Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 303
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present work focuses on the modeling and analysis of mechanical properties of structural steel. The effect of major alloying elements

namely carbon, manganese and silicon has been investigated on mechanical properties of structural steel. Design of experiments is used to

develop linear models for the responses namely Yield strength, Ultimate tensile strength and Elongation. The experiments have been

conducted as per the full factorial design where all process variables are set at two levels. The main effect plots showed that the alloying

elements Manganese and Silicon have positive contribution on Ultimate tensile strength and Yield strength. However, Carbon and

Manganese showed more contribution as compared to Silicon. All three alloying elements are found to have negative contribution

towards the response- Elongation. The present work is found to be useful to control the mechanical properties of structural steel by varying

the major alloying elements. Minitab software has been used for statistical analysis. The linear regression models have been tested for the

statistical adequacy by utilizing ANOVA and statistical significance test. Further, the prediction capability of the developed models is

tested with the help of test cases. It is found that all linear regression models are found to be statistically adequate with good prediction

capability. The work is useful to foundrymen to choose alloying elements composition to get desirable mechanical properties.

Go to article

Authors and Affiliations

A. Bhatt
M.B. Parappagoudar
Download PDF Download RIS Download Bibtex

Abstract

Using methods of physical material studies (scanning electron microscopy and micro X-ray spectral analysis), a study was carried out with focus on alteration of structure and phase composition in surface layers of Al-Si alloy (silumin АК10М2N) treated in electroexplosive alloying with a multiphase plasma jet formed in the process of aluminum foil explosion and carrying particles of Y2O3 weighted powder portion. It was revealed that a porous surface layer with non-homogeneously distributed alloying elements (silicon, yttrium) in it is formed in any conditions of electroexplosive alloying of silumin. Thickness of the modified layer is different, varying 50 to 160 µm, depending on the zone to be examined. The modified surface consists basically of Al, Si and Y. Yttrium in the modified layer is thought to be an indirect evidence of better physical and mechanical properties of the surface layer in comparison with the base material.

Go to article

Authors and Affiliations

D. Zagulyaev
S. Konovalov
V. Gromov
A. Melnikov
V. Shlyarov
Download PDF Download RIS Download Bibtex

Abstract

Assessing the level of metallurgical and foundry technology in prehistoric times requires the examination of raw material finds, including elongated ingots, which served as semi-finished products ready for further processing. It is rare to find such raw material directly at production settlements, but Wicina in western Poland is an exception. During the Hallstatt period (800-450 BC), this area, situated along the middle Oder River, benefited from its favorable location in the heart of the Central European Urnfield cultures and developed networks for raw material exchange and bronze foundry production. Numerous remnants of casting activities, such as clay casting molds, casting systems, and raw materials, have been discovered at the Wicina settlement. This article aims to provide an archaeometallurgical interpretation of raw material management and utilization by prehistoric communities during the Early Iron Age. To achieve this, a collection of 31 ingots from the defensive settlement in Wicina, along with two contemporary deposits from Bieszków and Kumiałtowice, both found within a 20 km radius of the stronghold, were studied. Investigations were conducted using a range of methods, including optical microscopy(OM), scanning electron microscopy (SE M), energy-dispersive X-ray spectroscopy (SE M-EDS), X-ray fluorescence spectroscopy (ED-XRF), powder X-ray diffraction (PXRD), AAS and ICP-OES spectrometer. The significance of ingots is examined in the context of increasing social complexity and the rising popularity of bronze products, which necessitated diversified production and a demand for raw materials with different properties and, consequently, different chemical compositions.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
1
ORCID: ORCID
K. Dzięgielewski
2
ORCID: ORCID
M. Wardas-Lasoń
3
ORCID: ORCID

  1. AGH University Of Krakow, Faculty of Foundry Engineering, Historical Layers Research Centre, ul. Reymonta 23, 30-059 Krakow, Poland
  2. Jagiellonian University, Institute of Archaeology, ul. Gołębia 11, 31-007 Krakow, Poland
  3. AGH University Of Krakow, Faculty of Geology, Geophysics And Environmental Protection, Historical Layers Research Centre, al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, Taguchi method is used to find out the effect of micro alloying elements like vanadium, niobium and titanium on the

hardness and tensile strength of the normalized cast steel. Based on this method, plan of experiments were made by using orthogonal

arrays to acquire the data on hardness and tensile strength. The signal to noise ratio and analysis of variance (ANOVA) are used to

investigate the effect of these micro alloying elements on these two mechanical properties of the micro alloyed normalized cast steel. The

results indicated that in the micro alloyed normalized cast steel both these properties increases when compared to non-micro-alloyed

normalized cast steel. The effect of niobium addition was found to be significantly higher to obtain higher hardness and tensile strength

when compared to other micro alloying elements. The maximum hardness of 200HV and the maximum tensile strength of 780 N/mm2

were obtained in 0.05%Nb addition micro alloyed normalized cast steel. Micro-alloyed with niobium normalized cast steel have the finest

and uniform microstructure and fine pearlite colonies distributed uniformly in the ferrite. The optimum condition to obtain higher hardness

and tensile strength were determined. The results were verified with experiments.

