Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The process of carbon dioxide removal from monoethanolamine (MEA) - water solution was investigated on Poly Di Methyl Siloxane (PDMS) hydrophobic tubular membrane with a ceramic support. The effects of feed temperature, liquid flow rate and MEA concentration on CO2 mass transfer and selectivity were examined and found to be with a reasonable deviation (±25%) with predictions based on the multilayer film model. The membrane resistance was evaluated in separate experiments. The measured CO2 mass fluxes (0.17-0.45 kg/(m2h)) were found to be independent of the MEA concentration in the feed.

Go to article

Authors and Affiliations

Roman Krupiczka
Adam Rotkegel
Zenon Ziobrowski
Download PDF Download RIS Download Bibtex

Abstract

In this work, a real-time label-free microwave sensing mechanism for glucose concentration monitoring using a planar biosensor configured with an inset fed microstrip patch antenna has been demonstrated. A microstrip patch antenna with the resonating frequency of 1.45 GHz has been designed and is fabricated on the Flame Retardant (FR-4) substrate. Due to the intense electromagnetic field at the edges of the patch antenna, edge length has been used as the detecting area where the sample under test (SUT) interacts with the electromagnetic field. The Poly-Dimethyl-Siloxane (PDMS) with the trench in the centre has been employed as the sample holder. Here, the SUT is the glucose dissolved in DI (de-ionized) water with the concentration range of 0.2 to 0.6 g/mL. The dielectric constant dependency on the glucose concentration has been used as the distinguishing factor which results in a shift in the S-parameter. The experimentally measured RF parameters were observed closely which showed the shift in S11 magnitude from –40 to –15 dB and resonant frequency from 1.27 to 1.3 GHz w.r.t the SUT solution of 0.2 to 0.6 g/mL with linear regression coefficient of 0.881, and 0.983 respectively.
Go to article

Authors and Affiliations

Priya Rai
1
Poonam Agarwal
2

  1. Institute of Science and Technology, Chandrakona Town, Paschim Medinipur, West Bengal-721301, India
  2. Microsystems Lab, School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of investigation on a prototype sensor for measurement of benzaldehyde in air. Sensitivity and limit of quantification of the sensor were determined for different internal electrolytes using square wave voltammetry (SWV) as the detection technique. The working and counter electrodes were made of platinum. Ionic liquids 1-hexyl, 3-methylimidazolium chloride, 1-hexyl, 3-methylimidazolium bis (trifluoro-methanesulfonyl) imide and 1-butyl, 3-methylimidazolium tricyanomethan constituted the internal electrolyte. A polydimethylsiloxane (PDMS) membrane separated the gaseous medium from the electrolyte.

Go to article

Authors and Affiliations

Jacek Gębicki
Adam Kloskowski
Download PDF Download RIS Download Bibtex

Abstract

This study discusses the synthesis, characterization and development of self-healing nanocomposite of amino-terminated PDMS (Polydimethylsiloxane), Epoxy (EPON828¸ Diethylenetriamine (DETA)), and Graphene Oxide (GO).GOwas prepared using a modified Hummer’s method andwas incorporated into the PDMS-Epoxy composite in various ratios (0.1 wt.%, 0.3 wt.%, and 0.5 wt.%) using toluene as the dispersing medium. Fourier TransformInfrared Spectroscopy was used for confirming the presence of the designed/prepared structures, and thermo-mechanical analysis was performed to test the change in glass transition temperature and initiation temperature of self-healing process. The composite resins were coated on mild steel substrates by curing freshly prepared resins over the substrates at elevated temperatures. The corrosion behavior of mild steel in 3.5 wt.% NaCl solution before and after the coatings was studied using Tafel Electrochemical Polarization test. The self-healing properties of the materials were also studied by applying cuts on the material and letting them heal under elevated temperatures, and the results showed that the prepared coating demonstrated an effective corrosion resistance for mild steel for various marine applications.
Go to article

Authors and Affiliations

Krishna Moorthi
1 2
Vishesh Saxena
1 3
R.V. Siva Prasanna Sanka
4
Sravendra Rana
1

  1. University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India
  2. Georgia Institute of Technology, Atlanta, GA, 30332, USA
  3. Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen AG 9747, The Netherlands
  4. Department of Mechanical Engineering, University Institute of Engineering, Chandigarh University, Mohali, India
Download PDF Download RIS Download Bibtex

Abstract


ZnS-based mechanoluminescent film has been widely used in the fields of stress visualization and stress sensing, due to its high brightness and repeatable stable luminescent characteristics. To evaluate the flexibleelastic deformation performance of ZnS-based mechanoluminescent film, both visual inspection and digital image correlation (DIC) are, respectively, employed for measuring the ZnS-based mechanoluminescent film. ZnS:Cu 2+ mechanoluminescent powders are first mixed with polydimethylsiloxane (PDMS) matrix to produce ZnS:Cu 2+–PDMS mechanoluminescent film. Then, two measurement experiments are, respectively, conducted to investigate the mechanical response and the flexible-elastic deformation performance of the prepared ZnS:Cu2+–PDMS mechanoluminescent film. On one hand, the mechanical response performance of the ZnS:Cu 2+–PDMS mechanoluminescent film is validated by visual monitoring of composite concrete fracture processes. On the other hand, the prepared ZnS:Cu 2+–PDMS mechanoluminescent film is also measured by DIC to obtain its full-field deformations and strains information. The flexible-elastic deformation performance of the ZnS:Cu 2+–PDMS mechanoluminescent film is well demonstrated by the DIC measured results.
Go to article

Authors and Affiliations

Guo-Qing Gu
1 2
Gui-Zhong Xu
1 2
Feng Shen
3
Peng Zhou
4
Hou-Chao Sun
1
Jia-Xing Weng
5

  1. Yancheng Institute of Technology, School of Civil Engineering, Yancheng, 224051, China
  2. Coastal City Low Carbon Construction Engineering Technology Research Center, Yancheng 224056, China
  3. Jiangsu Fiber Composite Company Ltd., Jianhu, Yancheng 224700, China
  4. Yancheng Institute of Supervision & Inspection on Product Quality, Yancheng 224056, China
  5. Jiangsu Water Source Company Ltd. of the Eastern Route of the South-to-North Water Diversion Project, Nanjing 210000, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the designing and simulation of 400 Gbps polarisation division multiplexing-quadrature amplitude modulation-orthogonal frequency division multiplexing (PDM-4QAM-OFDM)-based inter-satellite optical wireless communication (IsOWC)/mechatronic telecommunication system for improving the link information carrying capacity was carried out. With quadrature amplitude modulation (QAM) encoding, the performance of the executed system has been addressed using metrics such as signal to noise ratio (SNR) and total received power (RP). The performance with suggested system has been examined in relation to the effects of various factors such as operating wavelength, transmission power, and receiving pointing error angle. Moreover, a better identification method for improving connection reach between mechatronic devices/satellites has been revealed in this study. A performance comparison of the proposed system with other implemented approaches has been made in the final step
Go to article

Authors and Affiliations

Shivmanmeet Singh
1 2
Narwant Singh Grewal
2
Baljeet Kaur
2

  1. I. K. Gujral Punjab Technical University, Jalandhar – Kapurthala Highway, Kapurthala, 144603, Punjab, India
  2. Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, 141006, Punjab, India

This page uses 'cookies'. Learn more