Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of studies of silicon – molybdenum cast iron (4.42% Si, 2.59% Mo and 2.48% C wt.-%) crystallization process. Metallographic analysis was carried out using SEM-scanning electron microscopy with the EDS system. In order to determine the phase composition, X-ray diffraction studies were performed. Thermo-Calc, a computer simulation program, was used to simulate the crystallization process. . The obtained data allowed to describe the effect of some elements on the crystallization process. The silicon phase of MnSi could not be identified during metallographic studies. Also, computer simulation of the crystallization process did not answer the question at which point the silicon phase of MnSi crystallizes in the tested alloy. Therefore, not all results obtained were linked to the registered crystallization process (TDA process). The EDS analysis revealed an unusual distribution of molybdenum in the microstructure of the sample, where it is clearly visible that the area enriched with this element is also the separation of spheroidal graphite. The possibility of occurrence of Mo-rich micro-areas found in graphite is considered. The case is debatable and difficult to resolve at this stage. Perhaps, at such a high concentration of molybdenum (2.59% Mo) in the alloy, conditions are created for simultaneously crystallization of graphite and molybdenum phases.
Go to article

Authors and Affiliations

M. Stawarz
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the physicochemical and mechanical properties, microstructure, and the tendency to form shrinkage of nodular cast iron depending on the type of inoculant used for secondary inoculation. Six different inoculants containing different active elements in their chemical composition were used for the research. Step castings and Y2 wedges were made on the vertical forming line using an automatic pouring machine. The inoculation in the amount of 0.2% was made using a pneumatic dispenser equipped with a vision system controlling the effectiveness of the inoculation. The results of the thermal analysis were determined and compared, and the potential of each of the inoculants was assessed.
Go to article

Bibliography

[1] Fraś, E., Podrzucki, C. (1978). Modified cast iron. Kraków: Skrypt AGH, nr. 675. (in Polish).
[2] ITACAX™ – Final iron control. Retrieved November 10, 2021, from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/.
[3] Karsey S.I. (2000). Ductile iron I. Manufacturing. Warszawa: QIT, Fer et Titane Inc. (in Polish).
[4] Janerka, K., Kondracki, M., Jezierski, J., Szajnar, J. & Stawarz, M. (2014). Carburizer effect on cast iron solidification. Journal of Materials Engineering and Performance. 23, 2174-2181.
[5] Seidu, S.O. Thermal analysis of preconditioned ductile cast iron. International Journal of Current Engineering and Technology. 3(3), 813-818
[6] Lampic, M. (2013). Inoculation of cast irons: practice and developments. International Foundry, Research. 65(2).
Go to article

Authors and Affiliations

R. Dwulat
1 2
ORCID: ORCID
K. Janerka
2
ORCID: ORCID
K. Grzesiak
1

  1. Foundry Lisie Kąty, Lisie Kąty 7, 86-302 Grudziądz, Poland
  2. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research concerning to AlCu4MgSi alloy ingots produced using horizontal continuous casting process. The presented research was focused on the precise determination of phase composition of the precipitates formed during the solidification of ingots and the analysis of their thermal stability. In order to assess the morphology of precipitates in the AlCu4MgSi alloy, data obtained by using a computer simulation of thermodynamic phenomena were compiled with results obtained using advanced research techniques, i.e. High-temperature X-ray diffraction (HT-XRD), SEM-EDS, Thermal and derivative analysis (TDA) and Glow discharge optical emission spectroscopy (GD OES). SEM observations and analysis of chemical composition in micro-areas showed that the precipitates are mainly intermetallic θ-Al2Cu and β-Mg2Si phases, and also presence of Al19Fe4MnSi2 intermetallic phase was confirmed by X-ray diffraction studies. Based on the prepared Thermo-Calc simulation data, high-temperature X-ray diffraction measurements were conducted.

Go to article

Authors and Affiliations

P.M. Nuckowski
M. Kondracki
T. Wróbel
ORCID: ORCID

This page uses 'cookies'. Learn more