Go to article

Authors and Affiliations

B. Chokkalingam
V. Raja
J. Anburaj
R. Immanual
M. Dhineshkumar
Download PDF Download RIS Download Bibtex

Abstract

In this work, the change of the structure and microhardness of Ti6Al4V titanium alloy after remelting and remelting with SiC alloing by electric arc welding (GTAW method) was studied. The current intensity equal 100 A and fixed scan speed rate equal 0,2 m/min has been used to remelting surface of the alloy. Change of structure were investigated by optical and scanning electron microscopy. Microhardness test showed, that the remelting of the surface does not change the hardness of the alloy. Treated by GTAW SiC alloying leads to the formation of hard (570 HV0, 1) surface layer with a thickness of 2 mm. The resulting surface layer is characterized by diverse morphology alloyed zone. The fracture of alloy after conventional heat treatment, similarly to fracture after remelting with GTAW is characterized by extremely fine dimples of plastic deformation. In the alloyed specimens the intergranular and crystalline fracture was identified.

Go to article

Authors and Affiliations

W. Bochnowski
Download PDF Download RIS Download Bibtex

Abstract

Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 µm average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225°C in air; the combination of high pressure and long bonding time at 225°C enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225°C and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250°C was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225°C during heating.

Go to article

Authors and Affiliations

Woo Lim Choi
Jong-Hyun Lee
Download PDF Download RIS Download Bibtex

Abstract

The sintered stainless steels of different microstructures (austenitic, ferritic and duplex) were laser surface alloyed with hard powders (SiC, Si3N4) and elemental alloying powders (Cr, FeCr, FeNi) to obtain a complex steel microstructure of improved properties. Laser surface alloying (LSA) involved different strategies of powder placing: the direct powder feeding to the molten metal pool and filling grooves machined on the sample surface by powder, and then laser surface melting. Obtained microstructures were characterised and summarised, basing on LOM, SEM and XRD analysis. The links between base material properties, like superficial hardness and microhardness, derived microstructures and erosion resistance was described. The LSA conditions and alloying powder placement strategies on erosion resistance was evaluated. The erosion wear is lower for Cr, FeCr, FeNi laser alloying, where powders were dissolved in the steel microstructure, and hard phases were not precipitated. Precipitations of hard phases (carbides, silicides, martensite formation) reduce erosion resistance of SiC alloyed stainless steel. The LSA with Si3N4 works better due to lack of precipitates and formation of a soft and ductile austenitic microstructure. The erosion wear at the impingement angle of 90° is high for hard and therefore brittle surface layers obtained as a result of alloying by hard particles (SiC, Si3N4). The softer and ductile austenitic stainless steel resist better than harder ferritic and duplex stainless steel material at studied erodent im pingement angle.

Go to article

Authors and Affiliations

Z. Brytan
Download PDF Download RIS Download Bibtex

Abstract

Mg60Zn35Ca5 amorphous powder alloys were synthesized by mechanical alloying (MA) technique. The results of the influence of high-energy ball-milling time on amorphization of the Mg60Zn35Ca5 elemental blend (intended for biomedical application) were presented in the study. The amorphization process was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM). Initial elemental powders were mechanically alloyed in a Spex 8000 high-energy ball mill at different milling times (from 3 to 24 h). Observation of the powder morphology after various stages of milling leads to the conclusion that with the increase of the milling time the size of the powder particles as well as the degree of aggregation change. The partially amorphous powders were obtained in the Mg60Zn35Ca5 alloy after milling for 13-18h. The results indicate that this technique is a powerful process for preparing Mg60Zn35Ca5 alloys with amorphous and nanocrystalline structure.
Go to article

