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SPECIAL SECTION

Efficient rotordynamic simulations
with semi-analytical computation

of hydrodynamic forces
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Abstract. A common problem in transient rotordynamic simulations is the numerical effort necessary for the computation of hydrodynamic 
bearing forces. Due to the nonlinear interaction between the rotordynamic and hydrodynamic systems, an adequate prediction of shaft oscillations 
requires a solution of the Reynolds equation  at every time step. Since closed-form analytical solutions are only known for highly simplified 
models, numerical methods or look-up table techniques are usually employed. Numerical solutions provide excellent accuracy and allow a 
consideration of various physical influences that may affect the pressure generation in the bearing (e.g., cavitation or shaft tilting), but they are 
computationally expensive. Look-up tables are less universal because the interpolation effort and the database size increase significantly with 
every considered physical effect that introduces additional independent variables. In recent studies, the Reynolds equation was solved semi- 
analytically by means of the scaled boundary finite element method (SBFEM). Compared to the finite element method (FEM), this solution is 
relatively fast if a small discretization error is desired or if the slenderness ratio of the bearing is large. The accuracy and efficiency of this 
approach, which have already been investigated for single calls  of the Reynolds equation, are now examined in the context  of rotordynamic  
simulations. For comparison of the simulation results and the computational effort, two numerical reference solutions based on the FEM and the
finite volume method (FVM) are also analyzed.
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1. INTRODUCTION
As a fundamental component of various types of rotor systems, 
hydrodynamic bearings provide excellent load and damping 
capacities and wear behavior. However, their nonlinear char- 
acteristics often lead to undesired oscillations (oil whirl and 
whip [1, 2]) in high-speed rotor systems, which may cause crit- 
ical noise emissions, reduce the energy efficiency of the ma- 
chine, or even damage the components. Moreover, the nonlin- 
ear interaction between the rotor and the bearing complicates 
the prediction of the operating behavior in the product develop- 
ment process. Transient simulations with detailed modeling of 
the coupled rotordynamic and hydrodynamic systems as well as 
precise knowledge of the boundary conditions (BCs) are neces- 
sary. Due to the nonlinear coupling of the two systems, these 
simulations have to be performed in the time domain, based on 
time integration schemes [2]. The hydrodynamic forces, gov- 
erned by the Reynolds equation, are computed at every time 
step under consideration of the current kinematic variables of 
the bearing partners. These forces are then applied to the bod- 
ies in their equations of motion.

The Reynolds equation [3] describes the pressure generation 
in narrow fluid films and is classified as a second-order par- 
tial differential equation. Exact, closed-form solutions are only
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known for the theoretical special cases of infinitely long [4] or 
infinitesimally short [5] bearings. For realistic bearings with 
general BCs and arbitrary gap geometries, an adequate accu- 
racy is achieved by means of numerical methods, typically 
the finite element method (FEM) [6, 7], the finite volume 
method (FVM) [8], or the finite difference method (FDM) [9]. 
Since the equation is solved   at every time step, the result- 
ing computational effort can be problematic. A common al- 
ternative is the look-up table technique, which is based on 
the interpolation of pre-computed data points [10, 11]. How- 
ever, the modeling depth of this approach is limited, since the 
amount of data and the interpolation effort increase substan- 
tially with every considered physical effect. Numerical models, 
on the other hand, can be extended to consider shaft tilting [12], 
mass-conserving cavitation [13,14], elasto-hydrodynamics [15,
16], thermo-hydrodynamics [17], or hydraulic coupling of oil 
films [18].

In recent studies [19–21], the Reynolds equation was solved 
semi-analytically by means of the scaled boundary finite ele- 
ment method (SBFEM) with the objective of reducing the com- 
putational effort in comparison to the standard numerical meth- 
ods while maintaining their accuracy. The SBFEM was origi- 
nally developed for wave propagation problems in unbounded 
domains [22,23] and has since then been adopted in other fields, 
for example, fracture analysis [24, 25]. For the SBFEM solu- 
tion of the Reynolds equation, the bearing is discretized only 
in the circumferential direction, whereas in the axial direction, 
an exact analytical formulation is used. In [19, 20], it was ob-
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served that the efficiency of this approach, relative to the FEM,
depends on the slenderness ratio ς = l/d (bearing length l di-
vided by diameter d), the oil supply BCs, and the discretiza-
tion. The SBFEM is relatively efficient if the slenderness ra-
tio is large (ς > 1.5), if the bearing is modeled without (or
only simplified) oil supply BCs, or if a fine discretization (large
node number or high-order interpolation) is desired. In [21],
the SBFEM solution was combined with an advanced cavita-
tion model but, so far, only under quasi-static conditions.

