient rotor dynamic simulation by solving the Reynolds PDE online during time integration. Special attention is given to the coupling between the different fluid films of this bearing type. Finally, the differences between a coupled and an uncoupled solution are discussed.
Go to article

Bibliography

  1. M.C. Shaw and T.J. Nussdorfer, “An analysis of the full-floating journal bearing,” NACA, Tech. Rep. RM-E7A28a, 1947.
  2. C. Kettleborough, “Frictional experiments on lightly-loaded fully floating journal bearings,” Aust. J. Appl. Sci., vol. 5, pp. 211–220, 1954.
  3. J. Dworski, “High-speed rotor suspension formed by fully floating hydrodynamic radial and thrust bearings,” J. Eng. Gas Turbines Power, vol. 86, no. 2, pp. 149–160, 1964.
  4. M. Harada and J. Tsukazaki, “The steady-state characteristics of a hydrostatic thrust bearing with a floating disk,” J. Tribol., vol. 111, no. 2, pp. 352–357, Apr 1989, doi: 10.1115/1.3261921.
  5. M. Fischer, A. Mueller, B. Rembold, and B. Ammann, “Numerical investigation of the flow in a hydrodynamic thrust bearing with floating disk,” J. Eng. Gas Turbines Power, vol. 135, 2013, doi: 10.1115/1.4007775.
  6. S. Dousti and P. Allaire, “A thermohydrodynamic approach for single-film and double-film floating disk fixed thrust bearings verified with experiment,” Tribol. Int., vol. 140, p. 105858, Dec 2019.
  7. H. Engel, “Berechung der Strömung, der Drücke und Temperaturen in Radial-Axialbund-Gleitlagern mit Hilfe eines Finite-Elemente-Programms,” Ph.D. thesis, Universität Stuttgart, 1992.
  8. T. Hagemann, H. Blumenthal, C. Kraft, and H. Schwarze, “A study on energetic and hydraulic interaction of combined journal and thrust bearings,” in Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, no. GT2015‒43460, 2015, pp. 1–11.
  9. G.H. Jang, S.H. Lee, and H.W. Kim, “Finite ele- ment analysis of the coupled journal and thrust bearing in a computer hard disk drive,” J. Tribol., vol. 128, pp. 335–340, 2006, doi: 10.1115/1.2162918.
  10. G. Xiang, Y. Han, R. Chen, J. Wang, X. Ni, and K. Xiao, “A hydrodynamic lubrication model and comparative analysis for coupled microgroove journal-thrust bearings lubricated with water,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., vol. 234, no. 11, pp. 1755–1770, Nov 2019.
  11. J.-C. Luneno, “Coupled vibrations in horizontal and vertical rotor-bearings systems,” Ph.D. thesis, Luleå University of Technology, 2010.
  12. C. Ziese, C. Daniel, E. Woschke, and H. Mostertz, “Hochlaufsimulation eines semi-floating gelagerten ATL-Rotors mit schwimmender Axiallagerscheibe,” in 14. Magdeburger Maschinen- bautage (24.–25.09.2019), Sep. 2019, pp. 105–112.
  13. H.G. Elrod, “A cavitation algorithm,” J. Tribol., vol. 103, no. 3, pp. 350–354, 1981.
  14. S. Nitzschke, E. Woschke, D. Schmicker, and J. Strackeljan, “Regularised cavitation algorithm for use in transient rotordynamic analysis,” Int. J. Mech. Sci., vol. 113, pp. 175–183, 2016.
  15. S. Nitzschke, “Instationäres Verhalten schwimmbuchsengelagerter Rotoren unter Berücksichtigung masseerhaltender Kavitation,” Ph.D. thesis, Otto-von-Guericke Universität Magdeburg, 2016.
  16. C. Daniel, “Simulation von gleit-und wälzgelagerten Systemen auf Basis eines Mehrkörpersystems für rotordynamische Anwendungen,” Ph.D. thesis, Otto-von-Guericke Universität Magdeburg, 2013.
  17. C. Ziese, E. Woschke, and S. Nitzschke, “Tragdruckund Schmierstoffverteilung von Axialgleitlagern unter Berücksichtigung von masseerhaltender Kavitation und Zentrifugalkraft,” in Magdeburger Maschinenbautage, 2017, pp. 312–323.
  18. A. Kumar and J.F. Booker, “A finite element cavitation algorithm,” J. Tribol., vol. 113, no. 2, pp. 279–284, 1991.
  19. “MAN turbochargers TCA series floating disk thrust bearing,” https://turbocharger.man-es.com/docs/default-source/ shopwaredocuments/tca-turbochargerf451d068cde04720bdc9b 8e95b7c0f8e.pdf, accessed: 2020‒10‒09.
  20. “KBB turbochargers ST27 series f loating disk thrust bearing,” https://kbb-turbo.com/turbocharger-product-series/ st27-series, accessed: 2020-10-09.
  21. C. Irmscher, S. Nitzschke, and E. Woschke, “Transient thermohydrodynamic analysis of a laval rotor supported by journal bearings with respect to calculation times,” in SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines, 2019, pp. Paper–ID SIRM2019–25.
Go to article

Authors and Affiliations

Steffen Nitzschke
1
Christian Ziese
1
Elmar Woschke
1
ORCID: ORCID

  1. Institute of Mechanics, Otto-von-Guericke University, 39106 Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of testing the bearing resistance of the bolted joints of thin-walled profiles used in modular construction. The two types of joints currently applied in the construction industry were subjected to tests. One of them served as the reference sample, and the other as the research sample, which was used to find a solution that is more favorable in terms of the complexity of its production process and its bearing resistance. In addition to the modified shape of the end-plates, the bearing resistance of the joint was also analyzed with regards to the different diameters of bolts (bolts M12 and M16 were used), their classes (the difference between bolts of class 8.8 and 10.9 was examined), and also the number of them in the joint (3 or 5 bolts). Moreover, two thicknesses of steel sheets (3 mm and 4 mm), from which thin-walled cold-bent profiles were made, were used in the research. The bearing resistance tests were carried out with the use of a testing press of the authors’ own design. On the basis of the measurements, plots of the dependence between the deflection of the samples and the force acting in the middle of their span were drawn. It was shown that the tested profile joint had an increased bearing resistance by up to 26% when compared to the reference sample. The maximum destructive bending moment M was equal to 10.7 kN·m for the reference sample, and to 13.5 kN·m for the analyzed design solution. In total, 6 types of modified joints were made for the tests, of which five showed a comparable or higher bearing resistance than the reference sample. Each type of joint was tested by bending it in two directions in relation to the central axis of its cross-section.
Go to article

Authors and Affiliations

Karol Prałat
1
ORCID: ORCID
Arkadiusz Plis
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Łukasiewicza 17, 09-400 Płock, Poland

This page uses 'cookies'. Learn more