Authors and Affiliations

S. Lesz
K. Gołombek
M. Kremzer
R. Nowosielski
Download PDF Download RIS Download Bibtex

Abstract

This work presents the project of the application of Case-based reasoning (CBR) methodology to an advisory system. This system should give an assistance by selection of proper alloying additives in order to obtain a material with predetermined mechanical properties. The considered material is silumin EN AC-46000 (hypoeutectic Al-Si alloy) that is modified by the addition of Cr, Mo, V and W elements in the range from 0% to 0.5% in the modified alloy. The projected system should indicate to the user the content of particular additives so that the obtained material is in the chosen range of parameters: tensile strength Rm, yield strength Rp0.2, elongation A and hardness HB. The CBR methodology solves new problems basing on the solutions of similar problems resolved in the past. The advantage of the CBR application is that the advisory system increases knowledge base as the subsequent use of the system. The presented design of the advisory system also considers issues related to the ergonomics of its operation.
Go to article

Authors and Affiliations

G. Rojek
K. Regulski
S. Kluska-Nawarecka
D. Wilk-Kołodziejczyk
Download PDF Download RIS Download Bibtex

Abstract

The effects of different types of process control agents (PCA) on the microstructure evolution of Ni-based oxide dispersion-strengthened superalloy have been investigated. Alloy synthesis was performed on elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % using high energy ball milling for 5 h. The prepared powders are consolidated by spark plasma sintering at 1000oC. Results indicated that the powder ball-milled with ethanol as PCA showed large particle size, low carbon content and homogeneous distribution of elemental powders compared with the powder by stearic acid. The sintered alloy prepared by ethanol as PCA exhibited a homogeneous microstructure with fine precipitates at the grain boundaries. The microstructural characteristics have been discussed on the basis of function of the PCA.

Go to article

Authors and Affiliations

Ju-Yeon Han
Hyunji Kang
Sung-Tag Oh
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the present work was to validate the numerical model for the pulse-step liquid steel alloying method using a physical simulator that enables the observation and recording of phenomena occurring during the continuous steel casting process. The facility under investigation was a single-nozzle tundish equipped with a dam. To physical trials the glass water model was made on a scale of 2:5. For the mathematical description of turbulence during liquid steel alloying process, the k-ε and k-ω models were employed in the simulations. Based on the computer simulations and physical trials carried out, alloy addition behaviour and mixing curves for different tundish alloy addition feeding positions were obtained. The change in the location of alloy addition feeding to the liquid steel had an effect on the process of alloy addition spread in the liquid steel bulk and on the mixing time.

Go to article

Authors and Affiliations

A. Cwudziński
B. Gajda
A. Hutny
J. Jowsa
Download PDF Download RIS Download Bibtex

Abstract

The wear behaviour of Cr3C2-25% NiCr laser alloyed nodular cast iron sample were analyzed using a pin-on-disc tribometer. The influence of sliding velocity, temperature and load on laser alloyed sample was focused and the microscopic images were used for metallurgical examination of the worn-out sites. Box-Behnken method was utilised to generate the mathematical model for the condition parameters. The Response Surface Methodology (RSM) based models are varied to analyse the process parameters interaction effects. Analysis of variance was used to analyse the developed model and the results showed that the laser alloyed sample leads to a minimum wear rate (0.6079×10–3 to 1.8570×10–3 mm3/m) and coefficient of friction (CoF) (0.43 to 0.53). From the test results, it was observed that the experimental results correlated well with the predicted results of the developed mathematical model.

Go to article

Authors and Affiliations

N. Jeyaprakash
M. Duraiselvam
R. Raju
Download PDF Download RIS Download Bibtex

Abstract

The paper presents changes in the production volume of castings made of non-ferrous alloys on the background of changes in total production of casting over the 2000-2019 period, both on a global scale and in Poland. It was found that the dynamics of increase in the production volume of castings made of non-ferrous alloys was distinctly greater than the dynamics of increase in the total production volume of castings over the considered period of time. Insofar as the share of production of the non-ferrous castings in the total production of castings was less than 16% during the first two years of the considered period, it reached the level of 20% in the last four years analysed. This share, when it comes to Poland, increased even to the greater degree; it grew from about 10% of domestic production of castings to over 33% within the regarded 2000-2019 period. The greatest average annual growth rate of production, both on a global scale and in Poland, was recorded for aluminium alloys as compared with other basic non-ferrous alloys. This growth rate for all the world was 4.08%, and for Poland 10.6% over the 2000-2019 period. The value of the average annual growth rate of the production of aluminium castings in Poland was close to the results achieved by China (12%), India (10.3%) and the South Korea (15.4%) over the same period of time. In 2019, the total production of castings in the world was equal to about 109 million tonnes, including over 21 million tonnes of castings made of non-ferrous alloys. The corresponding data with respect to Poland are about 1 million tonnes and about 350 thousand tonnes, respectively. In the same year, the production of castings made of aluminium alloys was equal to about 17.2 million tonnes in the world, and about 340 thousand tonnes in Poland.
Go to article

