Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In technology of coal fines beneficiation in Poland mainly fines jigging processes are in use. In case of steam coal fines beneficiation it is till 80% of the whole amount of produced assortments, while in case of coking coal fines it is 100%. The necessary condition of not homogenous feed separation which is directed to beneficiation process in pulsating water stream is a sufficient liberation of particles. The stratification of particles in working bed causes that particles of certain size, density and shape gather in individual layers in working bed of jig. The introduction of sufficient amount of additional water determines appropriate liberation of particles group, which generates partition into concentrate and tailings. The paper presents the results of sampling of industrial jig used for the beneficiation of coal fines by three various settings of additional amount of water under sieve which is directed to jigging. These amounts were equal to 35, 50 and 70 [m3/h]. Collected samples of separation products were then sieved into narrow particle size fractions and divided into density fractions. In such narrow size-density fractions the coordinates of partition curves were calculated for tailings of hard coal fines, which were subsequently approximated by means of Weibull distribution function. The separation precision measured by separation density, probable error and imperfection were determined on the basis of obtained model separation curves. The evaluation of separation effects was performed for a wide particle size fraction: feed directed to jigging process and narrow particle size fractions. The analysis of separation results in size-density fractions allowed to determine the influence of particle size change on the value of probable error. The results of separation precision in size-density fractions were compared with effects of separation of wide particle fraction, i.e. feed directed to jigging process.
Go to article

Authors and Affiliations

Agnieszka Surowiak
Download PDF Download RIS Download Bibtex

Abstract

Atmospheric turbulence is considered as major threat to Free Space Optical (FSO) communication as it causes irradiance and phase fluctuations of the transmitted signal which degrade the performance of FSO system. Wavelength diversity is one of the techniques to mitigate these effects. In this paper, the wavelength diversity technique is applied to FSO system to improve the performance under different turbulence conditions which are modeled using Exponentiated Weibull (EW) channel. In this technique, the data was communicated through 1.55 μm, 1.31 μm, and 0.85 μm carrier wavelengths. Optimal Combining (OC) scheme has been considered to receive the signals at receiver. Mathematical equation for average BER is derived for wavelength diversity based FSO system. Results are obtained for the different link length under different turbulence conditions. The obtained average BER results for different turbulence conditions characterized by EW channel is compared with the published result of average BER for different turbulence which is presented by classical channel model. A comparative BER analysis shows that maximum advantage of wavelength diversity technique is obtained when different turbulence conditions are modeled by EW channel.
Go to article