In previous studies on the SBFEM solution of the Reynolds
equation, the efficiency of the method was only investigated
for single calls of the algorithm and always in comparison to
either the FEM or the FVM. In the study at hand, all three
approaches (SBFEM, FEM, and FVM) are compared to each
other on the basis of time integrations, where the Reynolds
equation is solved at every step. As far as cavitation is con-
cerned, all simulations in this study are still performed under
Gümbel conditions [26] (highly simplified, but fast handling of
cavitation) because the SBFEM algorithm that is able to con-
sider this effect in a more sophisticated manner (see [21]) has
not been extended to the transient case yet.

2. THEORY
2.1. Equation of motion
The rotordynamic model for this study is implemented in a
multibody system (MBS) program with custom force routines
for the hydrodynamic bearings. The equation of motion can be
written as [2]

M · s̈+Fω = Fout , (1)

where s contains the body positions and orientations, M is the
mass matrix, and Fω is the vector of centrifugal, gyroscopic,
and coriolis forces. The vector Fout contains the external forces
due to, e.g., gravitation, springs, dampers, or bearings. Equa-
tion (1) is solved by means of numerical time integration based
on the trapezoidal rule. More specifically, Matlab’s ODE23t-
solver1 [27] is used, which requires a first-order formulation of
the second-order differential equation (1)[

I 0
0 M

]
· ż =

[
ṡ

Fout−Fω

]
with z =

[
s
ṡ

]
, (2)

where I is the identity matrix.

2.2. Reynolds equation
For hydrodynamic journal bearings (Fig. 1a) with constant oil
viscosity µ and density ρ , the Reynolds equation [3] can be
written as

1
12µr2 (h

3 p,θ ),θ +
1

12µ
(h3 p,y ),y=

ωrot

2
h,θ +ḣ, (3)

where the pressure p(θ ,y, t) is the dependent variable, θ and y
are the circumferential and axial coordinates, respectively,

1ODE = ordinary differential equation.

r = d/2 is the bearing radius, and ωrot is the rotational veloc-
ity (angular frequency) of the shaft. The gap function h(θ , t)
describes the gap width between the bearing partners and is 
given as

h = c − q cos(θ − θatt) (4)

for cylindrical bearings under negligence of shaft tilting. Here,
c is the clearance, q(t) is the eccentricity, and θatt(t) is the at- 
titude angle. Note that q and θatt can be derived from the state 
vector of the shaft  at every time step, which means that the gap
function h is also explicitly known. The same applies to their

˙time derivatives q̇(t) and θatt(t) and, hence, also to the func-
˙tion h(θ , t).

  The computational domain can be pictured as a rectangle rep- 
resenting the unwinded lubrication gap (Fig. 1b), with the two 
bearing boundaries located at y = ±l/2 as well as two periodic
boundaries at θ = 0 and θ = 2π . However, since shaft tilting is 
neglected in this study (h,y = 0), the resulting pressure field is 
symmetric, which will be exploited in all computational mod- 
els (SBFEM, FEM, and FVM) by means of a symmetric BC.
This allows a reduction of the computational domain to one 
half of the original axial range, that is2, 0 ≤ y ≤ l/2. At the
bearing boundary, a Dirichlet BC is enforced that prescribes at- 
mospheric pressure3, i.e., p(θ , y = l/2, t) = 0. Oil supply BCs 
will not be considered in this study.

  For the purpose of reducing the condition numbers of the 
equation systems, equation (3) is nondimensionalized. This is 
achieved by means of the substitutions

p = P
6r2µωrot

c2 , h = Hc , y = Y r, (5)

where P is the dimensionless pressure, H is the dimension-
less gap function, and Y is the dimensionless axial coordinate4,
leading to the dimensionless Reynolds equation

(H3P,θ ),θ +(H3P,Y ),Y = H,θ +
2

ωrot
Ḣ . (6)

After the solution of this equation (by means of the SBFEM,
FEM, or FVM), the Gümbel approach [26] is employed for
simplified (but fast) handling of cavitation, that is, all nega-
tive pressures are artificially set to zero (since pcav ≈ patm = 0,

