Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

MIMO technology has become very popular in a wireless communication system because of the many advantages of multiple antennas at the transmitting end and receiving end. The main advantages of MIMO systems are higher data rate and higher reliability without the need of extra power and bandwidth. The MIMO system provides higher data rate by using spatial multiplexing technique and higher reliability by using diversity technique. The MIMO systems have not only advantages, but also have disadvantages. The main disadvantage of MIMO system is that the multiple antennas required extra high cost RF modules. The extra RF modules increase the cost of wireless communication systems. In this research, the antenna selection techniques are proposed to minimize the cost of MIMO systems. Furthermore, this research also presents techniques for antenna selection to enhance the capacity of channel in MIMO systems.

Go to article

Authors and Affiliations

Dalveer Kaur
Neeraj Kumar
Download PDF Download RIS Download Bibtex

Abstract

HPM meters are required for the assessment of fields generated by sources of high-power microwaves. Finding the inverse calibration curves for such instruments is important for ensuring accuracy. The procedure is relatively simple for meters consisting of linear devices but there can also be hardware solutions implementing nonlinear ones. The objective of the present work was to develop a convenient procedure to allow finding such a curve when the meter uses a D-dot probe and a power detector. For that purpose, the results of low voltage measurements describing the properties of the detector were first analysed. Then a software code was developed to estimate the RMS value of an incident field based on measured output and frequency response. The response was estimated with very low electric field. And finally, the performance of the proposed procedure was verified by tests conducted with high electric field in a TEM cell. High conformity of the output of the meter with fields of known values was demonstrated. The maximum error related to the meter range did not exceed 4%.

Go to article

Authors and Affiliations

Jacek Jakubowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Vibration analysis for conditional preventive maintenance is an essential tool for the industry. The vibration signals sensored, collected and analyzed can provide information about the state of an induction motor. Appropriate processing of these vibratory signals leads to define a normal or abnormal state of the whole rotating machinery, or in particular, one of its components. The main objective of this paper is to propose a method for automatic monitoring of bearing components condition of an induction motor. The proposed method is based on two approaches with one based on signal processing using the Hilbert spectral envelope and the other approach uses machine learning based on random forests. The Hilbert spectral envelope allows the extraction of frequency characteristics that are considered as new features entering the classifier. The frequencies chosen as features are determined from a proportional variation of their amplitudes with the variation of the load torque and the fault diameter. Furthermore, a random forest-based classifier can validate the effectiveness of extracted frequency characteristics as novel features to deal with bearing fault detection while automatically locating the faulty component with a classification rate of 99.94%. The results obtained with the proposed method have been validated experimentally using a test rig.
Go to article

Authors and Affiliations

Bilal Djamal Eddine Cherif
1
Sara Seninete
2
Mabrouk Defdaf
1

  1. Department of Electrical Engineering, Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. Department of Electrical Engineering, Faculty of Technology, University of Mostaganem, Mostaganem 27000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with designing and simulation of an efficient RF-DC energy harvesting system for a remote control device. GSM down-link frequency of 935MHz to 960MHz and uplink frequency of 890MHz to 915MHz is taken as the RF source with centre frequency as 950MHz and 900MHz respectively. The simulation model has been created by using Advanced Design System (ADS) software. Performance of the circuit has been tested with matching and without matching circuits. The output voltage obtained was 0.372V DC and maximum efficiency up to 35.73% was achieved for the downlink GSM frequency by the lumped method for -10dB input source power. By considering more number of rectifier stages, output DC voltage can be increased and it can be utilized for replacing DC battery of the remote control device.
Go to article

Authors and Affiliations

Deepak Kumar Nayak
1
Arjuna Muduli
2

  1. ECE, Budge Budge Institute of Technology, Kolkata, West Bengal, India
  2. ECE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

Ice formed on radome surfaces causes communication disruption due to radio-frequency interference (RFI), which reveals the importance of de-icing systems for radomes. As a radome de-icing application, in this work, carbon nanotube (CNT) thin films were fabricated using a spray-coating method, and influence of process parameters on RF transmittance and electrothermal properties was investigated. With the increase of spraying time, sheet resistance of the fabricated film decreases, which results in a decrease of the RF transmittance and improvement of the heating performance. Also, the de-icing capability of the fabricated CNT film was evaluated at –20oC, and efficient removal of ice under cold conditions was demonstrated.