Bibliography

[1] V. W. S. Chan, “Free-Space Optical Communications,” J. Light. Technol., vol. 24, no. 12, pp. 4750–4762, dec 2006. [Online]. Available: https://doi.org/10.1109/JLT.2006.885252
[2] R. S. Lawrence and J. W. Strohbehn, “A survey of clearair propagation effects relevant to optical communications,” Proc. IEEE, vol. 58, no. 10, pp. 1523–1545, 1970. [Online]. Available: https://doi.org/10.1109/PROC.1970.7977
[3] J. Schuster, “Free space optics technology overview,” a Present., 2002.
[4] H. A. Fadhil, A. Amphawan, H. A. B. Shamsuddin, T. H. Abd, H. M. R. Al-Khafaji, S. A. Aljunid, and N. Ahmed, “Optimization of free space optics parameters: An optimum solution for bad weather conditions,” Opt. J. Light Electron Opt., vol. 124, no. 19, pp. 3969–3973, 2013. [Online]. Available: https://doi.org/10.1016/j.ijleo.2012.11.059
[5] E. Wainright, H. H. Refai, and J. J. Sluss Jr, “Wavelength diversity in free-space optics to alleviate fog effects,” in Free. Laser Commun. Technol. XVII, vol. 5712. International Society for Optics and Photonics, 2005, pp. 110–118. [Online]. Available: https://doi.org/10.1117/12.591193
[6] L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” JOSA A, vol. 16, no. 6, pp. 1417–1429, 1999. [Online]. Available: https://doi.org/10.1364/JOSAA.16.001417
[7] H. Henniger and O. Wilfert, “An Introduction to Free-space Optical Communications.” Radioengineering, vol. 19, no. 2, 2010.
[8] H. Moradi, M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, “BER analysis of optical wireless signals through lognormal fading channels with perfect CSI,” in 2010 17th Int. Conf. Telecommun. IEEE, 2010, pp. 493–497. [Online]. Available: https://doi.org/10.1109/ICTEL.2010.5478870
[9] M. Uysal and J. Li, “Error rate performance of coded free-space optical links over gamma-gamma turbulence,” in 2004 IEEE Int. Conf. Commun. (IEEE Cat. No. 04CH37577), vol. 6. IEEE, 2004, pp. 3331– 3335. [Online]. Available: https://doi.org/10.1109/ICC.2004.1313162
[10] H. E. Nistazakis, V. D. Assimakopoulos, and G. S. Tombras, “Performance estimation of free space optical links over negative exponential atmospheric turbulence channels,” Opt. J. Light Electron Opt., vol. 122, no. 24, pp. 2191–2194, 2011. [Online]. Available: https://doi.org/10.1016/j.ijleo.2011.01.013
[11] M. Uysal, S. M. Navidpour, and J. Li, “Error rate performance of coded free-space optical links over strong turbulence channels,” IEEE Commun. Lett., vol. 8, no. 10, pp. 635–637, 2004. [Online]. Available: https://doi.org/10.1109/LCOMM.2004.835306
[12] R. Barrios and F. Dios, “Exponentiated weibull distribution family under aperture averaging for gaussian beam waves,” Optics express, vol. 20, no. 12, pp. 13 055–13 064, 2012. [Online]. Available: https://doi.org/10.1364/OE.20.013055
[13] L. M. Wasiczko and C. C. Davis, “Aperture averaging of optical scintillations in the atmosphere: experimental results,” in Atmos. Propag. II, vol. 5793. International Society for Optics and Photonics, 2005, pp. 197–208. [Online]. Available: https://doi.org/10.1117/12.606020
[14] P. R. Barbier, D. W. Rush, M. L. Plett, and P. Polak-Dingels, “Performance improvement of a laser communication link incorporating adaptive optics,” in Artif. Turbul. Imaging Wave Propag., vol. 3432. International Society for Optics and Photonics, 1998, pp. 93–102. [Online]. Available: https://doi.org/10.1117/12.327974
[15] J. A. Anguita, I. B. Djordjevic, M. A. Neifeld, and B. V. Vasic, “High-rate error-correction codes for the optical atmospheric channel,” in Free. Laser Commun. V, vol. 5892. International Society for Optics and Photonics, 2005, p. 58920V. [Online]. Available: https://doi.org/10.1117/12.615760
[16] S. S. Muhammad, T. Javornik, I. Jelovcan, E. Leitgeb, and O. Koudelka, “Reed solomon coded PPM for terrestrial FSO links,” in 2007 Int. Conf. Electr. Eng. IEEE, 2007, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ICEE.2007.4287281
[17] D. Shah and D. K. Kothari, “BER Performance of FSO link under strong turbulence with different Coding Techniques,” IJCSC, vol. 8, pp. 4–9, 2015. [Online]. Available: https://doi.org/10.031206/IJCSC.2016.002
[18] H. E. Nistazakis and G. S. Tombras, “On the use of wavelength and time diversity in optical wireless communication systems over gamma–gamma turbulence channels,” Optics & Laser Technology, vol. 44, no. 7, pp. 2088–2094, 2012. [Online]. Available: https: //doi.org/10.1016/j.optlastec.2012.03.021
[19] D. Shah, D. K. Kothari, and A. K. Ghosh, “Bit error rate analysis of the K channel using wavelength diversity,” Opt. Eng., vol. 56, no. 5, p. 56106, 2017. [Online]. Available: https://doi.org/10.1117/1.OE.56.5.056106
[20] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Commun., vol. 8, no. 2, pp. 951–957, 2009. [Online]. Available: https://doi.org/10.1109/TWC.2009.071318
[21] D. Giggenbach, B. L. Wilkerson, H. Henniger, and N. Perlot, “Wavelength-diversity transmission for fading mitigation in the atmospheric optical communication channel,” in Free. Laser Commun. VI, vol. 6304. International Society for Optics and Photonics, 2006, p. 63041H. [Online]. Available: https://doi.org/10.1117/12.680924
[22] M. M. Ibrahim and A. M. Ibrahim, “Performance analysis of optical receivers with space diversity reception,” IEE Proceedings- Communications, vol. 143, no. 6, pp. 369–372, 1996. [Online]. Available: https://doi.org/ip-com:19960885
[23] K. P. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis, “Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels,” Opt. Lett., vol. 37, no. 15, pp. 3243–3245, 2012. [Online]. Available: https://doi.org/10.1364/OL.37.003243
[24] R. R. Parenti and R. J. Sasiela, “Distribution models for optical scintillation due to atmospheric turbulence,” MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB, Tech. Rep., 2005.
[25] S. Nadarajah and A. K. Gupta, “On the moments of the exponentiated Weibull distribution,” Commun. Stat. Methods, vol. 34, no. 2, pp. 253–256, 2005. [Online]. Available: https://doi.org/10.1080/03610920509342418
[26] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions 10th Printing with Corrections,” Natl. Bur. Stand. Appl. Math. Ser., vol. 55, 1972.
[27] A. Goldsmith, Wireless communications. Cambridge university press, 2005.
Go to article