Bibliography

[1] Wübbenhorst, H. (1984). 5000 Jahre Giessen von Metallen. Ed. VDG Giesserei-Verlag GmbH, Düsseldorf.
[2] Orłowicz, A.W., Mróz, M., Tupaj, M. & Trytek, A. (2015). Materials used in the automotive industry. Archives of Foundry Engineering. 15(2), 75-78.
[3] Cygan, B., Stawarz, M. & Jezierski, J. (2018) Heat treatment of the SiMo iron castings – case study in the automotive foundry. Archives of Foundry Engineering. 18(4), 103-109.
[4] Bolat, C. & Goksenli, A. (2020) Fabrication optimization of Al 7075/Expanded glass syntactic foam by cold chamber die casting. Archives of Foundry Engineering. 20(3), 112- 118.
[5] Orłowicz, A.W., Mróz, M., Wnuk, G., Markowska, O., Homik, W. & Kolbusz, B. (2016). Coefficient of friction of a brake disc-brake pad friction couple. Archives of Foundry Engineering. 16(4), 196-200.
[6] Kmita, A. & Roczniak, A. (2017). Implementation of nanoparticles in materials applied in foundry engineering. Archives of Foundry Engineering. 17(3), 205-209.
[7] Jemielewski, J. (1970). Casting of non-ferrous metals. Warsaw: Ed. WNT. (In Polish)
[8] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Casting. Warsaw: Ed. WNT. (In Polish)
[9] Kozana, J., Piękoś, M., Maj, M., Garbacz-Klempka, A. & Żak, P.L. (2020). Analysis of the microstructure, properties and machinability of Al-Cu-Si alloys. Archives of Foundry Engineering. 20(4), 145-153.
[10] Matejka, M., Bolibruchová, D. & Kuriš, M. (2021). Crystallization of the structural components of multiple remelted AlSi9Cu3 alloy. Archives of Foundry Engineering. 21(2), 41-45.
[11] Łągiewka, M. & Konopka, Z. (2012). The influence of material of mould and modification on the structure of AlSi11 alloy. Archives of Foundry Engineering. 12(1), 67- 70.
[12] Ščur, J., Brůna, M., Bolibruchová, D. & Pastirčák, R. (2017). Effect of technological parameters on the alsi12 alloy microstructure during crystallization under pressure. Archives of Foundry Engineering. 17(2), 75-78.
[13] Deev, V., Prusov, E., Prikhodko, O., Ri, E., Kutsenko, A. & Smetanyuk, S. (2020). crystallization behavior and properties of hypereutectic Al-Si alloys with different iron content. Archives of Foundry Engineering. 20(4), 101-107.
[14] Piątkowski, J. & Czerepak, M. (2020). The crystallization of the AlSi9 alloy designed for the alfin processing of ring supports in engine pistons. Archives of Foundry Engineering. 20(2), 65-70.
[15] Tupaj, M., Orłowicz, A.W., Trytek, A. & Mróz, M. (2019). Improvement of Al-Si alloy fatigue strength by means of refining and modification. Archives of Foundry Engineering. 19(4), 61-66.
[16] Soiński M.S., Jakubus A. (2020). Changes in the production of ferrous castings in Poland and in the world in the XXI century. Scientific and Technical Conference ‘Technologies of the Future’. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. Gorzów Wielkopolski, 25.09.2020. Forthcoming.
[17] Soiński M.S., Jakubus A. (2019). Structure of foundry production in Poland against the world trends in XXI century. in: Industry 4.0. Algorithmization of problems and digitalization of processes and devices. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. 2019. pp. 113-124. ISBN 978-83-65466-55-6.
[18] Soiński M.S, Jakubus A.(2019). Production of castings in Poland and in the world over the years 2000-2017. in: Industry 4.0. Algorithmization of problems and digitalization of processes and devices 2019. Conference 2018. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. pp. 73-92. ISBN 978-83-65466-90-7.
[19] Soiński, M.S., Skurka, K., Jakubus, A. & Kordas, P. (2015). Structure of foundry production in the world and in Poland over the 1974-2013 Period. Archives of Foundry Engineering. 15(spec.2), 69-76.
[20] Soiński, M.S., Skurka, K., Jakubus, A. (2015). Changes in the production of castings in Poland in the past half century in comparison with world trends”. in: Selected problems of process technologies in the industry. Częstochowa. Ed. Faculty of Production Engineering and Materials Technology of the Częstochowa University of Technology, 2015. Monograph. pp.71-79. ISBN: 978-83-63989-30-9.
[21] Soiński, M.S., Jakubus, A., Kordas, P. & Skurka, K. (2015). Production of castings in the world and in selected countries from 1999 to 2013. Archives of Foundry Engineering. 15(spec.1), 103-110. DOI: 10.1515/afe-2016-0017.
[22] Modern Casting. 35th Census of World Casting Production. December 2001. 38-39.
[23] Modern Casting. 36th Census of World Casting Production. December 2002. 22-24.
[24] Modern Casting. 37th Census of World Casting Production. December 2003. 23-25.
[25] Modern Casting. 38th Census of World Casting Production. December 2004. 25-27.
[26] Modern Casting. 39th Census of World Casting Production. December 2005. 27-29.
[27] Modern Casting. 40th Census of World Casting Production. December 2006. 28-31.
[28] Modern Casting. 41st Census of World Casting Production. December 2007. 22-25.
[29] Modern Casting. 42nd Census of World Casting Production. December 2008. 24-27
[30] Modern Casting. 43rd Census of World Casting Production. December 2009. 17-21.
[31] Modern Casting. 44th Census of World Casting Production. December 2010. 23-27.
[32] Modern Casting. 45th Census of World Casting Production. December 2011. 16-19.
[33] Modern Casting. 46th Census of World Casting Production. December 2012. 25-29.
[34] Modern Casting. 47th Census of World Casting Production. Dividing up the Global Market. December 2013. 18-23.
[35] Modern Casting. 48th Census of World Casting Production. Steady Growth in Global Output. December 2014. 17-21.
[36] Modern Casting. 49th Census of World Casting Production. Modest Growth in Worldwide Casting Market. December 2015. 26-31
[37] Modern Casting. 50th Census of World Casting Production. Global Casting Production Stagnant. December 2016. 25-29.
[38] Modern Casting. Census of World Casting Production. Global Casting Production Growth Stalls. December 2017. 24-28.
[39] Modern Casting. Census of World Casting Production. Global Casting Production Expands. December 2018. 23-26.
[40] Modern Casting. Census of World Casting Production. Total Casting Tons. Hits 112 Million. December 2019. 22- 25.
[41] Modern Casting. Census of World Casting Production Total Casting Tons Dip in 2019. January 2021. 28-30.
Go to article