Go to article

Authors and Affiliations

Jun Hyuk Jung
Jiwon Hong
Youngryeul Kim
Seok-Min Yong
Jinwoo Park
Seung Jun Lee
Download PDF Download RIS Download Bibtex

Abstract

This work proposes a systematic assessment of measuring type A uncertainty (caused by random errors) used in RF power sensor calibration. To reduce A type uncertainty, several successive measurements are repeated. The uncertainty arises from repeatability errors in connectors caused by changes in their electrical properties during repeated mating. The suitability of the METAS UncLib software was analysed and we concluded that software should be developed to take into account the shape of probability density function (PDF) using a Monte Carlo method (MCM), which was lacking in METAS UncLib. The self-developed software was then tested on an example taken from the literature and the superiority of the MCM over the analytical method (GUM) was confirmed. During the calibration of the RF sensor using a vector network analyzer (VNA), a series of repeated measurements were performed and, after applying our MCM software, it was found that the measurement uncertainties calculated by the MCM method were several times larger than those by the GUM. The reason for this was that the correlation between the measured input quantities was not taken into account. When this was done using a covariance matrix and assuming a normal PDF of the input quantities, the results obtained with the GUM and the MCM converged. Our main objective was to investigate the influence of the PDF shape of the input measurement samples on the measurement uncertainty. Taking more than a dozen measurements is too costly, on the other hand, the small sample size prevents a reliable determination of the PDF shape. Finally, to overcome this inconvenience, we have developed a special method that uses the histograms of standardized input data taken at all measurement frequencies under fixed conditions without disconnecting the connectors, to increasing the total number of results which were needed to create the PDF histograms of input quantities.
Go to article

Authors and Affiliations

Marek Jaworski
1
Jarosław Szatkowski
1
Tomasz Kossek
1

  1. National Institute of Telecommunications (NIT), Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Millimeter-wave (mm-wave) transmitters are often fabricated using advanced technology and require a sophisticated manufacturing facility. Access to such technologies is often very limited and difficult to gain particularly at the initial stage of research. Therefore, to increase the accessibility of mm-wave transmitters, this study proposes a design that can be assembled in a standard microwave laboratory from commercially available or externally ordered components. The transmitter demonstrated in this paper operates above 100 GHz and is based on a lowtemperature co-fired ceramic board in which the antenna array, microstrip lines, and power-supply lines are fabricated in a single process. Different technologies are used to assemble the module, e.g., wire-bonding, soldering, and wax adhesion. Advantages and disadvantages of the proposed design are given based on experimental evaluation of the prototype. Although the performance of the developed transmitter is not as good as that of the similar modules available in the recent literature, the results confirm the feasibility of a mm-wave transmitter that is assembled without employing advanced technologies and superior machinery.
Go to article

Authors and Affiliations

Paweł Bajurko
1
Jakub Sobolewski
1
Grzegorz Bogdan
1
Konrad Godziszewski
1
Jacek Marczewski
2
Jan Kulawik
2
Michał Widlok
3
Yevhen Yashchyshyn
1

  1. Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Warsaw, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics, Warsaw, Poland
  3. SIRC Sp. z o.o., Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The low adherence of diamond-like carbon (DLC) films on titanium (Ti) alloys can be improved by using interlayer coatings. In this study, DLC (a-C:H) films were deposited using radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD), and a TiCN interlayer was applied between the extra low interstitial (ELI) grade of Ti-6Al-4V alloy and a-C:H film. The characteristics of the a-C:H-coated Ti-6Al-4V ELI alloy were investigated using field emission scanning electron microscopy, Vickers hardness, and scratch and wear tests. The DLC (a-C:H) films deposited by rf-PECVD had a thickness of 1.7 µm, and the TiCN interlayer had a thickness of 1.1 µm. Vickers hardness of the DLC (a-C:H) films were increased as a result of the influence of the TiCN interlayer. The resulting friction coefficient of the a-C:H-coated Ti-6Al-4V with the TiCN interlayer had an extremely low value of 0.07.