Authors and Affiliations

Dhaval Shah
1
Hardik Joshi
1
Dilipkumar Kothari
1

  1. Faculty of Electronics and Communication Engineering, Institute of Technology, Nirma University, Ahmedabad, India
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to compare three different methods of analysis of results of lightning impulse breakdown voltage measurements of solid materials such as insulating pressboard. These three methods are the series method, the step method and the up-and-down method which are applied to withstand voltage estimation commonly in high voltage engineering. To obtain the data needed for the analysis a series of experimental studies was carried out. It included studies of mineral oil and natural ester impregnating 1 mm of thick cellulose-based pressboard. In order to show the distribution of breakdown voltage the Weibull distribution was additionally applied in data analysis. The results were also assessed from the viewpoint of dielectric liquid used for impregnation. The studies carried out showed that series and step methods give comparable results opposite to the up-and-down method. The latest overstates the results for mineral oil impregnated pressboard and understates for natural ester impregnated pressboard when juxtaposing them with the rest of the methods applied. In addition, there is lack of possibility to assess the withstand voltage for the up-and-down method directly from the vector of random variable. It is possible only as a result of a specially developed equation which always arouses doubt. From the methods applied it seems that the step method can be a great substitution for the series method as intuitive, fast in application and limiting the number of samples in solid insulation material testing.
Go to article

Bibliography

[1] Liu, Q.,Wang, Z. D., & Perrot, F. (2009). Impulse breakdown voltages of ester-based transformer oils determined by using different test methods. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 608–612. https://doi.org/10.1109/CEIDP.2009.5377741
[2] Rozga, P. (2016). Streamer propagation in a non-uniform electric field under lightning impulse in short gaps insulated with natural ester and mineral oil. Bulletin of the Polish Academy of Sciences: Technical Science, 64(1), 171–179. https://doi.org/10.1515/bpasts-2016-0019
[3] Rozga, P. (2016). Using the three-parameter Weibull distribution in assessment of threshold strength of pressboard impregnated by different liquid dielectrics. IET Science, Measurement & Technology, 10(6), 665–670. https://doi.org/10.1049/iet-smt.2016.0061
[4] Aniserowicz, K. (2019). Analytical calculations of surges caused by direct lightning strike to underground intrusion detection system. Bulletin of the Polish Academy of Sciences: Technical Science, 67(2), 263–269. https://doi.org/10.24425/bpas.2019.128118
[5] Mosinski, F. (1995). Metody statystyczne w technice wysokich napięć. Wydawnictwo Politechniki Łódzkiej. (in Polish)
[6] Vibholm, S., & Thyregod, P. (1988). A study of the up-and-down method for non-normal distribution functions. IEEE Transactions on Electrical Insulation, 23(3), 357–364. https://doi.org/10.1109/14.2375
[7] Rozga, P. (2019). Lightning strength of gas, liquid and solid insulation – experience formthe laboratory tests. The International Conference on Power Transformers “Transformer’19”, 199–212.
[8] Khaled, U., & Beroual, A. (2020). Lightning impulse breakdown voltage of synthetic and natural ester liquids-based Fe3O4, Al2O3 and SiO2 nanofluids. Alexandria Engineering Journal, 59(5), 3709–3713. https://doi.org/10.1016/j.aej.2020.06.025
[9] Zhang, Q., You, H., Guo, C., Qin, Y., Ma, J., &Wen, T. (2016) Experimental research of dispersion of SF6 discharge breakdown voltage under lighting impulse. High Voltage Engineering, 42(11), 3415– 3420.
[10] Zhang, Y., Xie, S., Jiang, X., Ye, L., Zhang, Ch., Sun, P., Mu, Z., & Sima, W. (2019). Study on consistency of failure probability characteristics of oil-paper insulation under different impulse voltages. Proceedings of the 21st International Symposium on High Voltage Engineering, 1192–1206. https://doi.org/10.1007/978-3-030-31676-1_111
[11] Cousineau, D. (2009). Fitting the three-parameter Weibull distribution: review and evaluation of existing and new methods. IEEE Transactions on Dielectrics and Electrical Insulation, 16(1), 281– 288. https://doi.org/10.1109/TDEI.2009.4784578
[12] European Standards. (2014). Electric strength of insulating materials – Test methods – Part 3: Additional requirements for 1,2/50 μs impulse tests (IEC 60243-3: 2014).
[13] Witos, F., Opilski, Z., Szerszen, G., & Setkiewicz, M. (2019). The 8AE-PD computer measurement system for registration and analysis of acoustic emission signals generated by partial discharges in oil power transformers. Metrology and Measurement Systems, 26(2), 403–418. https://doi.org/10.24425/mms.2019.128355
[14] Shen, Z., Wang, F., Wang, Z., Li, J. (2021). A critical review of plant-based insulating fluids for transformer: 30 years of development. Renewable and Sustainable Energy Reviews, 41, 110783. https://doi.org/10.1016/j.rser.2021.110783
[15] Liu, Q., & Wang, Z. D. (2013) Breakdown and withstand strengths of ester transformer liquids in a quasi-uniform field under impulse voltages. IEEE Transactions on Dielectrics and Electrical Insulation, 20(2), 571–579. https://doi.org/10.1109/TDEI.2013.6508761
[16] Mohan Rao, U., Fofana, I., Beroual, A., Rozga, P., Pompili, M., Calcara, L., & Rapp, K. J. (2020). A review on pre-breakdown phenomena in ester fluids: Prepared by the international study group of IEEE DEIS liquid dielectrics technical committee. IEEE Transactions on Dielectrics and Electrical Insulation, 27(5), 1546–1560. https://doi.org/10.1109/TDEI.2020.008765
[17] Dixon,W. J. (1965). The Up-and-Down method for small samples. Journal of the American Statistical Association, 60, 967–978.
[18] Malska,W., & Mazur, D. (2017). Analiza wpływu prędkosci wiatru na generację mocy na przykładzie farmy wiatrowej. Przegląd Elektrotechniczny, 93(4), 54–57 https://doi.org/10.15199/48.2017.04.14
[19] Kalbfleisch, J. D., & Prentice, R. L. (2002). The statistical analysis of failure time data (2nd ed.). J. Wiley. https://doi.org/10.1002/9781118032985
[20] De Haan, L., & Ferreira, A. (2007). Extreme value theory: an introduction. Springer Science & Business Media. https://doi.org/10.1007/0-387-34471-3
[21] Chmura, L., Morshuis, P. H. F., Smit, J. J., & Janssen, A. (2015). Life-data analysis for condition assessment of high-voltage assets. IEEE Electrical Insulation Magazine, 31(5), 20–25. https://doi.org/10.1109/MEI.2015.7214443
[22] Cargill. (2018). https://www.cargill.com/bioindustrial/fr3-fluid/fr3-fluid-technical-details [23] Nynas. (20210). Nytro Taurus (IEC 60296) Ed. 5 – Standard Grade. https://www.nynas.com/en/product-areas/transformer-oils/oils/nytro-taurus/
[24] Rozga P., Beroual A., Przybylek P., Jaroszewski M., & Strzelecki K. (2020). A review on synthetic ester liquids for transformer applications. Energies, 13(23), 6429. https://doi.org/10.3390/en13236429
[25] European Standards. (2011). Power transformers – Part 1: General (IEC 60076-1:2011)
Go to article

