Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents maps of spatial distributions of the short circuit current Isc(x,y) and the open circuit voltage Uoc(x,y) of the investigated low cost solar cells. Visible differences in values of these parameters were explained by differences in the serial and shunt resistances determined for different points of solar cells from measurements of I–V characteristics. The spectral dependence of the photo voltage of solar cell is also shown, discussed and interpreted in the model of amorphous and crystal silicon.
Go to article

Authors and Affiliations

Łukasz Bartłomiej Chrobak
Wiesław Ryszard Madej
Mirosław Andrzej Maliński
Download PDF Download RIS Download Bibtex

Abstract

The method of cleaning the ISFET structures after application of a biological substance was developed. There are few references in the literature to cleaning methods of this type of structure for biological applications, but they are relatively complex and difficult to automate. We decided to use resources commonly available in technological laboratories and methods that could be relatively easily automated, which would enable the full potential of ISFET transistors to be used. During the experiments, both acetone and deionized water were tested. The cleaning method was modified and it was checked whether it is possible to use such a method on one transistor more than once and how it affects the transistor's detection capabilities. We managed to obtain an effective method of cleaning ISFETs from biological substances. This method does not allow for obtaining exactly the same state as the original state of the transistor, but it ensures its correct operation and determining the influence of the tested biological substance on the transistor based on the results.
Go to article

Authors and Affiliations

Kinga Kondracka
1
Piotr Firek
1
Marta Grodzik
2
Maciej Szmidt
2
Ewa Sawosz–Chwalibóg
2
Jan Szmidt
1

  1. Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Warsaw, Poland
  2. Warsaw University of Life Sciences, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A theoretical analysis of the mid-wavelength infrared range detectors based on the HgCdTe materials for high operating temperatures is presented. Numerical calculations were compared with the experimental data for HgCdTe heterostructures grown by the MOCVD on the GaAs substrates. Theoretical modelling was performed by the commercial platform SimuAPSYS (Crosslight). SimuAPSYS fully supports numerical simulations and helps understand the mechanisms occurring in the detector structures. Theoretical estimates were compared with the dark current density experimental data at the selected characteristic temperatures: 230 K and 300 K. The proper agreement between theoretical and experimental data was reached by changing Auger-1 and Auger-7 recombination rates and Shockley-Read-Hall carrier lifetime. The level of the match was confirmed by a theoretical evaluation of the current responsivity and zero-bias dynamic resistance area product (R0A) of the tested detectors.
Go to article