2With shaft tilting, the SBFEM equation (13) becomes more complicated
and its analytical solution is no longer obvious. Mathematical strategies that
may provide an approximate solution under these conditions will be investi-
gated in future studies. In the study at hand, shaft tilting is neglected in all
simulation models, including also the numerical reference solutions (FEM and
FVM). In general, the FEM and FVM can be formulated to consider this effect,
but the computational effort increases in that case as the symmetric BC cannot
be used. Note that the negligence of shaft tilting in the bearing model does not
prevent the occurrence of shaft tilting in the rotordynamic or multibody system;
it only means that the effect of this tilting motion on the pressure generation is
ignored.

3Relative pressures are used, which means that atmospheric pressure is de-
fined as zero.

4Note that in Fig. 1b, the location of the bearing boundary (y = l/2) is ex-
pressed with respect to the dimensionless coordinate Y = y/r by the slenderness
ratio ς , since Y (y = l/2) = (l/2)/r = l/d = ς .
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Fig. 1. a) Sketch of one half of a hydrodynamic bearing (with exaggerated clearance), consisting of a rotating shaft (blue and turquoise), a fixed
shell (black and gray), and a lubrication gap in between. b) Computational domain of the Reynolds equation (unwinded lubrication gap) with

SBFEM model

where pcav represents cavitation pressure). The resulting pres-
sure field is then integrated over the shaft surface for the com-
putation of the bearing force vector

Fb =−r
2π∫
0

l/2∫
−l/2

p

[
cos(θ)
sin(θ)

]
dydθ , (7)

which is incorporated into Fout for the equation of motion (1).

2.2.1. SBFEM solution
In the SBFEM model (Fig. 1b), the computational domain is
subdivided into an equidistant grid of sectors in the circumfer-
ential direction (the gray area represents an exemplary sector e).
Within the sector, the dependent variable P is expressed by a
semi-analytical ansatz

Pe(η ,ξ ) = NT(η) ·Pe(ξ ) , (8)

where {η ,ξ} is a local coordinate system (with η as circumfer-
ential and ξ as axial coordinate) and N(η) is a vector of shape
functions. The vector Pe(ξ ) contains the nodal solutions, but
rather than discrete values, these are functions of the axial co-
ordinate ξ (no assumption as to the type of function is made
at this point). Hence, only the circumferential direction is dis-
cretized.

The Galerkin method [7] is applied to the Reynolds equa-
tion (6), leading to the weak form

ς∫
0

2π∫
0

W
[
(H3P,θ ),θ +(H3P,Y ),Y −H,θ

− 2
ωrot

Ḣ
]

dθ dY = 0, (9)

where W is a test function. Equation (9) is transformed into the
local coordinate system of the sector, and the ansatz defined
in equation (8) is applied. After a few further steps described
in [19], this leads to a system of ordinary differential equations
for every sector

E0e ·Pe,ξ ξ (ξ )−E2e ·Pe(ξ ) = Re (10)

with

E0e =
∆θ

2ς2

1∫
−1

H3N ·NT dη , E2e =
2

∆θ

1∫
−1

H3N,η ·N,Tη dη ,

Re =

1∫
−1

H,η N dη +
∆θ

ωrot

1∫
−1

ḢN dη , (11)

where ∆θ is the circumferential sector length. The solution of
the integrals in equation (11) is performed analytically because
only linear shape functions are used in this study5. The integra-
tion is further facilitated by means of the approximations

H =
Hn1 +Hn2

2
, Ḣ =

Ḣn1 + Ḣn2

2
, H,η =

Hn2−Hn1

2
, (12)

where the gap function is only evaluated at the two circumferen-
tial nodal positions of the sector. These positions are indicated
by (·)n1 (at η =−1) and (·)n2 (at η = 1), respectively. The ma-
trices and the vector defined in equation (11) are assembled over
all sectors, so that equation (10) can be expressed globally as

E0 ·P,ξ ξ (ξ )−E2 ·P(ξ ) = R . (13)

5Future investigations similar to this study will be performed under con-
sideration of higher-order shape functions. For the paper at hand, this would
increase the scope of content too far.
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The solution of this equation can be written as the sum of a
homogeneous and a particular solution [19]