Authors and Affiliations

M.S. Soiński
1
A. Jakubus
1
ORCID: ORCID

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The β phase (Al 12Mg 17) precipitated by heat treatment in some alloy compositions may result deterioration of corrosion resistance. However, much of its role remains unclear. The effect of the β phase on the corrosion resistance behavior in a NaCl solution was presented in this study. The specimen was Mg-9mass%Al (AM90) alloy and the content of the β phase precipitant was controlled systematically by aging time at 473 K. Area rate of β and lamellar phase in the specimens were 0, 10 and 100%, respectively. According to the results of cathodic polarization curves measurement, the corrosion current density of α phase was 0.215 A/m2 and β phase of it was 0.096 A/m2. While, the specimen includes 10% of β and lamellar phase showed large corrosion current density of 0.251 A/m2. Positive correlation between the β phase and the open circuit potential, suggest that the β phase acts as a cathodic electrode. Moreover, the microstructure after postentiostatic corrosion tests was also support the role of β phase.
Go to article

Authors and Affiliations

Masahiko Hatakeyama
1
ORCID: ORCID
Yusuke Shimada
2
ORCID: ORCID
Naoki Kawate
2
ORCID: ORCID
Kaede Sarayama
2
ORCID: ORCID
Satoshi Sunada
1
ORCID: ORCID

  1. University of Toyama, Graduate School of Materials Science and Engineering for Research, 3190 Gofuku, Toyama 930-8555, Japan
  2. University of Toyama, Graduate School of Materials Science and Engineering for Education, Japan
Download PDF Download RIS Download Bibtex

Abstract

Submitted work deals with the analysis of reoxidation processes for aluminium alloys. Due to the aluminium high affinity to the oxygen, the oxidation and consequently reoxidation will occur. Paper focuses on the gating system design in order to suppress and minimize reoxidation processes. Design of the gating system is considered as one of the most important aspect, which can reduce the presence of reoxidation products - bifilms. The main reason for the reoxidation occurrence is turbulence during filling of the mold. By correctly designing the individual parts of gating system, it is possible to minimize turbulence and to ensure a smooth process of the mold filling. The aim of the work is an innovative approach in the construction of gating system by using unconventional elements, such as a naturally pressurized system or vortex elements. The aim is also to clarify the phenomenon during the gating system filling by visualization with the aid of ProCAST numerical simulation software. ProCAST can calculate different indicators which allow to better quantify the filling pattern.