Bibliography

  1. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  2. Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Prog. Phys. 68, 2267–2336 (2005). https://doi.org/10.1088/0034-4885/68/10/r01
  3. Hansen, G. L., Schmit, J. L. & Casselman, T. N. Energy gap versus alloy composition and temperature in Hg1-xCdx J. Appl. Phys. 53, 7099–7101 (1982). https://doi.org/10.1063/1.330018
  4. Harman, T. C. & Strauss, J. Band structure of HgSe and HgSe-HgTe alloys. Appl. Phys. 32, 2265–2270 (1961). https://doi.org/10.1063/1.1777057
  5. Martyniuk, P. & Rogalski, A. Performance comparison of barrier detectors and HgCdTe photodiodes. Eng. 53, 106105 (2014). https://doi.org/10.1117/1.OE.53.10.106105
  6. Rogalski, A. Infrared and Terahertz Detectors. (3rd) (CRC Press Taylor & Francis Group, 2020). https://doi.org/10.1201/b21951
  7. Lei, W., Antoszewski, J. & Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and Detectors. Phys. Rev. 2, 041303 (2015). https://doi.org/10.1063/1.4936577
  8. Norton, P. HgCdTe infrared detectors. Opto-Electron. Rev. 10, 159–174 (2002). https://optor.wat.edu.pl/10(3)159.pdf
  9. Qiu, W. C., Jiang, T. & Cheng, X. A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector. Appl. Phys. 118, 124504 (2015). https://doi.org/10.1063/1.4931661
  10. Iakovleva, N. I. The study of dark currents in HgCdTe hetero-structure photodiodes. Commun. Technol. Electron. 66, 368–374 (2021). https://doi.org/10.1134/S1064226921030220
  11. Martyniuk, P. & Rogalski, A. HOT infrared photodetectors. Opto-Electron. Rev. 21, 240–258 (2013). https://doi.org/10.2478/s11772-013-0090-x
  12. Piotrowski, J. & Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115–131 (2004). https://doi.org/10.1016/j.infrared.2004.03.016
  13. Elliott, C. T. Non-equilibrium mode of operation of narrow-gap semiconductor devices. Sci. Technol. 5, S30–S37 (1990). https://doi.org/10.1088/0268-1242/5/3S/008
  14. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  15. Kopytko, M., Kębłowski , A., Gawron, W. & Pusz, LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond. Sci. Technol. 31, 035025 (2016). https://doi.org/10.1088/0268-1242/31/3/035025
  16. He, J. et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Express 28, 33556 (2020). https://doi.org/10.1364/OE.408526
  17. Gawron, W. et al. MOCVD Grown HgCdTe heterostructures for medium wave infrared detectors. Coatings 11, 611 (2021). https://doi.org/10.3390/coatings11050611
  18. Kębłowski, A. et al. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors. SPIE. 9819, 98191E-1 (2016). https://doi.org/10.1117/12.2229077
  19. APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).
  20. Capper, P. P. Properties of Narrow Gap Cadmium-Based Compounds. (INSPEC, the Institution of Electrical Engineers, 1994).
  21. Long, F. et al. The structural dependence of the effective mass and Luttinger parameters in semiconductor quantum wells. Appl. Phys. 82, 3414–3421 (1997). https://doi.org/10.1063/1.365657
  22. Lopes, V. C., Syllaios, A. J. & Chen, M. C. Minority carrier lifetime in mercury cadmium telluride. Sci. Technol. 8, 824–841 (1993). https://doi.org/10.1088/0268-1242/8/6s/005
  23. Aleshkin, V.Y. et al. Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. Appl. Phys. 129, 133106 (2021). https://doi.org/10.1063/5.0046983
  24. Reine, M. B. et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. Electron. 36, 1059–1067 (2007). https://doi.org/10.1007/s11664-007-0172-y
  25. Schuster, J. et al. Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression. Phys. Lett. 107, 023502 (2015). https://doi.org/10.1063/1.4926603
  26. Schacham, S. E. & Finkman, E. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects. Appl. Phys. 57, 2001–2009 (1985). https://doi.org/10.1063/1.334386
  27. Zhu, L. et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 28, 3802709 (2022). https://doi.org/10.1109/JSTQE.2021.3121273
  28. Kopytko, M., Jóźwikowski, K., Martyniuk, P. & Rogalski, A. Photon recycling effect in small poxel p-i-n HgCdTe long wavelenght infrared photodiodes. Infrared Phys. Technol. 97, 38–42 (2019). https://doi.org/10.1016/j.infrared.2018.12.015
  29. Olson, B. V. et al. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Phys. Lett. 107, 261104 (2015). https://doi.org/10.1063/1.4939147
  30. Beattie, A. R. & Landsberg, P. Auger effect in semiconductors. Proc. Math. Phys. Eng. Sci. A249, 16−29 1959. https://doi.org/10.1098/rspa.1959.0003
  31. Krishnaumurthy, S. & Casselman, T. N. A detailed calculation of the Auger lifetime in p-type HgCdTe. Electron. Mater. 29, 828−831 (2000). https://doi.org/10.1007/s11664-000-0232-z
Go to article

Authors and Affiliations

Tetiana Manyk
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Waldemar Gawron
1 2
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  2. VIGO System S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

Numerical analysis of the dark current (Jd) in the type-II superlattice (T2SL) barrier (nBn) detector operated at high temperatures was presented. Theoretical calculations were compared with the experimental results for the nBn detector with the absorber and contact layers in an InAs/InAsSb superlattice separated AlAsSb barrier. Detector structure was grown using MBE technique on a GaAs substrate. The k p model was used to determine the first electron band and the first heavy and light hole bands in T2SL, as well as to calculate the absorption coefficient. The paper presents the effect of the additional hole barrier on electrical and optical parameters of the nBn structure. According to the principle of the nBn detector operation, the electrons barrier is to prevent the current flow from the contact layer to the absorber, while the holes barrier should be low enough to ensure the flow of optically generated carriers. The barrier height in the valence band (VB) was adjusted by changing the electron affinity of a ternary AlAsSb material. Results of numerical calculations similar to the experimental data were obtained, assuming the presence of a high barrier in VB which, at the same time, lowered the detector current responsivity.