P(ξ ) = Phom(ξ )+Ppar (14)

with

Ppar =−E−1
2 ·R ,

Phom(ξ ) = P̂ · (coshΛ)−1 · cosh(ξ Λ) ·C ,
(15)

where P̂ is a matrix of eigenvectors and Λ a diagonal matrix of
eigenvalues obtained from the solution of the generalized eigen-
value problem [19]

E2 · P̂ = E0 · P̂ ·Λ2 . (16)

The vector C in equation (15) contains the integration constants
of the homogeneous solution, which depend on the BCs at the
bearing boundary. These BCs are enforced by means of the
equation system [19]

C =−P̂−1 ·Ppar . (17)

2.2.2. FEM reference solution
The FEM [28] model6 uses a two-dimensional, regular grid of
quadrilateral four-node elements. In every element e, the depen-
dent variable P is expressed as

Pe(η ,ψ) = NT(η ,ψ) ·Pe, (18)

where {η ,ψ} is a local coordinate system and Pe is a vector
of discrete nodal solutions that are interpolated in both direc-
tions by a vector of shape functions N(η ,ψ). Analogously to
the SBFEM, the weak form given in equation (9) is used, but in
combination with the ansatz defined in equation (18), a linear
equation system

Ke ·Pe = Re (19)

with

Ke =
∆Y
∆θ

1∫
−1

1∫
−1

H3N,η ·N,Tη dη dψ

+
∆θ

∆Y

1∫
−1

1∫
−1

H3N,ψ ·N,Tψ dη dψ ,

Re =−
∆Y
2

1∫
−1

1∫
−1

H,η N dη dψ− ∆θ∆Y
2ωrot

1∫
−1

1∫
−1

ḢN dη dψ

(20)

is obtained, where ∆θ and ∆Y are the circumferential and ax-
ial element length, respectively. Analogously to the SBFEM
model, only linear shape functions are used and the gap func-
tion H as well as its derivatives are approximated in a similar

6This model is not depicted graphically because the FEM is a standard
method. The same applies to the FVM model in Section 2.2.3.

manner to equation (12), allowing a straightforward analytical
integration. The assembly of equation (20) over all elements
yields a global linear equation system

K ·P = R . (21)

The Dirichlet BCs at the bearing boundary are enforced by
elimination of the respective equations and degrees of freedom
from equation (21) before the equation system is solved.

2.2.3. FVM reference solution
In the FVM [29] model, the computational domain is subdi-
vided into a two-dimensional, regular grid of quadrilateral con-
trol volumes7, each containing one node at its center. For this
regular grid, the FVM leads to the same matrices as the FDM,
which is why the FDM will not be investigated separately in this
study. The FVM formulation is based on a weak form obtained
by integration of the Reynolds equation (6) over the control vol-
ume

Y2∫
Y1

θ2∫
θ1

[
(H3P,θ ),θ +(H3P,Y ),Y

]
dθ dY

=

Y2∫
Y1

θ2∫
θ1

[
H,θ +

2
ωrot

Ḣ
]

dθ dY , (22)

where θ1 ≤ θ ≤ θ2 and Y1 ≤ Y ≤ Y2 represent the circumfer-
ential and axial range of the control volume, respectively. After
some analytical integration, equation (22) can be written as

Y2∫
Y1

(H3P,θ )θ2
− (H3P,θ )θ1

dY +

θ2∫
θ1

(H3P,Y )Y2
− (H3P,Y )Y1

dθ

=

Y2∫
Y1

Hθ2 −Hθ1 dY +
2

ωrot

Y2∫
Y1

θ2∫
θ1

Ḣ dθ dY (23)

with the indices θ1, θ2, Y1, and Y2 specifying where the func-
tions in parentheses are evaluated. Hence, the first three terms
of equation (23) describe an integration over the control vol-
ume boundaries and the fourth term an integration over the
control volume. For the former case (integration over the
boundaries), one integration point is defined at the center of
each of the four control volume boundaries. Here, the func-
tions P,θ , P,Y , and H are evaluated based on linear interpola-
tions of P and H between the node at the center of the control
volume (which will be denoted as 0) and the four neighboring
nodes (which will be denoted as N, E, S, and W)8. For Ḣ, a
single integration point at node 0 is defined. Hence, every term

7Mathematically, the Reynolds equation describes a two-dimensional prob-
lem (because the pressure is assumed to be constant in the gap width direction),
but nonetheless, the conventional term control volume will be used.