Go to article

Authors and Affiliations

A. Remišová
M. Brůna
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper covers the research on the process of solutionizing of 7075 aluminum alloy in cold tools during the stamping of a high-strength structural element (B-pillar’s base). For technological reasons, in order to obtain high strength parameters of the 7075 alloy, it is necessary to carry out a solutionization process, which allows to obtain dispersion strengthening during ageing process. Properly performed heat treatment of the alloy increases the strength of the material to approx. 600 MPa. The combination of the process of solutionization with simultaneous shaping is aimed at improving and simplifying technological operations of aluminum alloy stamping, shortening the duration of the manufacturing process and reducing production costs. The manufactured lower part of the B-pillar will be used for the verification of the validity of the developed method. During the experiment, a series of stamping tests were carried out, in which the lubricants, pressure and position of the upper and lower blankholders were the variables. The obtained results allow to estimate the influence of the cooling conditions on the strength of the drawpieces obtained after the process of artificial ageing. In order to verify and analyse the results more quickly, a numerical simulation was carried out.

Go to article

Authors and Affiliations

K. Jaśkiewicz
M. Skwarski
S. Polak
Z. Gronostajski
ORCID: ORCID
J. Krawczyk
ORCID: ORCID
P. Kaczyński
W. Chorzępa
Download PDF Download RIS Download Bibtex

Abstract

Initial investigations on oxidation behaviour and phase transformations of equimolar AlCoCrCuNi high entropy alloy with and without 1 at.% silicon addition during 24-hr exposure to air atmosphere at 1273 K was carried out in this work. After determining the oxidation kinetics of the samples by means of thermogravimetric analysis, the morphology, chemical and phase compositions of the oxidized alloys were determined by means of scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Additional cross-section studies were performed using transmission electron microscopy combined with energy dispersive X-ray spectroscopy and selected area electron diffraction. From all these investigations, it can be concluded that minor silicon addition improves the oxidation kinetics and hinders the formation of an additional FCC structure near the surface of the material.
Go to article

Authors and Affiliations

R. Gawel
1
Ł. Rogal
2
ORCID: ORCID
K. Przybylski
1
Kenji Matsuda
3

  1. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Physical Chemistry and Modelling, Al. Mickiewicza 30, 30 -059 Kraków, Poland
  2. Polish Academy of Sciences, Institute of Metallurgy and Materials, 25 Reymonta Str., 30-059 Kraków, Poland
  3. University of Toyama, Faculty of Sustainable Design, Department of Materials Design and Engineering, 3190 Gofuku, Toyama 930-8555, Japan
Download PDF Download RIS Download Bibtex

Abstract

Cu-Sn alloys have been known as bronze since ancient times and widely used as electrode materials, ornaments, tableware and musical instruments. Cu-22Sn alloy fabrication by hot forging process is a Korean traditional forged high-tin bronze. The tin content is 22 percent, which is more than twice that of bronze ware traditionally used in China and the West. Copper and tin have a carbon solubility of several ppm at room temperature, making Cu-Sn-C alloys difficult to manufacture by conventional casting methods. Research on the production of carbon-added copper alloys has used a manufacturing method that is different from the conventional casting method. In this study, Cu-22Sn-xC alloy was fabricated by mechanical alloying and spark plasma sintering. The carbon solubility was confirmed in Cu-Sn alloy through mechanical alloying. The lattice parameter increased from A0 to C2, and then decreased from C4. The microstructural characteristics of sintered alloys were determined using X-ray diffraction and microscopic analysis. As a result of comparing the hardness of Cu-22Sn alloys manufactured by conventional rolling, casting, and forging and Cu-22Sn-xC alloy by sintered powder metallugy, B0 sintered alloy was the highest at about 110.9 HRB.
Go to article