Authors and Affiliations

Artur Klarecki
1 2
Paweł Rózga
1
Filip Stuchała
1

  1. Lodz University of Technology, Institute of Electrical Power Engineering, Stefanowskiego 18/22, 90-924 Lodz, Poland
  2. Lodz University of Technology, Interdisciplinary Doctoral School, Zeromskiego 116, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The roof-caving step scale goaf behind the working face is sensitive to the region’s spontaneous combustion and gas concentration distribution, including many rock block cracks and holes. A severe deviation from the dynamics of fluids in porous media by representative element volume (REV), leading to the results of Computational Fluid Dynamics (CFD) simulation, has a significant error. A heterogeneous two-dimensional pore network model was established to simulate the goaf flow accurately. The network was first created using the simple cubic lattice in the OpenPNM package, and the spatial distribution of the “O-ring” bulking factor was mapped to the network. The bulking factor and Weibull distribution were combined to produce the size distribution of the pore and throat in the network. The constructed pore network model was performed with single-phase flow simulations. The study determined the pore structure parameters of the pore network through the goaf’s risked falling characteristics and described the flow field’s distribution characteristics in the goaf. The permeability coefficient increases as pore diameter, throat diameter, pore volume and throat volume increase and increases as throat length decreases. The correlation between throat volume and permeability coefficient is the highest, which indicates that the whole throat is the main control factor governing the air transport capacity in the goaf. These results may provide some guidelines for controlling thermodynamic disasters in the goaf.
Go to article

Authors and Affiliations

Ke Gao
1
ORCID: ORCID
Qiwen Li
1
ORCID: ORCID
Lianzeng Shi
1
ORCID: ORCID
Aobo Yang
1
ORCID: ORCID
Zhipeng Qi
1
ORCID: ORCID

  1. Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control Of Ministry Of Education, China

This page uses 'cookies'. Learn more