8E and W are the neighboring nodes in the positive and negative θ -direction,
respectively. N and S are the neighboring nodes in the positive and negative Y -
direction, respectively.
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in the integrals in equation (23) is approximated by a discrete
value at an integration point, which simplifies the integration to

θ2∫
θ1

dθ = ∆θ ,

Y2∫
Y1

dY = ∆Y , (24)

where ∆θ and ∆Y are the circumferential and axial control vol-
ume side lengths. equation (23) becomes

(aN +aE +aS +aW)P0−aNPN−aEPE−aSPS−aWPW

=−∆Y
2
(HE−HW)− 2

ωrot
∆θ∆Y Ḣ0 (25)

with

aN/S =
1
8

∆θ

∆Y

(
H0 +HN/S

)3
,

aE/W =
1
8

∆Y
∆θ

(
H0 +HE/W

)3
.

(26)

This equation is evaluated in all control volumes except for
those at the bearing boundary, where the Dirichlet BC P0 = 0 is
prescribed. Thereby, a linear equation system is obtained9

K ·P = R . (27)

3. COMPARISON OF SOLUTION TECHNIQUES
In this section, the SBFEM is compared to the FEM and the
FVM by means of run-up simulations of a simple Laval rotor
with hydrodynamic bearings (Fig. 2). The shaft is assumed to
be massless except for a point mass m1 with an unbalance u at
the center and two point masses m2 located at both ends of the
rotor, that is, inside the two bearings. Due to the overall symme-
try (indicated by the dashed line), only one bearing and one half
of the rotor need to be simulated, which means that m1 and u
are also halved in the final implementation. The elastic shaft is
modeled as a parallel spring-damper arrangement that couples
the bodies m1 and m2 in the β2- and γ2-directions (body-fixed
coordinate system of m2) by means of the stiffness and damp-
ing coefficients k and b. Over the course of the simulation, the
rotational velocity ωrot is increased at a constant rate from ωstart
to ωend within the run-up time trun.

Note that this particular setup has not been chosen with the
objective to resemble a realistic machine but to reproduce in
their simplest form the most fundamental oscillation phenom-
ena in rotor systems with hydrodynamic bearings, namely an
oil whip and an unbalance-induced vibration passing through a
resonance. Due to the assumption of a massless shaft in com-
bination with the overall symmetry (and because tilting of m2
is prohibited for the sake of simplicity), the translations of m1
and m2 perpendicular to the rotation axis are the only degrees
of freedom participating in the oscillation. Gyroscopic effects,

9Although this equation uses the same symbols as equation (21), the ma-
trix K may differ between the FEM and the FVM (cf. Section 3).

asymmetric modes, and higher-order bending modes are not
present. This simple academic example should suffice for the
first comparison of the SBFEM to the FEM and FVM in a time
integration, but in future studies, realistic technical systems will
also be considered.

In Table 1, the parameters of the rotor system are summa-
rized. The simulation is performed multiple times with differ-
ent computational methods for the Reynolds equation (SBFEM,
FEM, and FVM) and for different discretizations (different cir-
cumferential node numbers nθ ). The axial node number in the
FEM and FVM is chosen in such a way that the side length of
the elements or control volumes is almost identical in both di-
rections (whereas the SBFEM requires no discretization in the
axial direction). The eigenvalue problem in the SBFEM (equa-
tion (16)) and the equation systems in the FEM (equation (21))
and FVM (equation (27)), which dominate the numerical ef-
fort of the respective computational methods, are solved with
Matlab’s eig and mldivide commands, respectively. The auto-
matically chosen algorithms under consideration of the given
matrix properties10 are in both cases based on Cholesky factor-
ization [30]. All simulations are performed on a desktop PC (In-
tel(R) Core(TM) i7-8700 CPU, 3.2 GHz; 64 GB RAM) in Mat-
lab R2019a.

Table 1
Parameters for the run-up simulations of the Laval rotor in Fig. 2

parameter value unit

b 1000 N · s/m
c 150 µm
d 0.1 m
g 9.81 m/s2

k 4 ·107 N/m
l 0.1 m

m1 400 kg
m2 1 kg
trun 2 s
u 0.04 kg ·m
µ 0.01 Pa · s

ωstart 5 ·2π rad/s
ωend 200 ·2π rad/s

In Fig. 3a and Fig. 3b, some exemplary simulation results
for the SBFEM model with the finest investigated discretiza-
tion (nθ = 480) are displayed11. The former shows a spectro-
gram of the vertical shaft oscillations inside the bearing (ver-
tical oscillations of the body m2 in Fig. 2), where a and f
are the amplitude and frequency of the vibration, respectively,
and frot = ωrot/(2π) is the rotational frequency of the shaft.