Authors and Affiliations

Gwanghun Kim
1
ORCID: ORCID
Jungbin Park
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID
Hee-Soo Kim
2
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
  2. Chosun University, Department of Materials Science and Engineering, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this paper, as a purpose to apply the supersaturated solid-solutionized Al-9Mg alloy to the structural sheet parts of automotive, tensile tests were conducted under the various conditions and a constitutive equation was derived from the tensile test results. Al-9Mg alloy was produced using a special Mg master alloy containing Al2Ca during the casting process and extruded into the sheet. In order to study the deformation behavior of Al-9Mg alloy in warm temperature forming environments, tensile tests were conducted under the temperature of 373 K-573 K and the strain rate of 0.001/s~0.1/s. In addition, by using the raw data obtained from tensile tests, a constitutive equation of the Al-9Mg alloy was derived for predicting the optimized condition of the hot stamping process. Al-9Mg alloy showed uncommon deformation behavior at the 373 K and 473 K temperature conditions. The calculated curves from the constitutive equation well-matched with the measured curves from the experiments particularly under the low temperature and high strain rate conditions.
Go to article

Bibliography

[1] P.F. Bariani, S. Bruschi, A, Ghiotti, F. Michieletto, CIRP Annals 62, 251-254 (2013). DOI: https://doi.org/10.1016/j.cirp.2013.03.050
[2] B.-H. Lee, S.-H. Kim, J.-H. Park, H.-W. Kim, J.-C. Lee, Materials Science and Engineering: A 657, 115-122 (2016). DOI: https://doi.org/10.1016/j.msea.2016.01.089
[3] D. Li, A. Ghosh, Materials Science and Engineering: A 352, 279- 286 (2003). DOI: https://doi.org/10.1016/S0921-5093(02)00915-2
[4] N.-S. Kim, K.-H. Choi, S.-Y. Yang, S.-H. Ha, Y.-O. Yoon, B.-H. Kim, H.-K. Lim, S.K. Kim, S.-K. Hyun, Metals 11, 288 (2021). DOI: https://doi.org/10.3390/met11020288
[5] H. Wang, Y. Luo, P. Friedman, M. Chen, L. Gao, Transactions of Nonferrous Metals Society of China 22, 1-7 (2012). DOI: https://doi.org/10.1016/S1003-6326(11)61131-X
[6] D. Li, A.K. Ghosh, Journal of Materials Processing Technology 145, 281-293 (2004). DOI: https://doi.org/10.1016/j.jmatprotec.2003.07.003
[7] R .C. Picu, Acta Materialia 52, 3447-3458 (2004). DOI: https://doi.org/10.1016/j.actamat.2004.03.042
[8] C.-H. Cho, H.-W. Son, J.-C. Lee, K.-T. Son, J.-W. Lee, S.-K. Hyun, Materials Science and Engineering: A 779, 139151 (2020). DOI: https://doi.org/10.1016/j.msea.2020.139151
[9] S.-Y. Yang, D.-B. Lee, K.-H. Choi, N.-S. Kim, S.-H. Ha, B.- H. Kim, Y.-O. Yoon, H.-K. Lim, S.K. Kim, Y.-J. Kim, Metals 11, 410 (2021). DOI: https://doi.org/10.3390/met11030410
[10] Q. Dai, Y. Deng, H. Jiang, J. Tang, J. Chen, Materials Science and Engineering: A, 766, 138325 (2019). DOI: https://doi.org/10.1016/j.msea.2019.138325
[11] L. Hua, F. Meng, Y. Song, J. Liu, X. Qin, L. Suo, J. of Materi Eng and Perform 23, 1107-1113 (2014). DOI: https://doi.org/10.1007/s11665-013-0834-2
[12] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Journal of Materials Processing Technology 208, 29-34 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.095
[13] L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Materials & Design 34, 179-184 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.07.060
[14] K.C. Chan, G.Q. Tong, Materials Letters 51, 389-395 (2001).
[15] https://www.sentesoftware.co.uk/site-media/flow-stress-curve
Go to article

Authors and Affiliations

Seung Y. Yang
1 2
ORCID: ORCID
Bong H. Kim
1
ORCID: ORCID
Da B. Lee
1
Kweon H. Choi
1
ORCID: ORCID
Nam S. Kim
1
ORCID: ORCID
Seong H. Ha
1
Young O. Yoon
1
Hyun K. Lim
1
ORCID: ORCID
Shae Kim
1
Young J. Kim
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Advanced Process and Materials R&D Group, KITECH, 156 Gaetbeol Rd., Yeonsu-gu, Incheon, 21999, Korea
  2. Sungkyunkwan University, Advanced Materials Science & Engineering, SKKU, Suwon, Korea
Download PDF Download RIS Download Bibtex