Go to article

Bibliography

  1. Aytac, Y. et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infra-red InAs/InAsSb superlattices. Appl. Phys. Lett. 105, 022107 (2014). https://doi.org/10.1063/1.4890578
  2. Olson, B. et al. Identification of dominant recombination mecha-nisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 103, 052106 (2013). https://doi.org/10.1063/1.4817400
  3. White, M., 1983. Infrared Detectors. U.S. Patent 4,679,063.
  4. Klipstein, P., 2003. Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7,795,640.
  5. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  6. Ting, D. Z.-Y. et al. Chapter 1 - Type-II Superlattice Infrared Detectors. in Advances in Infrared Photodetectors (eds. Gunapala, S. D., Rhiger, D. R. & Jagadish, C.) vol. 84 1–57 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-381337-4.00001-2
  7. Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, 40–45 (2016).https://doi.org/10.1515/oere-2016-0007
  8. Benyahia, D. et al. Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Opt. Quant. Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  9. Vurgaftman, I., Meyer, J. & Ram-Mohan, L. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). https://doi.org/10.1063/1.1368156
  10. Birner, S. Modelling of semiconductor nanostruc¬tures and semiconductor-electrolyte interfaces. Ph.D. dissertation (Universität München, Germany, 2011).
  11. Chuang, Sh. L. Physics of optoelectronic devices. (Wiley, New York, 1995).
  12. Van de Walle, C. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989). https://doi.org/10.1103/PhysRevB.39.1871
  13. Kopytko, M. et al. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings 27, 37 (2019), https://doi.org/10.3390/proceedings2019027037
  14. Hazbun, R. et al. Theoretical study of the effects of strain balancing on the bandgap of dilute nitride InGaSbN/InAs superlattices on GaSb substrates. Infrared Phys. Technol. 69, 211–217 (2015). https://doi.org/10.1016/j.infrared.2015.01.023
  15. Livneh, Y. et al. k-p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices. Phys. Rev. B 86, 235311 (2012). https://doi.org/10.1103/PhysRevB.86.235311
  16. Yu, P. & Cardona, M. Fundamentals of semicon-ductors: Physics and materials properties, 4th edn. (Springer, Heidelberg, 2010).
  17. Adachi, S. Properties of group – IV, III-V and II-VI Semicon-ductors. (Wiley, London, 2005).
  18. Manyk, T. et al. Method of electron affinity evalua¬tion for the type-2 InAs/InAs1-xSbx superlattice. J. Mater. Sci. 55, 5135–5144 (2020). https://doi.org/10.1007/s10853-020-04347-6
Go to article

Authors and Affiliations

Małgorzata Kopytko
1
ORCID: ORCID
Emilia Gomółka
1
ORCID: ORCID
Tetiana Manyk
1
ORCID: ORCID
Krystian Michalczewski
2
ORCID: ORCID
Łukasz Kubiszyn
2
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  2. Vigo System S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mismatch effect of photovoltaic (PV) arrays due to different illumination intensity has a significant impact on the output characteristics and output power of PV arrays, which is crucial to understand the output characteristics of PV arrays and optimize the array configuration in order to improve the value of the maximum power point. This paper illustrates the short-circuit current mismatch of series circuits, and the open-circuit voltage mismatch of parallel circuits and proposes corresponding solutions for each mismatch phenomenon. The output characteristics of multi-stage series PV arrays and multi-stage parallel PV arrays under complex illumination are analyzed by using the peak point approximation calculation method, and the distribution law of peak voltage points as well as the I-V (Current-Voltage) characteristic equation of each operating section are proposed. On this basis, the output characteristics of 3 x 3 centralized PV arrays are analyzed and verified by simulation. By comparing series and parallel PV arrays with the same condition, as well as several groups of centralized PV arrays with the same topology and different types of illumination distribution, this paper proposes a configuration optimization method for PV arrays. Matlab/Simulink simulation results confirm that the output power of parallel arrays is greater than that of series arrays under the same configuration and illuminationt distribution type, and the peak point is less than that of series arrays under the same configuration and lighting conditions; while in centralized PV arrays, the fewer series modules are shaded, the greater the output power and the less the peak point.
Go to article

Authors and Affiliations

Liming Wei
1
ORCID: ORCID
KaiKai Li
1
ORCID: ORCID

  1. School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun, Jilin, China

This page uses 'cookies'. Learn more