10The matrices E0 and E2 in the SBFEM as well as the matrix K in the FEM
or FVM are symmetric. Moreover, E0 and K are positive definite. All matrices
are banded, but only K is stored in sparse format (this matrix is a lot larger
than E0 and E2).

11The results of the other simulations are qualitatively similar.
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Fig. 2. Laval rotor with hydrodynamic bearings for exemplary run-up simulations with different computational methods
for the Reynolds equation

resonance

whip

un
ba
lan
ce

Fig. 3. Simulation results obtained with the SBFEM for a circumferential node number of nθ = 480. a) Spectrogram of the vertical shaft
oscillations inside the bearing with amplitude a, frequency f , and rotational frequency frot. b) Relative eccentricity ε

The latter depicts the relative eccentricity ε = q/c (eccentric-
ity relative to the radial clearance) over the course of the run-
up. According to the spectrogram, the oscillations are at first
dominated by synchronous vibrations, which are excited by
the unbalance. The amplitudes of these vibrations peak be-
tween frot = 60Hz and frot = 80Hz due to the resonance fre-
quency of the rotor12

fres =
ωres

2π
=

1
2π

√
ω2

0 −2δ 2 =
1

2π

√√√√ k
1
2 m1
−2

(
b

2 · 1
2 m1

)2

=
1

2π

√
2k
m1
− 2b2

m2
1
= 71.174Hz . (28)

Here, ω0 is the undamped natural angular frequency and δ is
the exponential decay rate. For frot > 140Hz, high-amplitude
subharmonic vibrations are observed that largely suppress

12This calculation assumes that the rotor is fixed at its two ends (at the bear-
ings), which is why m2 is not included.

the synchronous ones. These vibrations are caused by an oil
whirl (self-excited vibration of the oil film) that resonates with
the rotor (again due to fres) and thereby leads to a whip. In
Fig. 3b, this region is characterized by an almost constant ec-
centricity close to 1, indicating that the shaft orbit in the bear-
ing is nearly circular and concentric with the shell. Altogether,
the simulation results show the typical high-amplitude nonlin-
ear oscillations that usually motivate the accurate and efficient
modeling of transient rotor- and hydrodynamic interactions.
This leads to the conclusion that the given rotor system, despite
its simplicity, provides a reasonable basis for the now following
comparison of the different methods (SBFEM, FEM, and FVM)
and discretizations.

As a simple criterion for evaluating to what extent the simu-
lation results differ between the considered computational mod-
els, the eccentricity during the oil whip εwhip is analyzed, which
also represents the amplitude of the shaft oscillations inside the
bearing. However, the fact that the shaft orbit is not perfectly
circular and concentric with the shell leads to a slightly time-
dependent eccentricity and, therefore, complicates the compar-
ison between the simulations. Thus, for convenience, the aver-
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Fig. 4. Simulation results obtained with the SBFEM, FEM, and FVM for different circumferential node numbers nθ . a) Average relative
eccentricity during the oil whip εwhip. b) Computational time tcomp relative to the maximum computational time tref

age eccentricity in the range from frot = 160Hz to frot = 198Hz
is used. In Fig. 4a, εwhip is depicted as a function of the cir-
cumferential node number nθ for the SBFEM (solid lines),
the FEM (dashed lines), and the FVM (dotted lines). The
fact that the three curves are almost congruent is not surpris-
ing, since all computational methods have been implemented
with linear interpolation functions (although in the SBFEM,
this applies only to the circumferential direction) and, there-
fore, have a similar accuracy. It is observed that εwhip con-
verges over the mesh refinement steps and that the coarsest
discretization (nθ = 30) already yields a quite small absolute
error (∆εwhip ≈ 0.003). However, since the eccentricity is very
close to 1 (εwhip ≈ 0.9743 for nθ = 480), this error reduces the
minimum gap width Hmin = 1− ε by about 12%, which might
be critical in some cases. Thus, a node number of nθ = 120 or
at least nθ = 60 should be used (nθ = 100 ...120 is typical for
rotordynamic simulations).