Abstract

Self-hardening aluminium alloys represent a new and interesting group of aluminium alloys. They have the advantage that they do not need to be heat treated, which is an important advantage that contributes to a significant reduction in production costs of some components and in the amount of energy used. The present paper deals with the possibility to replace the most used heat treatable AlSi7Mg0.3 cast alloys with a self-hardened AlZn10Si8Mg cast alloy. In this study, microstructural characterization of tensile and fatigue-tested samples has been performed to reveal if this replacement is possible. The results of fatigue tests show that AlSi7Mg0.3 alloy after T6 heat treatment and self-hardened AlZn10Si8Mg has comparable values of fatigue properties. The self-hardening alloy has slightly lower strength, ductility, and hardness.
Go to article

Authors and Affiliations

L. Kuchariková
1
ORCID: ORCID
L. Pastierovičová
1
ORCID: ORCID
E. Tillová
1
ORCID: ORCID
M. Chalupová
1
ORCID: ORCID
D. Závodská
1 2

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  2. Schaeffler Slovakia, Kysucké Nové Mesto, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

A 20 gram batch weight of NiTi alloy, with a nominal equiatomic composition, was produced by mechanical alloying with milling times of 100, 120, and 140 hours. The differential scanning calorimetry was used to analyze the progress of the crystallization process. The X-ray diffraction examined the crystal structure of the alloy at individual crystallization stages. The observation of the powders microstructure and the chemical composition measurement were carried out using a scanning electron microscope equipped with an energy-dispersive detector. After the milling process, the alloy revealed an amorphous-nanocrystalline state. The course of the crystallization process was multi-stage and proceeded at a lower temperature than the pure amorphous state. The applied production parameters and the stage heat treatment allowed to obtain the alloy showing the reversible martensitic transformation with an enthalpy of almost 5 J/g.
Go to article

Authors and Affiliations

T. Goryczka
1
ORCID: ORCID
G. Dercz
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1A Str., 41-500 Chorzow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses issues related to the technology of melting and processing of copper alloys. An assessment was made of the impact of titanium and iron introduced in the form of pre-alloy - Ti73Fe master alloy on the microstructure and selected properties of pure copper and copper-silicon alloy. There are known examples of the use of titanium and iron additive to the copper alloy. Titanium as an additive introduced to copper alloys to improve their properties is sometimes also applicable. In the first stage of the study, a series of experimental castings were conducted with variable content of Ti73Fe master alloy entering copper in quantities of 5 %, 15 %, 25 % in relation to the mass of the metal charge. In the second stage, a silicon additive was introduced into copper in the amount of about 4 % by weight and 0.5 % and 1 % respectively of the initial Ti73Fe alloy. Thermodynamic phase parameters were modelled using CALPHAD method and Thermo-Calc software, thus obtaining the crystallization characteristics of the test alloys and the percentage of structural components at ambient temperature. Experiments confirmed the validity of the use of Ti73Fe master alloy as an additive. The pre-alloy used showed a favourable performance, both in terms of addition solubility and in the area of improvement of strength properties. Changes were achieved in the microstructure, mainly within the grain, but also in the developed dendrites of the solid solution. Changes occur with the introduction of titanium with iron into copper as well as to two-component silicon bronze.

Go to article

Authors and Affiliations

M. Piękoś
ORCID: ORCID
A. Garbacz-Klempka
ORCID: ORCID
J. Kozana
ORCID: ORCID
P.L. Żak
Download PDF Download RIS Download Bibtex

Abstract

In this study, a molybdenum alloy with dispersed high-entropy particles was fabricated using the powder metallurgy method. The high-entropy powder, composed of Nb, Ta, V, W, and Zr elements with a same atomic fraction, was prepared via high-energy ball milling. Using this powder, an ideal core-shell powder, composed of high-entropy powder as core and Mo powder as shell, was synthesized via the milling and reduction processes. These processes enabled the realization of an ideal microstructure with the high-entropy phase uniformly dispersed in the Mo matrix. The sintered body was successfully fabricated via uniaxial compaction followed by pressureless sintering. The sintered body was analyzed by X-ray diffraction and scanning electron microscope, and the high-entropy phase is uniformly dispersed in the Mo matrix.

Go to article

Authors and Affiliations

Won June Choi
CheonWoong Park
Jongmin Byun
ORCID: ORCID
Young Do Kim
ORCID: ORCID

This page uses 'cookies'. Learn more