Go to article

Authors and Affiliations

Kwangmin Lee
ORCID: ORCID
Seokil Kang
Download PDF Download RIS Download Bibtex

Abstract

Al doped ZnO has been explored as a viable alternative to indium thin oxide, which is usually used as transparent electrodes' coverage but is expensive. Homogenous and durable ZnO:Al layers on glass have been obtained in radio frequency magnetron sputtering system by adjusting optimized deposition parameters, using ZnO ceramic target with 2 wt% Al2O3. Then, after growth process, annealing treatment has been introduced in order to improve the quality of the layers. Structural, electrical and optical properties of the obtained ZnO:Al layers are presented and discussed. From the application point of view, the best results (sheet resistance of 24 Ω/sq and transparency well above 85%) were achieved after annealing in 300°C.

Go to article

Authors and Affiliations

A. Zdyb
E. Krawczak
S. Gułkowski
Download PDF Download RIS Download Bibtex

Abstract

The ILC is an immense e+e- machine planned since 2004 by a large international collaboration, to be potentially built in Japan [1]. The gigantic size of the whole research infrastructure, the involved human, technical and financial resources, and the pressure of new emerging and potentially soon to be competitive accelerator technologies, make the final building decision quite difficult. A vivid debate is carried on this subject globally by involved accelerator research communities. The European voice is very strong and important in this debate, and has recently been essentially refreshed by clear statements in a few official documents [2]. The final HEP European Strategy Document is just under preparation. This paper is a very modest and subjective voice in this debate originating from Poland, which around 50 researchers are present at the list of 2400 signatories for the original ILC TDR document published in 2013 [3].

Go to article

Authors and Affiliations

Ryszard S. Romaniuk
Download PDF Download RIS Download Bibtex

Abstract

Percutaneous RF ablation is one of alternative treatment for non-surgical liver tumors. Ablative changes in hepatic tissue can be successfully estimated using the finite element method. The authors created a 3D model of a multi-tine applicator immersed in liver tissue, and then determined the optimal values of voltage applied to such an RF electrode, which do not exceed the therapeutic temperature range valid during thermal ablation procedure. Importantly, the simulations were carried out for the RF electric probes with 2 to 5 evenly spaced arms. Additionally, the thermal damage of hepatic tissue for multi-armed applicators working at pre-defined limit values of voltages was established based on the Arrhenius model.

Go to article

Authors and Affiliations

Piotr Gas
Joanna Wyszkowska
Download PDF Download RIS Download Bibtex

Abstract

This article has two outreach aims. It concisely summarizes the main research and technical efforts in the EC H2020 ARIES Integrating Activity – Accelerator Research and Innovation for European Science and Society [1] during the period 2017/2018. ARIES is a continuation of CARE, TIARA and EuCARD projects [2-3]. The article also tries to show these results as an encouragement for local physics and engineering, research and technical communities to participate actively in such important European projects. According to the author’s opinion this participation may be much bigger [4-27]. All the needed components to participate – human, material and infrastructural are there [4,7]. So why the results are not satisfying as they should be? The major research subjects of ARIES are: new methods of particles acceleration including laser, plasma and particle beam interactions, new materials and accelerator components, building new generations of accelerators, energy efficiency and management of large accelerator systems, innovative superconducting magnets, high field and ultra-high gradient magnets, cost lowering, system miniaturization, promotion of innovation originating from accelerator research, industrial applications, and societal implications. Two institutions from Poland participate in ARIES – these are Warsaw University of Technology and Institute of Nuclear Chemistry and Technology in Warsaw. There are not present some of the key institutes active in accelerator technology in Poland. Let this article be a small contribution why Poland, a country of such big research potential, contributes so modestly to the European accelerator infrastructural projects? The article bases on public and internal documents of ARIES project, including the EU Grant Agreement and P1 report. The views presented in the paper are only by the author and not necessarily by the ARIES.

Go to article

Authors and Affiliations

Ryszard S. Romaniuk

This page uses 'cookies'. Learn more