In Fig. 4b, the computational time required for the simula-
tions tcomp is depicted (with logarithmic axis scaling) relative to
a reference value (tref = 17982s) that corresponds to the most
numerically expensive simulation (FEM with nθ = 480). For
node numbers above nθ = 60, the fastest simulation is achieved
with the SBFEM, followed by the FVM. Below nθ = 60, the
FVM is the most efficient method. For the SBFEM, the compu-
tational time increases if the node number is reduced from 120
to 60 or from 60 to 30, which is surprising. The reason could
be that the inaccurate computation of the bearing forces for
coarse discretizations leads to an overestimation of the eccen-
tricity (cf. Fig. 4a) and, thus, to a stiffer system. As a result, the
ODE-solver has to reduce its step size and increase the num-
ber of time steps13. In case of the FEM and FVM, this effect

13Since εwhip is quite large in all conducted simulations, the effect of the
eccentricity on the bearing stiffness (large eccentricity leads to high stiffness)
and the resulting step size (high stiffness requires small step size) also explains
why the computational times, overall, are higher than one might expect for such
a simple system.

is outweighed by the reduction of computational effort per time
step. As already observed in previous studies [19], the SBFEM
is comparatively inefficient for very coarse discretizations14.
Altogether, under consideration of the computational effort as
well as the accuracy, the SBFEM model with nθ = 120 is the
most suitable of the investigated models.

For all considered node numbers, the FVM is significantly
faster than the FEM, which has a simple explanation. In the
FVM, every equation of the overall equation system (27) de-
scribes the interaction between a node 0 and the four respective
neighboring nodes N, E, S, and W (cf. equation (26)). Hence,
every row of the resulting matrix K has five nonzero entries15,
except for those that are influenced by Dirichlet BCs. In the
FEM model, every node directly interacts with the nodes of all
four elements that it is part of. Thus, in contrast to the FVM,
the four neighboring nodes in the diagonal directions are in-
cluded as well, leading to nine nonzero entries per matrix row.
In Fig. 5, the resulting matrix band structures are illustrated ex-
emplarily for a small circumferential node number (nθ = 15).
Here, the FEM (a) has 315 nonzero entries while the FVM (b)
has only 195 and a smaller bandwidth. Due to these differences,
the FEM requires more computational effort than the FVM for
the solution of the equation system. It should be noted that the
FEM element matrix (equation (20)) has been integrated analyt-
ically in this study, while in general, numerical quadrature tech-
niques are also very common. The direct interaction between
diagonally opposite nodes of the quadrilateral element can be
avoided if Gauss-Lobatto-Legendre (GLL) quadrature [31] is
used, where integration points are defined exactly at the nodes.
In that case, the band structure in the FEM matrix is the same
as in the FVM (Fig. 5b).

14More specifically, the eigenvalue problem (SBFEM) is relatively expen-
sive in comparison to the linear equation systems (FEM and FVM) under these
conditions.

15Since the dependent variable (pressure P) is physically scalar, each node
has only one degree of freedom.
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Fig. 5. Matrix band structure for an exemplary, coarse discretization of nθ = 15 nodes in the circumferential direction.
a) FEM matrix with 315 nonzero entries. b) FVM matrix with 195 nonzero entries

4. CONCLUSIONS
In this study, a semi-analytical solution of the Reynolds equa-
tion, based on the SBFEM, is compared to the FEM and the
FVM for the simulation of a Laval rotor with hydrodynamic
bearings. For a circumferential node number of nθ = 120, all
three investigated methods are accurate and the SBFEM is the
computationally most efficient one. For finer discretizations, the
relative efficiency of the SBFEM improves further, whereas for
very coarse ones (nθ < 60), the FVM is faster than the SBFEM.
The FEM is less efficient than the FVM for all investigated dis-
cretizations because its matrix has more nonzero entries and a
larger bandwidth.

In future studies, similar investigations will be conducted for
higher-order shape functions and with rotordynamic models of
realistic technical systems. Since the pressure field may con-
tain very high gradients in the minimum-gap region (in case of
a large eccentricity) while remaining relatively smooth every-
where else, an adaptive discretization will be incorporated into
the SBFEM solution for further improvement of the numerical
efficiency. The SBFEM model with cavitation [21], which was
not used in the study at hand, will be developed further and in-
vestigated in rotordynamic simulations as well. Moreover, the
SBFEM will be compared to the look-up table approach.
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